CN104451655B - 抗高温材料用表面合金涂层复合材料、涂层及其制备方法 - Google Patents

抗高温材料用表面合金涂层复合材料、涂层及其制备方法 Download PDF

Info

Publication number
CN104451655B
CN104451655B CN201310419123.4A CN201310419123A CN104451655B CN 104451655 B CN104451655 B CN 104451655B CN 201310419123 A CN201310419123 A CN 201310419123A CN 104451655 B CN104451655 B CN 104451655B
Authority
CN
China
Prior art keywords
coating
enamel
alloy
high temperature
metal alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310419123.4A
Other languages
English (en)
Other versions
CN104451655A (zh
Inventor
王福会
朱圣龙
陈明辉
沈明礼
王成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201310419123.4A priority Critical patent/CN104451655B/zh
Priority to PCT/CN2013/001260 priority patent/WO2015035542A1/zh
Priority to US14/896,767 priority patent/US10047442B2/en
Publication of CN104451655A publication Critical patent/CN104451655A/zh
Application granted granted Critical
Publication of CN104451655B publication Critical patent/CN104451655B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/324Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/20Nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • B22F2302/253Aluminum oxide (Al2O3)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • B22F2302/256Silicium oxide (SiO2)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/05Compulsory alloy component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/30Coating alloy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明提供了一种抗高温材料用表面合金涂层复合材料、涂层及其制备方法,其特征在于:所述表面合金涂层复合材料由具有面心立方结构的金属合金粉末和搪瓷粉制成,其成分配比为10‑70wt%金属合金粉末,搪瓷粉余量;所述金属合金粉末选择NiCrAlX、NiCrX和NiCoCrAlX中至少一种,其中X为铪、锆、稀土元素和混合稀土中至少一种,混合稀土可以为两种或两种以上稀土元素同时使用,或稀土元素与Na、K、Ca、Sr、Ba之一种或多种组合使用。所述表面合金涂层复合材料可以改善高温合金基体的抗高温氧化和热腐蚀性能、断裂韧性和抗热震性能。采用该材料制备的热防护涂层致密,连续,光滑,与高温合金基体能形成至少部分冶金结合。

Description

抗高温材料用表面合金涂层复合材料、涂层及其制备方法
技术领域
本发明属于金属高温防护领域,特别提供一种抗高温材料零件用的表面合金涂层复合材料及其制备方法。
背景技术
各种涡轮机,如蒸汽轮机和燃气轮机,其热端组件一般工作在恶劣环境中。这些恶劣环境可以引起冲蚀、高温氧化、热腐蚀及其组合破坏。此外,热疲劳还可引起组件开裂,长时间运行后进一步导致组件断裂。
为了追求更高的发电效率和降低碳排放,涡轮机的工作温度需要不断提高。但工作温度的提高,应提高热端组件的耐热性能。因此,高温合金零件应用时需要施加抗氧化和耐热腐蚀的包覆涂层、热扩散涂层或热障涂层。在高温合金热端组件上的热障涂层包括金属粘结层和陶瓷隔热层。美国专利No.6,610,420报道了一种热障涂层的制备方法,他们在高温合金零件表面上先热喷涂一层组分A和组分B组成的抗氧化层,然后热喷涂一种组分C的粘结层,最后热喷涂一层陶瓷隔热层,其中组分A和C为NiCrAlY合金,组分B为NiSiCr合金。
美国专利No.5,942,334报道了一种MCrAlY抗氧化合金,可以提升陶瓷层的结合力并防止基体高温合金氧化。许多陶瓷材料被用做陶瓷层,特别是氧化钇或氧化镁或其他氧化物稳定的氧化锆。这些特定材料得到广泛应用的原因是他们可以通过等离子喷涂、火焰喷涂和气相沉积方法涂覆,且可降低热辐射。为了达到隔热的目的,热障涂层必须具有低热导率,与基体结合良好,且能承受冷热循环不剥落。抗冷热循环剥落性能特别要求涂层材料与基体材料的热膨胀系数匹配性。因此,热障涂层制备方法通常是先在高温合金基体上施加一层金属粘结层,然后施加一层隔热层。
美国专利NO.6,475,647B2和NO.6,475,647B2等报道了致密的具有抗结焦性能的NiCrAlY涂层的制备方法。在这些方法中,NiCrAlY涂层原料粉末被等离子体转移电弧加热,通过防止粉末氧化的氩气吹送到零件上。在涂层涂覆过程中,通过控制工艺参数,使零件表面形成熔池,最终在零件上形成所需厚度的涂层。基体合金熔化会产生涂层稀释,使涂层的实际成分偏离原料成分,产生了位于基体和涂层之间的一个过渡区,其中包含一些弥散分布的碳化物和氮化物。这些化合物是在乙烯炉中碳和氮高温扩散引起的,显著降低了涂层的剥落倾向。美国专利No.US2009/0098286A1报道了燃气轮机中热端金属零件表面的热障涂层的热喷涂方法。
在燃气轮机中镍基高温合金的传统防护涂层分为两种类型:热扩散铝化物涂层和物理气相沉积或热喷涂NiCrAlY涂层。这些涂层具有与高温合金良好的兼容性。但当涂层中的有效组元Al因形成表面氧化膜和与基体间互扩散而损耗后,涂层将失效。与之相反,惰性氧化物涂层不会因涂层有效组元损耗而失效,但比上述铝化物涂层和NiCrAlY涂层更容易因涂层/基体热膨胀系数不匹配而剥落失效。
在合适条件下,釉质或搪瓷涂层与许多金属和合金有良好的结合力,这也是这类涂层得到广泛应用的重要原因。通过控制母体玻璃的晶化制备得到的搪瓷-陶瓷材料,既保留了搪瓷涂层的易用性,又结合了陶瓷晶体的一些特殊优点。搪瓷-陶瓷材料可以具有比原始搪瓷更好的力学强度和耐温性,且使其热膨胀系数可能被调节到与基体相匹配。已证明SiO2-Al2O3-ZnO-CaO基搪瓷涂层具有对金属间化合物良好的保护性。氧化铝-搪瓷复合涂层也被发现可用于镍基合金,具有抗1000℃高温氧化和900℃热腐蚀长期性能。但由于搪瓷较高的本征脆性和裂纹敏感性,搪瓷或氧化铝-搪瓷复合材料作为涂层材料存在一个较大的弱点,即在冷热循环条件下抗剥落性可能不足。
发明内容
本发明提供了一种抗高温材料用表面合金涂层复合材料、涂层及其制备方法,所述表面合金涂层复合材料可以改善高温合金基体的抗高温氧化和热腐蚀性能、断裂韧性和抗热震性能。采用该材料制备的热防护涂层致密,连续,光滑,与高温合金基体能形成至少部分冶金结合。该表面合金涂层复合材料可以应用于各种类型的涡轮机零件,如蒸汽轮机和燃气轮机的工作条件最恶劣的镍基或钴基高温合金制静子叶片和工作叶片。
在传统的结构材料领域,金属相增强或四方相氧化锆增强可以显著提高搪瓷结构材料的断裂韧性。本发明选择断裂韧性较好且抗高温的面心立方结构相作为搪瓷涂层的断裂韧性增强相,且面心立方相可部分用硬质增强相替代,可以达到进一步提高材料的裂纹萌生应力效果,提高抗热震性能和软化点,即提高高温稳定性。本发明的具体方案如下:
本发明具体提供了一种抗高温材料零件用的表面合金涂层复合材料,其特征在于:
所述表面合金涂层复合材料由具有面心立方结构的金属合金粉末和搪瓷粉制成,其成分配比为10-70wt%金属合金粉末,搪瓷粉余量;
所述金属合金粉末选择NiCrAlX、NiCrX和NiCoCrAlX中至少一种,粒径范围为0.1μm-15μm,其中X为铪、锆、稀土元素和混合稀土中至少一种,稀土元素为镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥或钪;混合稀土可以为两种或两种以上上述稀土元素同时使用,或上述稀土元素与Na、K、Ca、Sr、Ba之一种或多种组合使用;
所述金属合金粉末中Cr含量为10wt%~40wt%,Al含量为0-30wt%,X含量为0.1wt%-5wt%,且Cr、Al和X的总量占金属合金粉末总重量的25wt%~45wt%,Co的含量不高于Ni的含量,Ni余量。
本发明所述抗高温材料零件用的表面合金涂层复合材料,其特征在于:所述表面合金复合涂层材料中的金属合金粉末可以部分被硬质增强相所替代,所述硬质增强相选择氧化铝、石英、ZrO2、Cr2O3、AlN、Si3N4、BN、SiC中之一或其任意组合,其含量不大于合金涂层复合材料重量的30wt%。
本发明所述抗高温材料零件用的表面合金涂层复合材料,其特征在于:所述硬质增强相优选氧化铝或氮化铝或二者组合,其含量范围为合金涂层复合材料重量的5wt%-30wt%。
本发明所述抗高温材料零件用的表面合金涂层复合材料,其特征在于:优选金属合金粉末、搪瓷和氧化铝颗粒,形成三元复合涂层材料,其中氧化铝的含量占所述三元复合涂层材料的5wt%-30wt%。
本发明还提供了一种由所述抗高温材料零件用的表面合金涂层复合材料制备的涂层,其特征在于:所述涂层为金属合金粉末或金属合金粉末与硬质增强相均匀分布于搪瓷基体中,在高温合金表面上形成的金属合金-搪瓷涂层、金属合金-搪瓷-硬质增强相涂层或金属合金-搪瓷涂层与金属合金-搪瓷-硬质增强相涂层的组合涂层,其中搪瓷基体的软化点介于600℃~900℃,涂层热膨胀系数范围为7.0x10-6K-1-12.0x10-6K-1
本发明所述抗高温材料零件用的表面合金涂层复合材料制备的涂层厚度优选为10-100μm。
本发明所述涂层的制备方法如下:将所需各种粉体材料混合均匀;将混合好的粉体浆料喷涂于高温材料零件表面;对喷涂好的零件进行高温处理,在零件表面形成致密、光滑、连续的热防护涂层,该涂层中具有面心立方结构的金属颗粒均匀分布于搪瓷母体中,至少部分金属颗粒能与基体材料表面发生界面反应形成冶金结合。
本发明所述涂层的制备方法,其特征在于:采用干式球磨方法混合各种粉体材料;采用压缩空气喷涂的方法将混合好的粉体喷涂于高温材料零件表面,喷涂压力为0.2-0.7MPa。
本发明所述涂层的制备方法,其特征在于:所述高温处理为采用变速加热方式;首先以3℃/min加热至150℃-250℃,在该温度区间烘烤2h-4h以去除水分;然后以不低于20℃/min的加热速率加热至处理温度以避开搪瓷析晶温度区;接着在处理温度保温10min-60min,处理温度为800-1100℃;最后将零件从加热炉中取出,在静止空气中冷却至室温。
本发明所述涂层的制备方法,其特征在于:将混合好的粉体浆料喷涂到零件上之前,先将零件预先在600℃-1000℃氧化5min-60min,使其表面形成一层厚度为0.2-2μm的氧化膜。
本发明所述用于抗高温材料的表面合金涂层复合材料的特性包括:优异的抗高温氧化和热腐蚀性能、可调节的热膨胀系数、优异的断裂韧性和改进的抗热震性能。由所述涂层材料制备的涂层结合了搪瓷的抗腐蚀性能优点和金属合金的韧性优点。涂层材料中的金属合金断裂韧性增强相还对降低涂层/基体合金的热膨胀系数差异起了重要作用,这对于改善抗热震性能具有重要意义。所述涂层材料中的硬质增强相提高了涂层的硬度和强度,进而提高了涂层的裂纹萌生和扩展应力水平,从而改善了抗热震性能。
本发明所述涂层的制备方法中采用压缩空气喷涂,避免了使用等离子喷涂或真空设备等昂贵的设备,具有良好的经济性。
附图说明
图1.制备态的30wt%金属合金韧性增强相-70wt%搪瓷的XRD图谱,a相为γ-Ni/γ’-Ni3Al,b相为NiCr2O4
图2.制备态和1000℃热震后的10wt%金属合金韧性增强相-70wt%搪瓷-20wt%氧化铝材料的XRD谱,a:γ/γ’,b:α-Al2O3,c:ZnAl2O4,d:Na(AlSi3O8),e:K(AlSi3O8),f:t-ZrO2,g:NiCr2O4/ZnCr2O4
图3.搪瓷-NiCrLa材料的抗热震性能(压痕-水淬法);PE,E10M,E20M,E30M分别表示材料中含0,10,20,30wt%金属合金颗粒。
图4.多种搪瓷-金属材料的1000℃热震失重曲线。E20A,E30A表示材料中含20,30wt%氧化铝硬质增强相,E20A10M表示材料中含20wt%氧化铝硬质增强相和10wt%金属合金韧性增强相。
图5.纯搪瓷材料和搪瓷-氧化铝-合金材料的热膨胀曲线,E20A10M表示材料中含20wt%氧化铝硬质增强相和10wt%金属合金韧性增强相。
图6.氧化铝-搪瓷涂层和合金-搪瓷-三氧化铝的1000℃循环氧化曲线;E30A表示材料中含30wt%氧化铝硬质增强相,E20A10M表示材料中含20wt%氧化铝硬质增强相和10wt%金属合金韧性增强相。
图7.多种搪瓷-金属材料的热膨胀系数;P,E5M,E10M,E15M,E20M,E25M和E30M分别表示材料中含0,5,10,15,20,25,30wt%金属合金韧性增强相。
具体实施方式
实施例1
将搪瓷釉在玛瑙罐内球磨100h,形成粒径小于5μm的釉粉。取140g釉粉与60g的粒径小于40μm的Ni-25Cr-5Al-1Zr-0.5La(wt%)合金粉末混合,干磨10h。将混合好的粉体在15MPa下模压制20min形成粉块,然后从模具中取出粉块,在250℃烘烤2h以去除水分。以3℃/min加热至590℃,继而以20℃/min加热,越过800-850℃温度区间至设定烧结温度950℃,接着在950℃保温30min,最后随炉冷却至室温,得到一种面心立方高温金属合金-搪瓷表面合金涂层复合材料。
通过XRD衍射证明,涂层中的金属合金为面心立方结构的γ-Ni/γ’-NI3Al,如图1所示。该复合材料的多项物理性能得到提高,热膨胀系数为7x10-6/℃,断裂韧性为2.0MPa.m1/2,杨氏模量为81.1GPa。相比之下,纯釉粉热膨胀系数仅为5.7x10-6/℃,断裂韧性仅为1.0MPa.m1/2,杨氏模量仅为72GPa。这说明,该复合材料及相应涂层所具有的良好抗热震性能,不仅仅是因为其热膨胀系数的提高降低了热应力,断裂韧性和杨氏模量的显著提高也通过提高材料裂纹萌生和扩展应力水平机制起了重要作用。
实施例2
将搪瓷釉在玛瑙罐内球磨100h,形成粒径小于5μm的釉粉。取100g釉粉与40g的粒径小于40μm的Ni-25Cr-5Al-1Zr-0.5La(wt%)合金粉末和60g的粒径7μm左右的三氧化二铝粉末混合,干磨10h。将混合好的粉体在15MPa下模压制20min形成粉块,然后从模具中取出粉块,在250℃烘烤2h以去除水分。以3℃/min加热至590℃,继而以20℃/min加热,越过800-850℃温度区间至设定烧结温度950℃,接着在950℃保温30min,最后随炉冷却至室温,得到一种面心立方高温金属合金-搪瓷-硬质强化相表面合金涂层复合材料。
通过XRD衍射证明,该材料中金属合金为面心立方结构的γ-Ni/γ’-Ni3Al,并含α-Al2O3硬质强化相,此外还有ZnAl2O4、Na(AlSi3O8)、K(AlSi3O8)、t-ZrO2和NiCr2O4、ZnCr2O4等反应相,均为硬质强化相,如图2所示。该复合材料通过1000℃热震试验后没有出现裂纹,具有良好的抗热震性能,且试验后材料仍含上述金属合金相和硬质强化相,具有良好的结构热稳定性。
实施例3
将搪瓷釉在玛瑙罐内球磨100h,形成粒径小于5μm的釉粉。分别取200g釉粉、180g釉粉与20g的粒径小于40μm的Ni-25Cr-0.5La(wt%)合金粉末、160g釉粉与40g的所述合金粉末、140g釉粉与60g的所述合金粉末,分别干磨10h。将上述粉体在15MPa下分别模压制20min形成粉块,然后从模具中取出粉块,在250℃烘烤2h以去除水分。以3℃/min加热至590℃,继而以20℃/min加热,越过800-850℃温度区间至设定烧结温度950℃,接着在950℃保温30min,最后随炉冷却至室温,得到1种纯搪瓷材料和3种面心立方高温金属合金-搪瓷复合材料。
对试样进行压痕-水淬法试验(图3),即用显微硬度计金刚石压头在试样抛光表面预制1-4μm微裂纹,然后将试样加热到试验温度,保温30min,在25℃去离子水中快冷,观察裂纹扩展情况。压痕-水淬法试验结果表明,材料的裂纹扩展曲线随材料中的面心立方金属合金颗粒的含量提高而向右下方移动,即随合金颗粒含量提高,材料的韧性显著增强。当金属相达到30wt%时,裂纹不再随保温温度-水淬温度差增大而无限扩展,扩展到最长约100μm后即停止。热震试验后,检测到裂纹偏转、裂纹桥接和合金-搪瓷界面开裂机制,说明高韧性的面心立方镍基金属合金颗粒,因其含稀土活性元素,与搪瓷母体有良好的浸润性和结合力,对于提高抗热震性能具有重要影响。
实施例4
将搪瓷釉在玛瑙罐内球磨100h,形成粒径小于5μm的釉粉。分别取160g釉粉与40g的粒径小于40μm的Ni-20Co-25Cr-5Al-0.3Ce-0.5La-0.2Dy(wt%)合金粉末、160g釉粉与60g的所述合金粉末、160g釉粉与20g的所述合金粉末及60g的粒径7μm左右的三氧化二铝粉末,分别干磨10h。选择镍基高温合金K38G为基体,其化学成分如表1所示,其热膨胀系数为18x10-6K-1
将料浆喷涂到基体上之前,先将零件预先在850℃氧化5min,使其表面形成一层薄的氧化膜,该氧化膜为非晶态,有利于与无定型搪瓷釉的结合。将3种粉体材料分别与无水乙醇形成料浆,仅用超声波振动使粉体均匀分散,不用任何分散剂;在室温大气环境中,将料浆分别喷涂到高温合金K38G薄板零件上,该零件尺寸为100×20×2mm,然后将零件在250℃烘烤15min,最后在950℃处理10min,使零件表面形成厚度约30μm的涂层。对零件进行1000℃保温30min-25℃去离子水冷却的热震试验。试验得到的零件质量变化曲线如图4所示,说明涂层具有良好的抗热震性能,特别是合金-搪瓷-三氧化二铝涂层试样,没有出现任何剥落,其他试样剥落情况也远优于纯搪瓷涂层情况。纯搪瓷涂层试样在制备后就出现了50%面积剥落,剩余涂层仅热震1次就完全剥落。
表1高温合金K38G化学成分(wt%)
Ni C Cr Al Co W B Ti Mo Nb Ta P
余量 0.17 16.0 4.0 8.5 2.0 0.01 3.8 1.7 0.7 1.7 0.01
实施例5
取180g粒径小于5μm的釉粉与20g的粒径小于40μm的Ni-20Co-25Cr-5Al-0.3Ce-0.5La-0.2Dy(wt%)合金粉末及60g的粒径7μm左右的三氧化二铝粉末,干磨10h,然后按实施例1所述方法制备成复合材料。测量了该材料的热膨胀曲线,如图5所示。与纯搪瓷材料相比,其软化点提高了约120℃。
实施例6
按照实施例4所述方法在K38G基体试样上分别制备了Al2O3(30wt%)-搪瓷(70wt%)、Ni-20Co-25Cr-5Al-0.3Ce-0.5La-0.2Dy(10wt%)-搪瓷(70wt%)-Al2O3(20wt%)复合涂层。对试样进行了1000℃循环氧化,每个循环为1000℃保温60min,空冷15min,共进行100周期试验。试验结果表明,两种涂层的抗高温氧化性能相当,均没有出现涂层剥落现象,显著提高了K38G的抗氧化性能。
实施例7
按照实施例1所述方法分别制备了纯搪瓷和6种Ni-25Cr-0.3Ce合金-搪瓷复合涂层材料,其中合金占材料总量的质量分数分别为5%、10%、15%、20%、25%、30%。测量了上述试样的热膨胀系数曲线。试验结果表明,复合材料中金属合金含量的提高,有益于复合材料的热膨胀系数提高。
实施例8
按照实施例4所述方法分别在单晶高温合金Rene N5基体和Ni-20Al-10Mo(wt%)模型高温合金上制备了多种合金涂层,具体的涂层成分如表2所述。测试了涂层的1050℃循环氧化性能。每个循环为1000℃保温60min,空冷15min,共进行100周期试验。循环氧化增重(包括剥落量)和剥落情况如表3所述。
表2.涂层成分
表3.涂层说明及循环氧化试验结果
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种抗高温材料零件用的表面合金涂层复合材料,其特征在于:
所述表面合金涂层复合材料由具有面心立方结构的金属合金粉末和搪瓷粉制成,其成分配比为10-70wt%金属合金粉末,搪瓷粉余量;
所述金属合金粉末选择NiCrAlX、NiCrX中至少一种,粒径范围为0.1μm—15μm,其中X为铪、锆、稀土元素和混合稀土中至少一种,稀土元素为镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥或钪;混合稀土为两种或两种以上上述稀土元素同时使用,或上述稀土元素与Na、K、Ca、Sr、Ba之一种或多种组合使用;
所述金属合金粉末中Cr含量为10wt%~40wt%,Al含量为0-30wt%,X含量为0.1wt%-5wt%,且Cr、Al和X的总量占金属合金粉末总重量的25wt%~45wt%,Ni余量;所述表面合金涂层复合材料中的金属合金粉末部分被硬质增强相所替代,所述硬质增强相选择氧化铝、石英、ZrO2、Cr2O3、AlN、Si3N4、BN、SiC中之一或其任意组合,其含量为合金涂层复合材料重量的5wt%-30wt%。
2.按照权利要求1所述抗高温材料零件用的表面合金涂层复合材料,其特征在于:所述硬质增强相选自氧化铝或氮化铝或二者组合,其含量范围为合金涂层复合材料重量的5wt%-30wt%。
3.按照权利要求1或2所述抗高温材料零件用的表面合金涂层复合材料,其特征在于:选用金属合金粉末、搪瓷和氧化铝颗粒,形成三元复合涂层材料,其中氧化铝的含量占所述三元复合涂层材料的5wt%-30wt%。
4.一种由权利要求1所述抗高温材料零件用的表面合金涂层复合材料制备的涂层,其特征在于:所述涂层为金属合金粉末与硬质增强相均匀分布于搪瓷基体中,在高温合金表面上形成的金属合金-搪瓷-硬质增强相涂层或金属合金-搪瓷涂层与金属合金-搪瓷-硬质增强相涂层的组合涂层,其中搪瓷基体的软化点介于600℃~900℃,涂层热膨胀系数范围为7.0x10-6K-1-12.0x10-6K-1
5.按照权利要求4所述抗高温材料零件用的表面合金涂层复合材料制备的涂层,其特征在于:所述涂层厚度为10-100μm。
6.一种权利要求4所述涂层的制备方法,其特征在于,制备过程为:将所需各种粉体材料混合均匀;将混合好的粉体浆料喷涂于高温材料零件表面;对喷涂好的零件进行高温处理,在零件表面形成致密、光滑、连续的热防护涂层,该涂层中具有面心立方结构的金属颗粒均匀分布于搪瓷母体中,至少部分金属颗粒能与基体材料表面发生界面反应形成冶金结合。
7.按照权利要求6所述涂层的制备方法,其特征在于:采用干式球磨方法混合各种粉体材料;采用压缩空气喷涂的方法将混合好的粉体喷涂于高温材料零件表面,喷涂压力为0.2-0.7MPa。
8.按照权利要求6所述涂层的制备方法,其特征在于:所述高温处理为采用变速加热方式;首先以3℃/min加热至150℃-250℃,在该温度区间烘烤2h-4h以去除水分;然后以不低于20℃/min的加热速率加热至处理温度以避开搪瓷析晶温度区;接着在处理温度保温10min-60min,处理温度为800-1100℃;最后将零件从加热炉中取出,在静止空气中冷却至室温。
9.按照权利要求6所述涂层的制备方法,其特征在于:将混合好的粉体浆料喷涂到零件上之前,先将零件预先在600℃-1000℃氧化5min-60min,使其表面形成一层厚度为0.2-2μm的氧化膜。
CN201310419123.4A 2013-09-13 2013-09-13 抗高温材料用表面合金涂层复合材料、涂层及其制备方法 Active CN104451655B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201310419123.4A CN104451655B (zh) 2013-09-13 2013-09-13 抗高温材料用表面合金涂层复合材料、涂层及其制备方法
PCT/CN2013/001260 WO2015035542A1 (zh) 2013-09-13 2013-10-16 抗高温材料用表面合金涂层复合材料、涂层及其制备方法
US14/896,767 US10047442B2 (en) 2013-09-13 2013-10-16 Surface alloy coating composite material used for high temperature resistant material, coating and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310419123.4A CN104451655B (zh) 2013-09-13 2013-09-13 抗高温材料用表面合金涂层复合材料、涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN104451655A CN104451655A (zh) 2015-03-25
CN104451655B true CN104451655B (zh) 2018-02-16

Family

ID=52664902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310419123.4A Active CN104451655B (zh) 2013-09-13 2013-09-13 抗高温材料用表面合金涂层复合材料、涂层及其制备方法

Country Status (3)

Country Link
US (1) US10047442B2 (zh)
CN (1) CN104451655B (zh)
WO (1) WO2015035542A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160199939A1 (en) * 2015-01-09 2016-07-14 Lincoln Global, Inc. Hot wire laser cladding process and consumables used for the same
US11207725B2 (en) * 2015-09-29 2021-12-28 Hitachi Metals, Ltd. Hot forging die and manufacturing process for forged product using the same, and manufacturing process for hot forging die
US10052724B2 (en) * 2016-03-02 2018-08-21 General Electric Company Braze composition, brazing process, and brazed article
FR3052463B1 (fr) * 2016-06-10 2020-05-08 Safran Procede de fabrication d'une piece en superalliage a base de nickel contenant de l'hafnium
CN106086887A (zh) * 2016-06-23 2016-11-09 袁春华 一种抗热震金属复合搪瓷涂层的制备方法
CN106521398B (zh) * 2016-07-10 2019-02-22 上海大学 钛合金表面等离子法喷涂搪瓷涂层的方法及热轧处理
CN106119848B (zh) * 2016-07-10 2019-04-02 上海大学 低碳钢表面的纳米搪瓷复合料浆烧结搪瓷涂层的制备方法及其热轧处理
CN107777883A (zh) * 2016-08-31 2018-03-09 天津市中高科技有限公司 氮化物陶瓷釉的加工方法
CN107619957B (zh) * 2017-08-31 2018-12-21 江西理工大学 一种稳定镍基单晶合金中稀土元素成分的方法
CN108264232B (zh) * 2018-01-24 2020-10-23 东北大学 抗氧化、耐腐蚀、抗冲击的高温搪瓷涂层及其制备方法
JP7262946B2 (ja) * 2018-08-29 2023-04-24 Koa株式会社 抵抗材料及び抵抗器
CN109487144A (zh) * 2018-11-19 2019-03-19 中原工学院 一种粉末冶金高性能刀具用多主元合金及其制备方法
CN110004372B (zh) * 2019-05-22 2020-05-22 马鞍山市恒泰重工机械有限公司 一种耐高温、抗氧化、耐磨冶金辊及其制备方法
CN110482852A (zh) 2019-08-29 2019-11-22 中国兵器工业第五九研究所 玻璃模压涂层及其制备方法、应用、模具
US11149581B2 (en) * 2019-11-22 2021-10-19 Rolls-Royce Plc Turbine engine component with overstress indicator
CN111378967A (zh) * 2020-04-23 2020-07-07 华东师范大学重庆研究院 一种在镍基高温合金表面制备热障涂层的方法
CN112553567B (zh) * 2020-11-23 2022-05-17 苏州大学 一种氮化硼纳米片增强镍基复合涂层及其制备方法
CN112608161A (zh) * 2021-01-04 2021-04-06 中国航空制造技术研究院 金属增韧型稀土硅酸盐粉末的制备方法
CN114438435B (zh) * 2022-01-24 2023-08-25 西南科技大学 一种热障涂层及其制备方法
CN115007796A (zh) * 2022-05-30 2022-09-06 中信戴卡股份有限公司 一种铸造铝合金用升液管涂料及其使用方法
CN115160924B (zh) * 2022-07-22 2023-04-07 东北大学 一种耐核辐照、防腐蚀、抗高温多功能集成有机硅涂料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109086A (zh) * 2006-07-18 2008-01-23 中国科学院金属研究所 一种高温合金防护涂层及其制备方法
CN101310972A (zh) * 2007-05-25 2008-11-26 中国科学院金属研究所 一种共沉积梯度MCrAlY涂层及制备工艺
CN102115866A (zh) * 2009-12-30 2011-07-06 中国科学院金属研究所 一种镍基高温合金用NiCrAlY涂层及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455119A (en) * 1993-11-08 1995-10-03 Praxair S.T. Technology, Inc. Coating composition having good corrosion and oxidation resistance
EP1295969A1 (en) * 2001-09-22 2003-03-26 ALSTOM (Switzerland) Ltd Method of growing a MCrAIY-coating and an article coated with the MCrAIY-coating
CN1322169C (zh) * 2002-03-07 2007-06-20 池袋珐琅工业株式会社 搪瓷施工方法
CN1207441C (zh) * 2002-06-14 2005-06-22 中国科学院金属研究所 一种高温合金抗高温氧化及热腐蚀的方法
EP1693473B1 (de) * 2005-02-18 2008-05-07 Siemens Aktiengesellschaft MCrAIX-Legierung, Schutzschicht aus MCrAIX-Legierung und Verfahren zur Herstellung
WO2007074483A1 (en) * 2005-12-28 2007-07-05 Ansaldo Energia S.P.A. Alloy composition for the manufacture of protective coatings, its use, process for its application and super-alloy articles coated with the same composition
DE102007062417B4 (de) * 2007-12-20 2011-07-14 ThyssenKrupp VDM GmbH, 58791 Austenitische warmfeste Nickel-Basis-Legierung
KR101291419B1 (ko) * 2008-10-02 2013-07-30 신닛테츠스미킨 카부시키카이샤 Ni기 내열 합금
CN102459685B (zh) * 2009-05-26 2014-11-19 西门子公司 具有MCrAlX层和富铬层的层化的涂层系统及其生产方法
CN101845609A (zh) * 2010-05-17 2010-09-29 北京航空航天大学 一种适用于单晶高温合金的阻扩散涂层的制备方法
JP5146576B1 (ja) * 2011-08-09 2013-02-20 新日鐵住金株式会社 Ni基耐熱合金
US20130157078A1 (en) * 2011-12-19 2013-06-20 General Electric Company Nickel-Cobalt-Based Alloy And Bond Coat And Bond Coated Articles Incorporating The Same
KR101383253B1 (ko) * 2012-04-19 2014-04-10 삼화콘덴서공업주식회사 적층세라믹커패시터의 내부전극용 금속페이스트 제조방법
US8697250B1 (en) * 2013-02-14 2014-04-15 Praxair S.T. Technology, Inc. Selective oxidation of a modified MCrAlY composition loaded with high levels of ceramic acting as a barrier to specific oxide formations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109086A (zh) * 2006-07-18 2008-01-23 中国科学院金属研究所 一种高温合金防护涂层及其制备方法
CN101310972A (zh) * 2007-05-25 2008-11-26 中国科学院金属研究所 一种共沉积梯度MCrAlY涂层及制备工艺
CN102115866A (zh) * 2009-12-30 2011-07-06 中国科学院金属研究所 一种镍基高温合金用NiCrAlY涂层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Oxidation and hot corrosion behavior of a novel enamel-Al2O3 composite coating on K38G superalloy";Deyou Zheng, et al.,;《Surface & Coatings Technology》;20051014;第200卷;第5932页左栏 *

Also Published As

Publication number Publication date
WO2015035542A1 (zh) 2015-03-19
US10047442B2 (en) 2018-08-14
CN104451655A (zh) 2015-03-25
US20160122877A1 (en) 2016-05-05

Similar Documents

Publication Publication Date Title
CN104451655B (zh) 抗高温材料用表面合金涂层复合材料、涂层及其制备方法
Hsu et al. Thermal sprayed high-entropy NiCo0. 6Fe0. 2Cr1. 5SiAlTi0. 2 coating with improved mechanical properties and oxidation resistance
CN101289018B (zh) 具有隔热覆盖层的耐热构件
KR100537710B1 (ko) 분산 강화된 금속성 결합 코팅을 이용한 열 차단 코팅
CN110257682A (zh) 一种高熵合金材料及其涂层的制备方法
CN105112907B (zh) 原位合成TiB2/TiC增强Ti2Ni/TiNi双相金属化合物基复合涂层及制备方法
CN101310971A (zh) 一种MCrAlY加复合梯度涂层及制备工艺
JP2005298973A (ja) ニッケル基超合金、組成、物品、およびガスタービンエンジンブレード
JP2001295021A (ja) 金属基体に保護皮膜を形成する方法および得られた物品
CN106493348B (zh) 一种TiAl3/Al2O3复合粉末及其制备方法和应用
CN106256928B (zh) γ-TiAl合金表面(Al2O3+Y2O3)/AlYMoSi多层结构涂层及其制备方法
Chen et al. The effect of reactive element species and concentrations on the isothermal oxidation of β-NiAl coating fabricated by spark plasma sintering
CN105386041B (zh) 一种激光熔覆制备改性复合Hf‑Ta金属涂层的方法
JPWO2014069180A1 (ja) 耐高温腐食特性を備えたNi−Cr−Co系合金とそれを用いて表面改質したポペットバルブ
CN101724301B (zh) 一种MCrAlY+AlSiY复合涂层及制备工艺
CN106835116B (zh) 一种涂层硬质合金基体及其制备方法
CN108866394A (zh) 一种高温抗氧化腐蚀涂层合金和涂层
CN106435566B (zh) 一种铌合金表面激光多道熔覆复合陶瓷梯度涂层的方法
Pei et al. Effects of Al/Si on the oxidation behavior of a TiZrV0. 5Nb0. 5 refractory high entropy alloy at 1000℃
CN103993215B (zh) 充当特定氧化物形成障碍的加载有高水平陶瓷的改性MCrAlY组合物的选择性氧化
CN109852846A (zh) 一种可实现界面强化的MCrAlYX涂层及其制备方法
Wang et al. Ceramic fibers reinforced functionally graded thermal barrier coatings
CN205329146U (zh) 一种新型SiC晶须增强燃气轮机叶片复合涂层
Cui et al. Thermal durability of thermal barrier coatings with bond coat composition in cyclic thermal exposure
CN114262859B (zh) 一种双界面性能强化的MCrAlYX粘结层和热障涂层及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant