CN104466041A - 由盖保护的锂微电池 - Google Patents

由盖保护的锂微电池 Download PDF

Info

Publication number
CN104466041A
CN104466041A CN201410539682.3A CN201410539682A CN104466041A CN 104466041 A CN104466041 A CN 104466041A CN 201410539682 A CN201410539682 A CN 201410539682A CN 104466041 A CN104466041 A CN 104466041A
Authority
CN
China
Prior art keywords
layer
stacking
buffer structure
lithium
micro cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410539682.3A
Other languages
English (en)
Inventor
M·贝德贾维
H·德斯雷
A·恩纳杰达维
S·波利特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of CN104466041A publication Critical patent/CN104466041A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/11Primary casings; Jackets or wrappings characterised by their shape or physical structure having a chip structure, e.g. micro-sized batteries integrated on chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1253Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0831Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2398/00Unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Secondary Cells (AREA)

Abstract

一种锂微电池,包括含锂活性层的堆叠(2)和覆盖该活性层的堆叠的保护盖(8)。该保护盖通过胶粘剂层(10’)固定到该活性层的堆叠。包括至少一个氧化铝层的缓冲结构(14)设置在活性层的堆叠(2)和胶粘剂层(10’)之间,该缓冲结构(14)与该活性层的堆叠接触。

Description

由盖保护的锂微电池
技术领域
本发明涉及锂微电池,且更具体地涉及保护活性层不受外部环境损害的密封系统。
背景技术
锂微电池通常包括由电解质隔开的两个电极(正极和负极)。正极由具有良好离子导电性的材料形成,例如钛硫氧化物(TiOS)。电解质是具有高离子导电性的电绝缘体,例如锂磷氮氧化物(LiPON)。最后,负极特性根据微电池技术而变化。
在被称作“锂离子”微电池的微电池中,负极由锂化材料制成,即锂离子被嵌入其中的材料。在“锂金属”微电池中,负极由锂单独制成。
包含锂的材料对空气非常敏感,特别是对氧气和水份。为了防止其氧化,不得不采用惰性且密封的阻挡层将其覆盖。控制密封是及时调整微电池效率的最重要的因素。
密封系统的质量可根据以下三个标准进行评价:
阻挡级别:保护阻挡层的性能以氧化性物质的透过率为标准进行定义。对于锂微电池,所要求的阻挡标准通常在10-4至10-5g/m2/天之间。
机械强度:,密封系统需能适应该微电池的体积在充放电循环期间的变化。若不能,微电池的膨胀和收缩可导致电池中的机械损坏,导致电容量的不可逆减小。
物理-化学相容性:密封系统需与含锂材料化学相容,且后者的制作不能破坏活性层。
锂微电池的密封方法可分为两类:薄层中的密封以及附加元件密封。
通过附加元件的密封方法包括在该微电池的活性层上粘贴例如由玻璃或层叠聚合物材料制成的盖。这类密封符合上述三个标准,阻挡级别特别高。实际上,由于其厚度,所述盖关于氧化性物质的透过率比由聚合物、金属和/或陶瓷制成的薄层的该透过率低。
图1示意性示出了设置有附加元件的密封系统的锂微电池,如文件US2006/0216589中所描述。
该微电池包括形成在基体4上的活性层的堆叠2。堆叠2容纳于基体4以及面对基体的盖8构形的腔6中。环氧树脂胶粘剂珠10将盖8围绕堆叠2粘固到基体4。
在这个结构中,基体4和盖8形成了微电池的主要表面,分别形成底面和顶面。由于其对于可氧化锂的物质是不能透过的,微电池的表面保护是完全的。为了同时确保将盖8粘固到基体4上并保护该微电池的侧面,胶粘剂珠10在堆叠2周围占据了大片面积。由此基体的大片表面奉献于腔6及密封珠10,导致该微电池有用表面的损失。
发明内容
注意到存在提供减小尺寸的锂微电池的需要,该微电池具有有效且紧凑的密封部件。
通过提供一种锂微电池,其包括含锂活性层的堆叠以及覆盖该活性层的堆叠的保护盖,这个需求趋于被满足。该保护盖通过胶粘剂层固定到活性层的堆叠。包括至少一氧化铝缓冲层的缓冲结构设置于活性层的堆叠和胶粘剂层之间。该缓冲结构与所述堆叠相接触。
在一个优选实施例中,该缓冲结构的氧化铝层与胶粘剂层相接触。
在一个优选实施例中,至少该缓冲结构的氧化铝层完全覆盖活性层的堆叠以有效保护该微电池的侧面。
该堆叠优选包括与该缓冲结构接触的金属锂电极。
还提供了一种制作该微电池的方法。该方法包括在含锂活性层的堆叠上沉积包括至少一氧化铝层的缓冲结构,在缓冲结构上沉积可聚合材料层,通过保护盖覆盖活性层的堆叠和可聚合材料层,并交联可聚合材料以将所述盖胶粘到所述活性层的堆叠上的步骤。
氧化铝层优选通过原子层沉积(ALD)来获得。由此在活性层的堆叠上氧化铝沉积是均质的,且所得层对于可氧化活性层的化学物质是不可透过的。
原子层沉积优选由包含铝的第一前驱体以及包含水的第二前驱体实施。
第一和第二前驱体具体以顺序方式使用,从第一前驱体开始。
附图说明
通过本发明的仅出于非限定性示例目的而给出的且通过附图图示说明的特定实施例的以下说明,其他优势及特征将更明显。
图1,如上文所述,是根据现有技术的锂微电池的示意性描述;
图2是显示沉积在锂层上的胶粘剂层的交联和粘附率的图,其中,由二氧化硅、氮化硅或氧化铝制成的缓冲层插入在胶粘剂层及锂层之间;
图3示出了根据本发明的设置有缓冲结构的锂微电池的优选实施例;
图4是根据图3的锂微电池在沉积氧化铝层前后的阻抗图;以及
图5至9示出了根据本发明的锂微电池的制作方法的步骤。
具体实施方式
为减小密封系统的体积,一个解决方法是直接在微电池活性层的堆叠上而不是在其周围胶粘保护盖。一般用于粘固盖的胶粘剂为可聚合材料。然而,活性层中所含的锂抑制胶粘剂聚合。因此,除非提供了阻挡锂扩散到可聚合材料的适合的缓冲结构,否则不能设想这个解决方法。
经若干试验后,发现包含至少一个氧化铝层的缓冲结构极好地执行了该功能。
缓冲结构的意思是一个或多个能够阻档锂扩散到可聚合层的绝缘材料层。这些材料可具体从包含氧化铝、SiO2、Si3N4、SiOxCy、SiOxNy或其组合的列表中选择。
进一步,缓冲结构需具有能够与可聚合材料良好粘结的表面特性以获得盖的良好固定。
优选地,在缓冲结构中,缓冲层包括至少一个设计为与所述可聚合层相接触的氧化铝层。
最后,这个缓冲结构还需具有能够吸收该堆叠的体积变化以及能够对可能损害锂的物质(H2O,O2,N2)形成阻挡的机械特性。
对于这些试验,考虑若干样品,每个具有包括至少一个缓冲层的缓冲结构。每个样品包括被缓冲结构覆盖然后被胶粘剂层覆盖的锂层。在样品间仅缓冲层的特性变化。所研究的缓冲层由氧化硅(SiO2),氮化硅(Si3N4)和氧化铝(Al2O3)制成,具有约30nm到300nm的厚度。胶粘剂是通常用于使用附加盖的密封方法中的环氧树脂,由环氧技术公司(the EpoxyTechnology corporation)按照货号OG146-178出售。
出于比较的目的,图2示出了设置在上述不同缓冲层上的胶粘剂层的粘结率和交联率。
结果显示当被沉积在氧化铝缓冲层而不是由氧化硅或氮化硅制成的缓冲层上时,OG146-178胶粘剂的交联率明显更好。胶粘剂在氧化铝层上的交联率事实上接近99%,然而在SiO2和Si3N4层上,分别达到40%和50%。此外,与沉积在氧化硅和氮化硅层上的粘结率不同(分别是O%和5%),OG146-178胶粘剂层极好地粘结到氧化铝缓冲层(大约95%的粘结率)。
采用大量缓冲层变形,具体采用碳氧化硅(SiOxCy),氮氧化硅(SiOxNy),或具有多层结构(例如SiO2/Si3N4)制成,获得了相似的结构。
与具有氧化硅和/或氮化硅形成的基料的缓冲层不同,氧化铝缓冲层使得胶粘剂能够完全聚合。换句话说,氧化铝层几乎不透过作为聚合抑制剂的锂离子。
图3示意地示出了一锂微电池,由于采用包含至少一个氧化铝层的缓冲结构,其尺寸减小。
微电池通常包括沉积在基体4上的活性层的堆叠2。微电池的活性层被指定为负电极和正电极(阳极和阴极)以及位于两电极间的电解质。
正极由锂嵌入材料制成的层形成,例如钛硫氧化物TiOS,五氧化二钒V2O5或二硫化钛TiS2。电解质层优选由锂磷氮氧化物(LiPON)形成。最后阳极由包含锂的材料形成,例如金属锂形式的纯锂等(锂金属电池)或者锂化嵌入材料(NiO2,SnO,Si,Ge,C......)(锂离子电池)。
图3的微电池还包括形成在堆叠2上的密封部件12。密封部件12起到保护活性层,且更具体地使位于与基体4相对的堆叠2顶部的电极免于氧化的作用。
实际上,顶部电极是最暴露于氧化性物质的活性层,而且是包含最多锂的活性层,即阳极。该电极具体结构使得密封步骤更关键。
密封部件12包括包含保护盖8及由聚合物材料制成的胶粘剂层10’,以将该盖固定到活性层的堆叠2上。其进一步包括缓冲结构14,该缓冲结构14包含至少一个插入在胶粘剂层10’和堆叠2之间的氧化铝层。
优选地,缓冲结构14的氧化铝层与胶粘剂层10’相接触。
优选地,缓冲结构14由氧化铝层形成。
缓冲结构与所述堆叠2相接触。缓冲结构14设置为与一个或多个含锂活性层相接触。其通过阻挡锂离子扩散作为胶粘剂层10’和这些活性层间的缓冲结构。还能使得胶粘剂层10’能完全交联,并由此能将盖8固定到堆叠2上。进一步地,缓冲结构14对于活性层成分,特别是锂,具有化学惰性。
氧化铝层厚度优选包含在5nm和50nm之间。通过选择这一范围内的厚度,在密封部件尺寸和对锂离子的阻挡之间获得良好折中。
盖8覆盖堆叠2的顶表面。与基体4协作,由此起到保护微电池表面的作用。盖8可由玻璃,金属,陶瓷或层叠聚合物制成。其厚度优选包含在50μm和1000μm之间。
缓冲结构14和胶粘剂层10’优选设置在堆叠2的整个顶表面上。由此保护盖8被牢固且持久地固定到该堆叠。
除了胶粘剂的作用,聚合物材料层10’吸收微电池在充电和放电循环期间的体积变化。在这些体积变化期间,氧化铝层轻微地受到压力作用(<100MPa)。其可经历大量充/放电循环(多于500个循环),而观察不到任何退化。聚合物材料优选地选自乙烯醚聚合物和环氧化物。正如将进一步描述的,根据设想的沉积技术,层10’的厚度可在2μm和20μm间变化。
因此,盖8和胶粘剂层10’以及缓冲结构14一起形成有效、紧凑和坚固的密封系统。
为检验密封系统性能,对设置有盖和包含至少一氧化铝层的缓冲结构14的微电池实施老化研究。这些微电池在和微电池使用条件相似的使用条件下被保存5个月。经受氧化气氛(充满水分的25℃空气)的作用。放电容量测量可计算出透过率大约为10-4g/m2/天,即锂微电池密封所需的阻挡级别。
缓冲结构14还显示电绝缘的优点。因此不易于在堆叠的不同电活性层间产生短路。
在这方面,寻求了解采用包含至少一个与活性层接触的氧化铝层的缓冲结构14是否改变该微电池的电特征。
图4显示在氧化铝层形成前后微电池的电阻抗图,或奈奎斯特图(Nyquist图)。未观察到氧化铝层导致阻抗谱变化。
在图3的优选实施例中,至少缓冲结构14的氧化铝层完全覆盖活性层的堆叠2,即覆盖堆叠的顶表面及侧表面。除了锂离子之外,氧化铝层能够阻挡氧化性物质例如氧气和水。那么,除了其缓冲作用,氧化铝层起到保护该微电池侧面的作用。
现有技术的部件中,微电池的侧面保护常被忽视。例如,在文件US2006/0216589(图1)中,由于用于密封盖的胶粘剂没有以锂微电池密封所需的级别(10-4g/m2/天)构成阻挡,微电池侧面未被充分保护。
相反,在图3的微电池中,由于氧化铝层具有高于所需最小级别的良好阻挡级别,侧面保护令人满意。密封部件12的综合阻挡级别达到10-5g/m2/天的值。
此外,微电池的表面越小,其侧面保护更加有益。对于小表面的电池,氧化性物质通过侧面扩散实际上变得和通过顶表面的扩散一样高。因此在小尺寸微电池的情况下,优选用氧化铝层覆盖堆叠的侧表面。
氧化铝层具有良好的阻挡性能,其本身可在微电池顶表面起到保护作用。然而,由于表面保护在这种情况下是完全的,优选使用盖。和基体一样,盖事实上是不透过氧气和水份的。
优选地,直接位于包括至少一个氧化铝层的缓冲结构14正下方的顶电极由锂单独形成。因此锂金属技术的微电池优先,保护盖完全符合该技术的强密封要求。金属锂制成的顶电极事实上需要最佳密封,其可通过盖和缓冲结构14的组合获得。则该技术所提供的益处可被完全利用:高能量密度,更高的额定电压和比锂离子技术更简单的实施。
图5到9显示了根据图3的设置有密封部件12的锂微电池的制作步骤。图5的步骤对应于形成活性层的堆叠2,并且图6到9的步骤对应于密封部件的形成及构形。
图5显示初始基体4和形成在基体4表面上的集流体16a和16b。基体4,例如由硅、聚合物或玻璃制成,具有在100μm至1000μm之间的厚度。
集流器16a和16b由导电材料,例如钛、钨或金制成。这些集流体通过例如物理气相沉积(PVD)以薄层(约200nm)的形式沉积。它们被设计为构成微电池的电端子,与阳极和阴极接触。
然后阴极18、电解质20和阳极22顺序沉积在基体4和金属集流体16a和16b上。
由TiOS、V2O5或TiS2制成的阴极18,例如通过真空蒸发或阴极溅射,沉积在阴极集流体16a的一部分上。LiPON电解质层20沉积在阴极18上,以及一部分阳极集流体16a以及基体4的分隔集流体16a和16b的区域上。电解质20的沉积例如采用阴极溅射实施以获得无缺陷LiPON层。最后,阳极22沉积在电解质层20以及阳极集流体16b上。阳极22优选由金属锂形成且通过真空蒸发沉积。
在图6的步骤中,包含至少一个氧化铝层或一个铝氧化物层的缓冲层14沉积在活性层的堆叠2上,且具体在阳极22和电解质20的自由表面上。
在优选实施例中,氧化铝层由原子层沉积(ALD)获得。与CVD(化学气相沉积)或PVD(物理气相沉积)类的其他薄膜沉积技术相比,通过ALD沉积氧化铝取得许多优势。这项技术尤其使获得保形沉积成为可能,即略微恒定的厚度(厚度变化小于1%)。则锂活性层被均匀覆盖。此外通过ALD沉积的氧化铝层是致密的,其能增强对锂离子的阻挡。
如图6中所示,至少通过ALD沉积的缓冲结构14的氧化铝层覆盖基体4和堆叠2的整个表面,即集电体16a、16b、电解质20和阳极22。
上述操作方法使得能够获得包括至少一个氧化铝层的缓冲结构14,该缓冲结构对阻挡锂及其氧化物质均具有优越的阻挡性能。
在这个实施例中,由包含铝,例如三甲基-铝(TMA)的第一有机金属前驱体以及包含水,例如去离子水的第二前驱体执行ALD沉积。沉积温度优选在80℃和150℃之间,即比锂的熔化温度(约180℃)低得多的温度。
已知水和活性层的锂的反应对微电池运行是有害的,这是为何需要采用密封部件保护微电池的原因。水是锂的主要氧化剂,从而在ALD过程中作为前驱体显得不合适。然而令人惊讶地观察到基于水的前驱体在ALD过程中未导致活性层的任何氧化。根据这一操作方法制作的锂微电池未显示任何损害并且在电学方面是可用的。
两个前驱体优选从TMA开始按顺序和循环方式引入。一方面这使得在下一个前驱体被引入前各前驱体的分子占据空位以形成原子层。另一方面这留下移除未反应分子和反应产物的可能性。由此前驱体的各引入期优选在引入下一个前驱体前跟随一清洗期。换句话说,ALD通过一连串循环实施,其数量取决于氧化铝层的厚度。每个循环包括:
-TMA引入期,例如40秒;
-清洗期,例如也是40秒;
-去离子水引入期(例如40秒);以及
-清洗期(例如40秒)。
可通过调节循环数量来控制氧化铝层的厚度。氧化铝层的最佳厚度为约50nm,其相当于例如约500个4乘40秒的循环。最佳沉积温度为约80℃。在这些优选条件下获得的氧化铝层呈现出最优阻挡性能并且下面的锂活性层不被影响。
在含锂活性层18、20、22的堆叠2上沉积包括至少一个氧化铝层的缓冲结构14(图6)之后,活性层的堆叠2以及缓冲结构14被保护盖8覆盖。
可聚合材料层10’被沉积在缓冲结构14和保护盖8之间。设置可聚合材料层10’以形成胶粘剂层。
可聚合材料层10’可以在安装保护盖8之前沉积在缓冲结构14上。这个步骤在图7中示出。
根据另一个实施例,可聚合材料层10’可以在将该具有可聚合材料层10’的保护盖8安装在缓冲结构14之前沉积在保护盖8上。
可胶粘剂层10’优选地沉积在缓冲结构14上。优选沉积整个薄片,即在堆叠2和基体4的整个表面上。与氧化铝层14不同,层10’的厚度不是恒定的。层10’事实上补偿堆叠2引起的高度变化以获得对随后安装附加盖的理想的足够平的顶表面。
用来将盖粘固在堆叠上的胶粘剂由可聚合材料构成。可聚合材料的含意即包含单体(或预聚物)和至少一聚合引发剂的溶液,优选阴离子类型的。可采用具有由乙烯醚或杂环单体(环氧化物,内酯,环醚,环氧硅酮......)形成的基团的单体。优选特别活性的环氧化物单体和乙烯醚以获得快速聚合。
某些可在市场获得的产品,通常被称为光聚合或热固性的树脂,包括这些单体,具体是环氧技术(Epoxy Technology)公司出售的那些以“OG”命名(OG146-178,UVO-114,OG115,OG114-4,OG146)以及以“Epo-Tek”命名(Epo-Tek-330,Epo-Tek-360)的产品。“OG”系列产品是通过UV射线交联的,而“Epo-Tek”系列产品是通过加热方式交联的。
优选地,可聚合材料的粘度低于1000cPs(厘泊)。因此层10’极好地遵循堆叠2的形状。
可聚合材料层10’优选采用旋涂法沉积在整个基体上。这项技术易于实施,很适合聚合物材料,此外使得聚合物层的厚度能被简单地控制。
根据旋涂机的速度和旋转时间,层10’的厚度优选包含在2μm和20μm之间。出于举例目的,以1200rpm的速度旋涂40秒获得了具有10μm厚度的OG146-178树脂层10’。
在图8中,盖8位于可聚合材料层10’上,面对活性层的堆叠2。盖8优选完全保持在层10’上。然后采用加热或在由例如玻璃制成的透明盖的情况下通过紫外线(300-500nm)交联可聚合材料10’。暴露于UV射线或热处理使得树脂固化并将盖8固定在堆叠2上。
热敏聚合物的交联优选在包含于80℃和150℃之间的温度下实施以避免损坏锂层,并且光敏聚合物的交联通过暴露于具有100mW/cm2的功率密度的紫外线下少于10分钟的时间来实施。例如,在图8中,具有10μm厚度的OG146-178树脂层在经盖8暴露在UV下5分钟后固化。
可聚合材料的交联使盖8能经缓冲结构14粘结到活性层的堆叠2。
最后,图9的步骤在于连续蚀刻微电池边缘上的固化的聚合物层10’和氧化铝层14,以释放部分16a和16b。
优选地以盖8作为蚀刻掩膜通过各向异性和选择的方式蚀刻层10’。该蚀刻优选通过氧气(O2)等离子体或氧气(O2)和氟化气体(SF6)的气体混合物来实施。在OG146-178树脂具有10μm厚度的情况下,在以100W功率应用O2等离子体(90sccm)/SF6(10sccm)10分钟后,例如一直蚀刻层10’直到氧化铝层14。
氧化铝层14可通过干法或湿法工艺制作。湿法蚀刻溶液通常采用氢氟酸(HF)基。也可采用硝酸、磷酸和乙酸(HNO3/H3PO4/CH3COOH)的混合物。蚀刻具有50nm厚度的氧化铝层,例如通过将该基体浸渍在HF浴中2分钟或浸渍在HNO3(1-5%)/H3PO4(65-75%)/CH3COOH(5-10%)混合物的稀释水溶液中12分钟来实施。干法蚀刻溶液由氯化等离子体组成,例如BCl2、CCl4、CHCl3或SiCl4
该锂微电池及其制作方法的众多变形和改进对本领域技术人员是显而易见的。具体地,可在堆叠2侧面位置而不是在顶表面上实施盖8的粘结。例如通过具有可控流速和开口的注射器,可围绕该部件形成高度小于100μm的胶粘剂珠。不像现有技术,胶粘剂珠设置成与活性层的堆叠接触,堆叠的侧面已先被氧化铝层覆盖。
对于其中集成要求严格的特定用途,该设置使得微电池的厚度减小几个微米。由于盖和氧化铝层分别实施微电池的表面保护和侧面保护,微电池密封被最大化。

Claims (11)

1.一种锂微电池,包括含锂活性层(18,20,22)的堆叠(2)以及覆盖该活性层的堆叠的保护盖(8),其特征在于,所述保护盖(8)通过胶粘剂层(10’)固定到所述活性层(18,20,22)的堆叠,并且所述锂微电池包括设置在所述活性层的堆叠(2)和所述胶粘剂层(10’)之间的包括至少一个氧化铝层的缓冲结构(14),所述缓冲结构(14)与所述活性层(18,20,22)接触。
2.根据权利要求1的锂微电池,其特征在于,所述缓冲结构(14)的氧化铝层与所述胶粘剂层(10’)接触。
3.根据权利要求1的锂微电池,其特征在于,至少所述缓冲结构(14)的氧化铝层完全覆盖所述活性层(18,20,22)的堆叠。
4.根据权利要求1的锂微电池,其特征在于,所述活性层(18,20,22)的堆叠(2)包括与所述缓冲结构(14)接触的金属锂电极(22)。
5.根据权利要求1的锂微电池,其特征在于,所述氧化铝层具有5nm至50nm的厚度。
6.一种锂微电池的制作方法,包含以下步骤:
设置含锂活性层(18,20,22)的堆叠(2);
在所述活性层(18,20,22)的堆叠(2)上沉积包括至少一个氧化铝层的缓冲结构(14);
通过保护盖(8)覆盖所述活性层(18,20,22)的堆叠(2)和所述缓冲结构(14),可聚合材料层(10’)位于该缓冲结构(14)和该保护盖(8)之间;并且
交联所述可聚合材料,以经所述缓冲结构(14)将所述保护盖(8)粘结到所述活性层(18,20,22)的堆叠(2)。
7.根据权利要求6的方法,其特征在于,在安装所述保护盖(8)之前将所述可聚合材料层(10’)沉积在所述缓冲结构(14)上,或者,在用可聚合材料层(10’)将所述保护盖(8)固定在所述缓冲结构(14)上之前将所述可聚合材料层(10’)沉积在所述保护盖(8)上。
8.根据权利要求6的方法,其特征在于,通过原子层沉积获得所述氧化铝层。
9.根据权利要求8的方法,其特征在于,所述原子层沉积由包含铝的第一前驱体和包含水的第二前驱体实施。
10.根据权利要求9的方法,其特征在于,从第一前驱体开始以连续方式使用该第一和第二前驱体。
11.根据权利要求8的方法,其特征在于,所述原子层沉积在包括在80℃至150℃的温度实施。
CN201410539682.3A 2013-07-30 2014-07-30 由盖保护的锂微电池 Pending CN104466041A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR13/01831 2013-07-30
FR1301831A FR3009437B1 (fr) 2013-07-30 2013-07-30 Microbatterie au lithium protegee par un capot

Publications (1)

Publication Number Publication Date
CN104466041A true CN104466041A (zh) 2015-03-25

Family

ID=49779956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410539682.3A Pending CN104466041A (zh) 2013-07-30 2014-07-30 由盖保护的锂微电池

Country Status (4)

Country Link
US (1) US9419254B2 (zh)
EP (1) EP2833460B1 (zh)
CN (1) CN104466041A (zh)
FR (1) FR3009437B1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016011412A1 (en) 2014-07-17 2016-01-21 Ada Technologies, Inc. Extreme long life, high energy density batteries and method of making and using the same
FR3034571B1 (fr) * 2015-03-31 2017-05-05 Commissariat Energie Atomique Dispositif electrochimique, tel qu’une microbatterie ou un systeme electrochrome, recouvert par une couche d’encapsulation comprenant un film barriere et un film adhesif, et procede de realisation d’un tel dispositif.
WO2016209460A2 (en) 2015-05-21 2016-12-29 Ada Technologies, Inc. High energy density hybrid pseudocapacitors and method of making and using the same
WO2017023797A1 (en) 2015-07-31 2017-02-09 Ada Technologies, Inc. High energy and power electrochemical device and method of making and using same
US11024846B2 (en) 2017-03-23 2021-06-01 Ada Technologies, Inc. High energy/power density, long cycle life, safe lithium-ion battery capable of long-term deep discharge/storage near zero volt and method of making and using the same
FR3066325A1 (fr) * 2017-05-11 2018-11-16 Stmicroelectronics (Tours) Sas Batterie au lithium
US20210288364A1 (en) * 2017-10-13 2021-09-16 Wayne State University Fabrication of micro/millimeter-scale power sources and the process flow therefor
FR3080957B1 (fr) * 2018-05-07 2020-07-10 I-Ten Electrodes mesoporeuses pour dispositifs electrochimiques en couches minces
WO2022035729A1 (en) 2020-08-10 2022-02-17 Dimensiongen Devices and methods for multi-dimensional genome analysis

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548912B1 (en) * 1999-10-25 2003-04-15 Battelle Memorial Institute Semicoductor passivation using barrier coatings
WO2005067645A2 (en) * 2004-01-06 2005-07-28 Cymbet Corporation Layered barrier structure having one or more definable layers and method
US7846579B2 (en) 2005-03-25 2010-12-07 Victor Krasnov Thin film battery with protective packaging
US20100123993A1 (en) * 2008-02-13 2010-05-20 Herzel Laor Atomic layer deposition process for manufacture of battery electrodes, capacitors, resistors, and catalyzers
US20100291431A1 (en) * 2009-05-13 2010-11-18 Front Edge Technology, Inc. Thin film battery with protective packaging
FR2946461B1 (fr) * 2009-06-09 2011-07-22 Commissariat Energie Atomique Dispositif d'encapsulation flexible d'une micro-batterie
FR2965110B1 (fr) * 2010-09-20 2012-09-28 Commissariat Energie Atomique Procede de structuration d'une couche polymere et procede d'encapsulation d'une microbatterie
US9887429B2 (en) * 2011-12-21 2018-02-06 Front Edge Technology Inc. Laminated lithium battery

Also Published As

Publication number Publication date
FR3009437B1 (fr) 2015-09-18
US20150037660A1 (en) 2015-02-05
FR3009437A1 (fr) 2015-02-06
US9419254B2 (en) 2016-08-16
EP2833460B1 (fr) 2016-05-25
EP2833460A1 (fr) 2015-02-04

Similar Documents

Publication Publication Date Title
CN104466041A (zh) 由盖保护的锂微电池
US8679674B2 (en) Battery with protective packaging
JP7123101B2 (ja) 複合電極の製造方法および固体バッテリの製造方法
US10333123B2 (en) High capacity solid state composite cathode, solid state composite separator, solid-state rechargeable lithium battery and methods of making same
KR100659820B1 (ko) 리튬 이온 이차 전지
JP6675821B2 (ja) 固体電池およびその製造方法
US6835492B2 (en) Method for forming lithium metal anode protective layer for lithium battery and lithium battery having such protective layer
TW540174B (en) Electrochemical cell and method of manufacturing the same
US8815450B1 (en) Low voltage thin film batteries
US20130084507A1 (en) Non-volatile cathodes for lithium oxygen batteries and method of producing same
CN1263190C (zh) 微型电池的制作方法
WO2009067425A1 (en) Non-volatile cathodes for lithium oxygen batteries and method of producing same
TW201019356A (en) Method for manufacturing solid electrolytic capacitor
CN110915051B (zh) 锂金属电池
JPS59226472A (ja) 薄膜リチウム電池
JP2001126756A (ja) リチウム固体電解質電池およびその製造方法
JP2017182945A (ja) 全固体リチウムイオン二次電池
CN104134816A (zh) 一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池
KR102285978B1 (ko) 이차전지 및 그 이차전지의 제조방법
US20220320682A1 (en) Composite separator for lithium secondary battery and manufacturing the same
Wang et al. Anode properties and morphology evolution of three-dimensional lithium-ion battery electrodes comprising Ni-coated Si microchannel plates
US20190288248A1 (en) Battery having multilayer protective casing
JP2009295523A (ja) 固体電解質膜
CN113903982B (zh) 一种微型全固态锂离子电池及其制备方法
KR101514280B1 (ko) 단일 전극 일체형 이온 겔 전해질의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150325

WD01 Invention patent application deemed withdrawn after publication