CN106256928B - γ-TiAl合金表面(Al2O3+Y2O3)/AlYMoSi多层结构涂层及其制备方法 - Google Patents

γ-TiAl合金表面(Al2O3+Y2O3)/AlYMoSi多层结构涂层及其制备方法 Download PDF

Info

Publication number
CN106256928B
CN106256928B CN201610717410.7A CN201610717410A CN106256928B CN 106256928 B CN106256928 B CN 106256928B CN 201610717410 A CN201610717410 A CN 201610717410A CN 106256928 B CN106256928 B CN 106256928B
Authority
CN
China
Prior art keywords
alymosi
multilayered structure
alloy
gamma
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610717410.7A
Other languages
English (en)
Other versions
CN106256928A (zh
Inventor
徐一
刘万辉
吴佳惠
孙德勤
周雪峰
王剑
卢斌峰
蒋操
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Original Assignee
Changshu Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology filed Critical Changshu Institute of Technology
Priority to CN201610717410.7A priority Critical patent/CN106256928B/zh
Publication of CN106256928A publication Critical patent/CN106256928A/zh
Application granted granted Critical
Publication of CN106256928B publication Critical patent/CN106256928B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种γ‑TiAl合金表面(Al2O3+Y2O3)/AlYMoSi多层结构涂层及其制备方法,该涂层包括表层(Al2O3+Y2O3)陶瓷层和次表层AlYMoSi合金层,所述的表层和次表层依次交替排列形成所述的多层结构涂层,所述的多层结构涂层通过AlYMoSi合金层与基体γ‑TiAl合金表面连接,其步骤为:采用磁控溅射技术,通过分别对(Al2O3+Y2O3)靶材和AlYMoSi靶材交替进行溅射,通过对工作气压、溅射功率、以及靶材‑基体间距等工艺参数的调节与控制,在基体γ‑TiAl合金表面形成(Al2O3+Y2O3)/AlYMoSi多层结构涂层。该方法效率高、工艺简单,且制备的(Al2O3+Y2O3)/AlYMoSi多层结构高温防护涂层结构致密、性能优良。

Description

γ-TiAl合金表面(Al2O3+Y2O3)/AlYMoSi多层结构涂层及其制 备方法
技术领域
本发明涉及航空发动机零件表面防护技术领域,具体涉及一种γ-TiAl合金表面高温防护涂层的设计和方法。
背景技术
γ-TiAl合金具有高的高温屈服强度、高的蠕变抗力和断裂韧性,以及低的缺口敏感性,与传统的镍基高温合金相比,其比强度更高,是航空、航天飞行器理想的新型高温结构材料。然而在超过750℃的高温下,Ti-Al金属间化合物的抗氧化性能急剧下降。同时,由于高温下N、O原子渗入,合金易产生次表层脆化现象。因此,目前γ-TiAl合金的有效使用温度不能满足发动机热端部件的工作要求。
在正常氧化条件下,γ-TiAl合金的氧化膜主要组成相是TiO2和Al2O3。在所有氧化膜中,Al2O3是最具保护性的氧化物之一,化学稳定性高,而且氧离子在其中扩散系数很低。TiO2具有疏松的结构和较大的氧渗透率,在高温下难以赋予合金充分的抗氧化保护作用。Ti-Al金属间化合物中尽管含有大量的铝,但从热力学条件看,Al2O3和TiO2的生成自由能十分接近,而且铝的活度与其成分存在严重的负偏差,即使是含Al量最高的γ-TiAl合金,也很难通过铝的选择性氧化形成具有保护性的连续Al2O3氧化膜。
在保持γ-TiAl合金整体力学性能的前提下提高其抗高温氧化性能,最有效的方法便是在合金表面制备抗氧化性优良的保护涂层。然而,传统的硬质涂层易剥落,合金涂层在高温下长期服役时因互扩散而导致抗氧化性能快速下降,传统化学热处理易导致氢脆(如Surface and Coatings Engineering杂志1998年第110卷57-61页报道的研究结果)。
多层结构涂层增加了界面数,有利于阻碍氧元素向基体的内扩散,从而延长涂层的使用寿命,如:Corrosion Science杂志2014年第80卷19-27页报道的在8Nb-TiAl合金表面制备(Al2O3+Y2O3)/YSZ多层膜一文就提到了这一观点,然而(Al2O3+Y2O3)/YSZ多层膜在长时间高温服役的条件下易出现的裂纹扩散情况限制了其进一步的研发和应用。
为了尽快满足航空航天等领域对轻比重、高性能的高温结构材料的迫切需求,γ-TiAl合金的高温抗氧化性能的提高与解决已成为关键的工程问题之一。
发明内容
本发明目的是针对现有技术的不足,提供了一种具备一定自修复性能的(Al2O3+Y2O3)/AlYMoSi多层结构高温防护涂层,并提供其制备方法,以提高γ-TiAl合金的抗高温氧化性能。
实现本发明目的的技术解决方案是:一种在γ-TiAl合金表面制备的(Al2O3+Y2O3)/AlYMoSi多层结构涂层,包括表层(Al2O3+Y2O3)陶瓷层和次表层AlYMoSi合金层,所述的表层和次表层依次交替排列形成所述的多层结构涂层,所述的多层结构涂层通过AlYMoSi合金层与基体γ-TiAl合金表面连接。
其中,所述的(Al2O3+Y2O3)陶瓷厚度为2~5μm;所述的AlYMoSi合金层的厚度为1~3μm,所述的多层结构涂层的总厚度为50~80μm。
(Al2O3+Y2O3)陶瓷层的成分配比为:Al2O3占95~99wt%,余量为Y2O3
AlYMoSi合金层的成分配比为:Al占45~50wt%,Mo占15~20wt%,Si占25~30wt%,Y占2~5wt%。
一种在γ-TiAl合金表面制备(Al2O3+Y2O3)/AlYMoSi多层结构涂层的方法,采用磁控溅射技术,将基体γ-TiAl合金置于工件台上,在溅射源上分别装上(Al2O3+Y2O3)靶材和AlYMoSi靶材,对基体γ-TiAl合金进行交替溅射镀膜处理,其中表层为(Al2O3+Y2O3)陶瓷层,次表层为AlYMoSi合金层,依次交替沉积,直至与基体γ-TiAl合金接触的沉积层为AlYMoSi合金层。其具体步骤如下:
1)将基体γ-TiAl合金与溅射靶材装入磁控溅射装置中,γ-TiAl合金置于试样台上,(Al2O3+Y2O3)陶瓷靶和AlYMoSi合金靶分别装入不同的溅射源枪套中;
2)抽真空,送入氩气,点击AlYMoSi合金靶溅射电源,调试工艺参数为:
溅射功率:150~200W;
工作气压:0.3~0.5Pa;
基体与靶材间距:20~35mm;
溅射时间:1h;
3)关闭AlYMoSi合金靶溅射电源,开启(Al2O3+Y2O3)陶瓷靶溅射电源,调试工艺参数为:
溅射功率:250~300W;
工作气压:0.3~0.5Pa;
基体与靶材间距:20~35mm;
溅射时间:2h;
4)依次交替沉积,直至涂层总厚度达到50~80μm。
与现有技术相比,本发明的有益效果在于:
1)多层结构涂层增加了界面数,有利于阻碍氧元素向基体的内扩散,从而延长涂层的使用寿命。
2)(Al2O3+Y2O3)/AlYMoSi多层结构涂层中的(Al2O3+Y2O3)表面功能防护层赋予γ-TiAl合金充分的抗氧化能力。
3)(Al2O3+Y2O3)/AlYMoSi多层结构涂层中的AlYMoSi自修复元素补给层中Mo、Si元素易聚集于涂层的裂纹处,能在高温条件下形成Mo与Si的氧化物以作为裂纹的“填充物”,将裂纹填补修补,因而克服在高温条件下(Al2O3+Y2O3)功能防护层分解严重的问题。
4)(Al2O3+Y2O3)/AlYMoSi多层结构涂层中的AlYMoSi自修复元素补给层与基体合金结合,可在高温下长时间有效延缓沉积层中Al、Y原子的丢失,确保(Al2O3+Y2O3)功能防护层抗氧化特性的有效性和持久性。
5)涂层采用磁控溅射技术制备,即通过分别对(Al2O3+Y2O3)靶材和AlYMoSi靶材交替进行溅射,通过工作气压、溅射功率、以及靶材-基体间距的调节与控制,在基体γ-TiAl合金表面形成(Al2O3+Y2O3)/AlYMoSi多层结构涂层。该方法效率高、工艺简单,且制备的(Al2O3+Y2O3)/AlYMoSi多层结构高温防护涂层结构致密、性能优良。
附图说明
图1为γ-TiAl合金表面(Al2O3+Y2O3)/AlYMoSi多层结构涂层示意图。
具体实施方式
下面结合实施例对本发明作进一步详细说明。但对于本领域技术人员来说,完全可以在具体实施方式所列数值的基础上进行合理的概括和推导。
实施例一:
1)将基体γ-TiAl合金与溅射靶材装入磁控溅射装置中,γ-TiAl合金置于试样台上,(Al2O3+Y2O3)陶瓷靶和AlYMoSi合金靶分别装入不同的溅射源枪套中。
2)抽真空,送入氩气,点击AlYMoSi合金靶溅射电源,调试工艺参数为:
溅射功率:200W
工作气压:0.4Pa
基体与靶材间距:20mm
溅射时间:1h
3)关闭AlYMoSi合金靶溅射电源,开启(Al2O3+Y2O3)陶瓷靶溅射电源,调试工艺参数为:
溅射功率:300W
工作气压:0.4Pa
基体与靶材间距:20mm
溅射时间:2h
4)依次交替循环8次。
5)关闭电源,破真空、取试样,完成(Al2O3+Y2O3)/AlYMoSi多层结构涂层的制备。
所制得(Al2O3+Y2O3)/AlYMoSi多层结构涂层其结构示意图如图1,制得的涂层均匀致密,无裂纹、孔洞等缺陷,其总厚度达到60μm,其中(Al2O3+Y2O3)陶瓷层厚5μm,AlYMoSi合金层厚3μm。在1000°C下高温氧化实验200h后,涂层依然保持完好、致密,未出现剥落、开裂等现象,其氧化增重值为4.3mg/cm2,较基体γ-TiAl合金的氧化增重值12.7mg/cm2有了明显的下降。
实施例二:
1)将基体γ-TiAl合金与溅射靶材装入磁控溅射装置中,γ-TiAl合金置于试样台上,(Al2O3+Y2O3)陶瓷靶和AlYMoSi合金靶分别装入不同的溅射源枪套中。
2)抽真空,送入氩气,点击AlYMoSi合金靶溅射电源,调试工艺参数为:
溅射功率:150W
工作气压:0.3Pa
基体与靶材间距:30mm
溅射时间:1h
3)关闭AlYMoSi合金靶溅射电源,开启(Al2O3+Y2O3)陶瓷靶溅射电源,调试工艺参数为:
溅射功率:250W
工作气压:0.3Pa
基体与靶材间距:30mm
溅射时间:2h
4)依次交替循环10次。
5)关闭电源,破真空、取试样,完成(Al2O3+Y2O3)/AlYMoSi多层结构涂层的制备。
所制得(Al2O3+Y2O3)/AlYMoSi多层结构涂层均匀致密,无裂纹、孔洞等缺陷,其总厚度达到50μm,其中(Al2O3+Y2O3)陶瓷层厚3μm,AlYMoSi合金层厚2μm。在1100°C下高温氧化实验100h后,涂层依然保持完好、致密,未出现剥落、开裂等现象,其氧化增重值为3.1mg/cm2,较基体γ-TiAl合金的氧化增重值8.5mg/cm2有了明显的下降。
本发明在γ-TiAl合金表面制备的多层结构高温防护涂层与一般的陶瓷或合金涂层不同,而是由AlYMoSi自修复元素补给层和(Al2O3+Y2O3)功能防护层组成。外层的(Al2O3+Y2O3)功能防护层赋予γ-TiAl合金充分的抗氧化能力;AlYMoSi自修复元素补给层与基体合金结合,可在高温下长时间有效延缓(Al2O3+Y2O3)功能防护层中Al、Y原子的丢失,确保(Al2O3+Y2O3)功能防护层抗氧化特性的有效性和持久性。并且AlYMoSi自修复元素补给层中Mo、Si元素易聚集于涂层的裂纹处,能在高温条件下形成Mo与Si的氧化物以作为裂纹的“填充物”,将裂纹填补修补,因而克服在高温条件下(Al2O3+Y2O3)功能防护层分解严重的问题。此外,多层结构涂层增加了界面数,有利于阻碍氧元素向基体的内扩散,从而延长涂层的使用寿命。通过本发明方法在γ-TiAl合金表面制备的(Al2O3+Y2O3)/AlYMoSi多层结构高温防护涂层可赋予其长期优良的抗高温氧化性能,同时基体材料的性能得以完整保留。由于研究对象的典型性,其研究成果将能推广到其它领域,其工程价值也非常突出。

Claims (8)

1.一种γ-TiAl合金表面Al2O3+Y2O3/AlYMoSi多层结构涂层,其特征在于,包括表层Al2O3+Y2O3陶瓷层和次表层AlYMoSi合金层,所述的表层和次表层依次交替排列形成所述的多层结构涂层,所述的多层结构涂层通过AlYMoSi合金层与基体γ-TiAl合金表面连接。
2.如权利要求1所述的多层结构涂层,其特征在于,Al2O3+Y2O3陶瓷层厚度为2~5μm。
3.如权利要求1所述的多层结构涂层,其特征在于,AlYMoSi合金层的厚度为1~3μm。
4.如权利要求1所述的多层结构涂层,其特征在于,多层结构涂层的总厚度为50~80μm。
5.如权利要求1所述的多层结构涂层,其特征在于,Al2O3+Y2O3陶瓷层的成分配比为:Al2O3占95~99wt%,余量为Y2O3
6.如权利要求1所述的多层结构涂层,其特征在于,AlYMoSi合金层的成分配比为:Al占45~50wt%,Mo占15~20wt%,Si占25~30wt%,Y占2~5wt%。
7.一种如权利要求1-6任一所述的多层结构涂层的制备方法,其特征在于,采用磁控溅射技术,将基体γ-TiAl合金置于工件台上,在溅射源上分别装上Al2O3+Y2O3靶材和AlYMoSi靶材,对基体γ-TiAl合金进行交替溅射镀膜处理,其中表层为Al2O3+Y2O3陶瓷层,次表层为AlYMoSi合金层,依次交替沉积,直至达到所需厚度,且与基体γ-TiAl合金接触的沉积层为AlYMoSi合金层。
8.如权利要求7所述的制备方法,其特征在于,具体包括如下步骤:
1)将基体γ-TiAl合金与溅射靶材装入磁控溅射装置中,γ-TiAl合金置于试样台上,Al2O3+Y2O3陶瓷靶和AlYMoSi合金靶分别装入不同的溅射源枪套中;
2)抽真空,送入氩气,点击AlYMoSi合金靶溅射电源,调试工艺参数为:
溅射功率:150~200W;
工作气压:0.3~0.5Pa;
基体与靶材间距:20~35mm;
溅射时间:1h;
3)关闭AlYMoSi合金靶溅射电源,开启Al2O3+Y2O3陶瓷靶溅射电源,调试工艺参数为:
溅射功率:250~300W;
工作气压:0.3~0.5Pa;
基体与靶材间距:20~35mm;
溅射时间:2h;
4)依次交替沉积,直至涂层总厚度达到50~80μm。
CN201610717410.7A 2016-08-25 2016-08-25 γ-TiAl合金表面(Al2O3+Y2O3)/AlYMoSi多层结构涂层及其制备方法 Active CN106256928B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610717410.7A CN106256928B (zh) 2016-08-25 2016-08-25 γ-TiAl合金表面(Al2O3+Y2O3)/AlYMoSi多层结构涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610717410.7A CN106256928B (zh) 2016-08-25 2016-08-25 γ-TiAl合金表面(Al2O3+Y2O3)/AlYMoSi多层结构涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN106256928A CN106256928A (zh) 2016-12-28
CN106256928B true CN106256928B (zh) 2018-09-04

Family

ID=57713864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610717410.7A Active CN106256928B (zh) 2016-08-25 2016-08-25 γ-TiAl合金表面(Al2O3+Y2O3)/AlYMoSi多层结构涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN106256928B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107313008B (zh) * 2017-06-19 2019-03-12 常熟理工学院 γ-TiAl合金表面AlYMoSi耐高温防护涂层及其制备方法
CN108220902A (zh) * 2018-02-08 2018-06-29 南京航空航天大学 γ-TiAl合金表面的Al2O3-Y2O3/Al-Y复合防护涂层及其制备方法
EP3933066A1 (de) * 2020-06-30 2022-01-05 Oerlikon Surface Solutions AG, Pfäffikon Schutzschicht gegen umwelteinflüsse (umweltbarriereschicht) für ti-al material
EP4176097A1 (de) * 2020-07-01 2023-05-10 Oerlikon Surface Solutions AG, Pfäffikon SCHUTZSCHICHT GEGEN UMWELTEINFLÜSSE (UMWELTBARRIERESCHICHT) FÜR Ti-Al MATERIAL
CN112695288B (zh) * 2020-12-15 2021-09-17 南京航空航天大学 一种具有Mo-Si-Ti合金层的γ-TiAl材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309864A (ja) * 1999-04-23 2000-11-07 Hitachi Tool Engineering Ltd 多層膜被覆部材
CN102758169A (zh) * 2012-07-31 2012-10-31 西北工业大学 TiAl合金表面包埋共渗Al-Si-Y的工艺方法
CN105239049A (zh) * 2015-10-12 2016-01-13 南京航空航天大学 γ-TiAl合金表面耐高温氧化的Al-Y梯度防护合金涂层及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309864A (ja) * 1999-04-23 2000-11-07 Hitachi Tool Engineering Ltd 多層膜被覆部材
CN102758169A (zh) * 2012-07-31 2012-10-31 西北工业大学 TiAl合金表面包埋共渗Al-Si-Y的工艺方法
CN105239049A (zh) * 2015-10-12 2016-01-13 南京航空航天大学 γ-TiAl合金表面耐高温氧化的Al-Y梯度防护合金涂层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
白树朋等.溶胶-凝胶法制备Al2O3/Y2O3涂层及其对γ-TiAl合金高温氧化行为的影响.《沈阳化工大学学报》.2015,第29卷(第3期),193-196,232. *

Also Published As

Publication number Publication date
CN106256928A (zh) 2016-12-28

Similar Documents

Publication Publication Date Title
CN106256928B (zh) γ-TiAl合金表面(Al2O3+Y2O3)/AlYMoSi多层结构涂层及其制备方法
CN105839061B (zh) γ-TiAl合金表面的NiCoCrAlY/ZrO2复合涂层及制备方法
CN104451655A (zh) 抗高温材料用表面合金涂层复合材料、涂层及其制备方法
CN104988454A (zh) 一种抗熔融cmas腐蚀的稀土铝酸盐热障涂层及其制备方法
CN105734500B (zh) 一种具有复合结构的抗高温氧化热障涂层及其制备方法
CN102732833B (zh) 一种γ-TiAl合金表面抗高温氧化和耐磨损涂层及其制备方法
Zhang et al. Thermal cycling behavior of (Gd0. 9Yb0. 1) 2Zr2O7/8YSZ gradient thermal barrier coatings deposited on Hf-doped NiAl bond coat by EB-PVD
Liu et al. Heat protective properties of NiCrAlY/Al2O3 gradient ceramic coating fabricated by plasma spraying and slurry spraying
CN102732883A (zh) 一种弥散贵金属微粒增韧复合热障涂层及制备方法
CN106119758B (zh) 钛合金及钛铝金属间化合物表面硼化钛基涂层的制备方法
CN104760349B (zh) 一种钛铝合金表面抗高温氧化和耐热腐蚀Al-Cr涂层及其制备方法
Shen et al. Effect of the Al, Cr and B elements on the mechanical properties and oxidation resistance of Nb-Si based alloys: a review
CN107937874B (zh) 一种在铌合金表面制备Pt-Al高温防护涂层的方法
Liu et al. Effect of Mo-alloyed layer on oxidation behavior of TiAl-based alloy
Lin et al. Constructing self-supplying Al2O3-Y2O3 coating for the γ-TiAl alloy with enhanced oxidation protective ability
Monceau et al. Pt-modified Ni aluminides, MCrAlY-base multilayer coatings and TBC systems fabricated by Spark Plasma Sintering for the protection of Ni-base superalloys
Ruibo et al. Microstructure and oxidation behavior of modified aluminide coating on Ni3Al-based single crystal superalloy
CN103409747A (zh) 制备Ni基WC硬质合金涂层及抑制其裂纹与气孔的方法
CN107419233A (zh) 一种钛铝基合金表面防护涂层及其制备方法
CN102925871A (zh) 一种复合热障涂层及其制备方法
CN113088883B (zh) 一种高温合金复合金属陶瓷涂层及其制备方法
JP6712801B2 (ja) 遮熱コーティング方法、及び遮熱コーティング材
CN106756838B (zh) 一种γ-TiAl合金表面纳米梯度结构高温防护涂层及其制备方法
CN106544627A (zh) 一种抗高温热腐蚀复合涂层及其制备方法
CN104388900A (zh) 一种γ-TiAl合金表面渗镀LaTaAlY合金层的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant