CN101289018B - 具有隔热覆盖层的耐热构件 - Google Patents

具有隔热覆盖层的耐热构件 Download PDF

Info

Publication number
CN101289018B
CN101289018B CN2008100933249A CN200810093324A CN101289018B CN 101289018 B CN101289018 B CN 101289018B CN 2008100933249 A CN2008100933249 A CN 2008100933249A CN 200810093324 A CN200810093324 A CN 200810093324A CN 101289018 B CN101289018 B CN 101289018B
Authority
CN
China
Prior art keywords
heat
alloy
binder course
layer
matrix material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008100933249A
Other languages
English (en)
Other versions
CN101289018A (zh
Inventor
有川秀行
目幡辉
儿岛庆享
市川国弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39650643&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101289018(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN101289018A publication Critical patent/CN101289018A/zh
Application granted granted Critical
Publication of CN101289018B publication Critical patent/CN101289018B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/325Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/132Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component

Abstract

本发明提供可以用于运转温度非常高的燃气轮机或飞机发动机等的耐热构件的耐久性、可靠性优良的具有隔热覆盖层的耐热构件。在以Ni作为主成分的耐热合金基体材料的表面上,隔着基本上以Ni作为主成分、含有Cr及Al的合金的结合层设置由陶瓷形成的隔热层,结合层的合金中可以以0~10重量%的范围含有Si。藉此,在长期的运转中,不易发生隔热陶瓷层的剥离损伤,同时基体材料的机械特性的降低也少。

Description

具有隔热覆盖层的耐热构件
技术领域
本发明涉及具有隔热覆盖层的燃气轮机用耐热构件,特别是涉及耐热合金基体材料包含以Ni作为主成分的Ni基耐热超合金的具有隔热覆盖层的燃气轮机用的耐热构件。 
背景技术
燃气轮机以提高效率作为目的,其运转温度正在逐年升高。为了应对这样的高温化,燃气轮机部件的一部分使用高温强度优良的各种Ni基超合金的铸件,另外,以提高作为铸件的高温强度为目的,除了使用普通铸造材料以外,还使用作为定向凝固材料的柱状晶材料、单晶材料(例如,参照专利文献1)。 
另外,以降低燃气轮机部件的温度为目的,在部件表面施用包含陶瓷的隔热覆盖层(Thermal Barrier Coating:以下称为TBC)。TBC一般是在耐热合金基体材料上形成耐氧化性优良的MCrAlY合金层和低热传导性优良的氧化锆(ZrO2)系陶瓷层(例如,参照专利文献2)。 
在MCrAlY合金层中,M表示从由Fe、Ni、Co构成的组中选择的至少1种,Cr表示铬、Al表示铝、Y表示钇。 
另外,由于在以Ni作为主成分的耐热合金(Ni基耐热合金)的铸件材料上施用TBC的燃气轮机部件其高温强度非常优良,所以在燃气轮机部件中,多使用于特别要求高温强度的部件(例如,转动叶片和定子叶片)。 
虽然受使用条件左右,但是一般通过使用TBC,耐热合金基体材料的温度可以降低50~100℃,在Ni基耐热合金的铸造材料上施用TBC是非常有效的。 
但是,在以过于苛刻的热负荷条件下使用的Ni基耐热合金的铸造 材料上施用TBC的燃气轮机部件存在以下2个课题。 
课题之一是,在高温下的运转中,因由合金形成的结合层(合金结合层)被氧化,在由陶瓷形成的隔热层(陶瓷隔热层)和合金结合层的界面上形成的界面氧化物层生长,容易发生陶瓷隔热层的剥离损伤。 
特别是对于运转温度高的燃气轮机,其界面氧化物层的生长加速,通过起因于与合金结合层的热膨胀差或燃气轮机的启动停止时的急剧的温度变化而作用的热应力,容易发生以生长的界面氧化物层为起点的陶瓷隔热层的剥离。 
另一课题是,在高温下的运转中,在合金结合层和Ni基耐热合金的铸造材料间因合金组成不同而发生相互扩散,在Ni基耐热合金的铸造材料的表面(与合金结合层连接的面)上生成变质层。 
由于通常由该相互扩散产生的变质层脆且强度也低,所以可能耐热合金基体材料的机械特性会降低。与普通铸造材料相比,由这样的变质层导致的耐热合金基体材料的机械特性的降低,在柱状晶材料、单晶材料中更为显著。这是由于柱状晶材料和单晶材料通过将合金组成和由定向凝固产生的组织控制组合起来可以使高温强度提高至极限,对于由扩散造成的组成的变化比较敏感。 
对于这2个课题,分别有各种改善方法的提案。 
对于前者的课题,例如专利文献3公开了可抑制界面氧化物层生长的合金结合层。 
另外,对于后者的课题,例如专利文献4公开了通过在单晶的Ni基耐热合金的铸造材料表面上隔着含碳层而覆盖铝层从而减少由耐热合金基体材料和覆盖层间的扩散造成的有害变质层的方法。 
【专利文献1】特开平09-272933号公报 
【专利文献2】特开昭62-211387号公报 
【专利文献3】特开2006-097042号公报 
【专利文献4】特开2005-133206号公报 
发明内容
但是,从同时改善2个课题的观点出发,这些现有的方法不能说是充分的。 
另外,也可以考虑通过将这些现有的方法组合起来实施而同时改善2个课题的方法,但是实际施工时,因材料的组合问题、工艺方面的限制、成本方面的限制等,将这些现有的方法组合起来实施并不容易。 
因此,在Ni基耐热合金的铸造材料、特别是柱状晶材料、单晶材料上施用TBC的燃气轮机部件虽然高温强度非常优良,但是长期运转时的耐久性、可靠性方面却不令人十分满意。 
本发明的目的在于,提供可以同时克服该2个课题、即使长期运转也具有充分的耐久性、可靠性的在Ni基耐热合金上施用TBC的燃气轮机部件。 
作为本发明的一种实施方式的具有隔热覆盖层的耐热构件是在耐热合金基体材料的表面上隔着由合金形成的结合层设置由陶瓷形成的隔热层的具有隔热覆盖层的耐热构件,其特征在于,耐热合金基体材料包含以Ni作为主成分的耐热合金,结合层包含以Ni作为主成分、含有Cr及Al、可以以0~10重量%的范围含有Si、其余为不可避免的杂质的合金。 
藉此,抑制了在合金结合层和陶瓷隔热层的界面上生成的界面氧化物的生长,同时使合金结合层的组成不易与Ni基耐热合金基体材料发生相互扩散,从而可以抑制在合金结合层和Ni基耐热合金基体材料的界面上生成的扩散变质层的生长。 
而且,耐热合金基体材料优选为以Ni作为主成分的耐热合金的单晶材料,以Ni作为主成分的耐热合金的柱状晶材料,以Ni作为主成分的耐热合金的普通铸造材料,特别优选为以Ni作为主成分的耐热合金的单晶材料。 
另外,以重量比计,以Ni作为主成分的耐热合金优选包含以下成分:0.03~0.20%的C,0.004~0.050%的B,0.01~1.50%的Hf,0~ 0.02%的Zr,1.5~16.0%的Cr,0.4~6.0%的Mo,2~12%的W,0.1~9.0%的Re,2~12%的Ta,0.3~4.0%的Nb,4.0~6.5%的Al,0~0.4%的Ti,0.5~9.0%的Co,其余基本上是Ni。 
另外,结合层优选包含下述成分的合金:以Ni作为主成分,以10~40重量%的范围含有Cr,以5~20重量%的范围含有Al,可以以0.5~2.0重量%的范围含有Si,其余是不可避免的杂质。 
另外,隔热层优选由氧化物系陶瓷形成,氧化物系陶瓷优选由部分稳定化氧化锆形成,部分稳定化氧化锆优选由氧化钇部分稳定化氧化锆形成。 
另外,作为本发明的1种实施方式的具有隔热覆盖层的耐热构件的耐热合金基体材料、结合层和由陶瓷形成的隔热层特别优选以下组合的情况。 
即,以重量计,耐热合金基体材料是包含以下成分的合金:0.03%以上0.20%以下的C,0.004%以上0.050%以下的B,0.01%以上1.50%以下的Hf,0%以上0.02%以下的Zr,1.5以上16.0%以下的Cr,0.4%以上6.0%以下的Mo,2%以上12%以下的W,0.1%以上9.0%以下的Re,2%以上12%以下的Ta,0.3%以上4.0%以下的Nb,4.0%以上6.5%以下的Al,0%以上0.4%以下的Ti,0.5%以上9.0%以下的Co及其余基本上是Ni;结合层包含以下成分的合金:以Ni作为主成分,含有Cr及Al,可以以0~10重量%的范围含有Si,其余是不可避免的杂质;由陶瓷形成的隔热层由以氧化锆作为主成分的氧化物陶瓷形成。 
另外,结合层特别优选包含下述成分的合金:以Ni作为主成分,以10~40重量%的范围含有Cr,以5~20重量%的范围含有Al,可以以0.5~2.0重量%的范围含有Si,其余是不可避免的杂质。 
藉此,本发明就可以提供即使长期运转也具有充分的耐久性、可靠性的在Ni基耐热合金上施用TBC的燃气轮机部件。 
而且,与现有的在由MCrAlY合金形成的合金结合层上形成陶瓷隔热层的具有隔热覆盖层的耐热构件相比,本发明的具有隔热覆盖层的 耐热构件在燃气轮机的使用环境下其耐久性、可靠性优良,可以实现燃气轮机运转温度的高温化、高效率化。 
附图说明
图1是根据本发明的实施例的耐热构件的断面模式图。 
图2是现有的施用TBC的构件氧化后的损伤断面模式图。 
图3是本实施方式的施用TBC的耐热构件氧化后的断面模式图。 
图4是根据本实施方式的设有TBC的气轮机转动叶片的立体图。 
图5是实机模拟加热试验装置的模式图。 
符号说明 
1   基体材料            2   结合层 
3   隔热层              4   MCrAlY合金结合层 
11  界面氧化物层        12  界面变质层 
61  叶片部              62  平台部 
63  体部                64  密封凸片 
65  容屑槽              66  燕尾槽 
81  燃烧喷嘴            82  燃烧筒 
83  试验叶片            84  叶片保持台 
85  排热管              86  燃烧火焰 
具体实施方式
本发明人对于Ni基耐热合金基体材料和MCrAlY合金层间的相互扩散进行了研究。 
用MCrAlY合金和Ni基耐热合金制作扩散对、调查在高温下相互扩散的结果发现,在MCrAlY合金层中含有Co时,Ni基耐热合金基体材料上生成的变质层生长得厚。 
根据该见解和通过使用不含有比Al更容易氧化的元素的合金结合层以抑制界面氧化物层的生长的见解,实现了本发明。 
如图1所示,本发明的耐热构件在Ni基耐热合金基体材料1的表面上隔着合金结合层2形成陶瓷隔热层3,该合金结合层2包含以Ni作为主成分、含有Cr及Al、可以以0~10重量%的范围含有Si、其余为不可避免的杂质的合金。 
如图2所示,根据现有技术的具有TBC的耐热构件由于在高温下的长时间使用,在MCrAlY合金结合层4和陶瓷隔热层3的界面上界面氧化物层11生长,在MCrAlY合金结合层4和Ni基耐热合金基体材料1的界面上由相互扩散产生的界面变质层12生长。 
界面氧化物层11生长、厚度增加时,因由金属成分氧化时的体积膨胀造成的应变的积蓄、从金属向氧化物的热·机械的物性值的变化等,在陶瓷隔热层3内产生新的热应力,陶瓷隔热层3容易发生损伤。 
另外,因厚度增加,界面氧化物层11也容易发生层内破坏。另外,随着界面氧化物层11的生长,MCrAlY合金结合层4的Al因氧化而失去,最终,Cr、Ni以及Co也发生氧化。Cr、Ni、Co与Al相比氧化时的体积膨胀大,另外形成比较多孔质的氧化物。成为这样的状态时,界面氧化物层11容易发生层内破坏,结果导致陶瓷隔热层3的剥离损伤13。 
另外,由于在Ni基耐热合金基体材料1的表面上由与MCrAlY合金结合层4的相互扩散生成的界面变质层12一般脆、强度也低,所以可能Ni基耐热合金基体材料1的机械特性、特别是疲劳强度降低,界面变质层12的厚度增加时,在Ni基耐热合金基体材料1上容易发生疲劳裂纹14。 
与此相反,如图3所示,根据本发明的具有TBC的耐热构件与图2相比较,由于抑制了由合金结合层2和Ni基耐热合金基体材料1的相互扩散生成的界面变质层12的生长,所以可以实现作为具有TBC的耐热构件的高耐久性、高可靠性。 
在本发明中,作为Ni基耐热合金基体材料1最优选单晶材料。 
这是由于单晶材料高温强度最优良的反面,在使用TBC时,因与合金结合层2的相互扩散生成的界面变质层12的影响所导致的Ni基耐热合金基体材料1的机械特性的降低比其它的铸造材料大。 
尽管与单晶材料相比较效果小,但是也可以使用柱状晶材料、普通铸造材料作为Ni基耐热合金基体材料1。 
用于结合层的合金优选基本上以Ni作为主成分、含有Cr及Al,另外,可以以0~10重量(wt)%的范围、优选以0.5~2.0重量%的范围含有Si。优选含有50~75重量%的Ni,含有5~40重量%、优选10~40重量%的Cr,含有1~30重量%、优选5~20重量%的Al。 
对于形成结合层的合金,Ni是形成结合层的基本成分,使用与基体材料的Ni基耐热合金相同的合金系,从调整热膨胀率等和降低与基体材料的成分浓度的梯度、谋求抑制相互扩散的目的出发,优选含有50~75重量%。 
比50重量%少时,难以形成富有延展性的结合层,而且与基体材料的浓度梯度大,容易生成由相互扩散形成的界面变质层。 
比75重量%多时,由于Cr及Al的含量变少,所以耐蚀性、耐氧化性降低。Cr及Al是担负耐蚀性、耐氧化性的保护性氧化物覆膜的形成元素,Cr主要赋予耐蚀性,Al主要赋予耐氧化性。 
Cr量低于5重量%、Al量低于1重量%时,对于提高耐蚀性、耐氧化性的效果小。Cr量超过40重量%、Al量超过20重量%时,覆膜容易脆化。 
另外,Si具有固定结合层中的杂质的效果、提高基体材料和结合层的密合性及保护性氧化物覆膜的密合性的效果,可以以0~10重量%的范围含有。比10重量%多时,因覆膜脆化或生成有害相而不佳。 
结合层最优选用减压等离子喷镀法形成,但是也可以使用HVOF喷镀法或HVAF喷镀法等高速气体喷镀法。 
喷镀时在合金粉末的制造过程中有可能混入金属或陶瓷制的容器·坩锅·喷射用喷嘴等的材料。另外,在实施喷镀时有可能混入金属制的电极·喷嘴等的材料。 
用于陶瓷隔热层3的陶瓷优选是以氧化锆作为主成分的陶瓷、即优选是ZrO2系陶瓷,特别优选是含有从Y2O3、MgO、CaO、CeO2、Sc2O3、Er2O3、Gd2O3、Yb2O3、Al2O3、SiO2、La2O3选择的至少一种的部分稳定化氧化锆。最优选是氧化钇部分稳定化氧化锆。 
作为用于提高TBC的耐久性的方法已知有在大气中用等离子喷镀法使陶瓷隔热层3多孔质化而抑制陶瓷隔热层3的龟裂传播的方法、在陶瓷隔热层3中生成纵向的裂纹而缓和热应力的方法、使用电子束物理蒸发法使陶瓷隔热层3柱状组织化由柱状组织间的分离来缓和热应力的方法等。 
在本实施方式中,对于陶瓷隔热层3可以实施这些处理。 
(实施例1) 
作为试验片基体材料使用直径25mm、厚度5mm的圆板形状的Ni基耐热合金(以重量计,C:0.03%以上0.20%以下,B:0.004%以上0.050%以下,Hf:0.01%以上1.50%以下,Zr:0%以上0.02%以下,Cr:1.5%以上16.0%以下,Mo:0.4%以上6.0%以下,W:2%以上12%以下,Re:0.1%以上9.0%以下,Ta:2%以上12%以下,Nb:0.3%以上4.0%以下,Al:4.0%以上6.5%以下,Ti:0%以上低于0.4%,Co:0.5%以上9.0%以下及其余基本上是Ni;具体地说,以重量计,C:0.11%,B:0.025%,Hf:0.75%,Zr:0.01%,Cr:7.5%,Mo:2.8%,W:6%,Re:4.5%,Ta:6.5%,Nb:2.1%,Al:5.2%,Ti:0.2%,Co:4.5%及其余基本上是Ni)的单晶材料,在其表面上使用NiCrAl合金(Ni-22wt%Cr-10wt%Al)粉末在减压气氛中由等离子喷镀形成结合层,作为扩散热处理实施在真空中的1121℃、4h的热处理。 
结合层的厚度约为100μm。然后,在设有结合层的基体材料上使用氧化钇部分稳定化氧化锆(ZrO2-8wt%Y2O3)粉末在大气中以等离子喷镀设置厚度约200μm的陶瓷隔热层。 
为了评价对在MCrAlY合金层和陶瓷隔热层的界面上生成的界面氧化物及在MCrAlY合金层和Ni基耐热合金基体材料的界面上因相互扩 散生成的界面变质层的生长的抑制效果,对制作的试验片实施950℃下1000h的大气中的氧化试验。 
其结果示于表1的No.1。 
另外,为了比较还制作了结合层的材料是CoNiCrAlY合金(Co-32wt%Ni-21wt%Cr-8wt%Al-0.5wt%Y)的试验片,作为No.2示于表1。 
表1 
Figure S2008100933249D00091
如表1表明的那样可以看出,与比较例No.2试验片相比,本实施方式的No.1试验片的氧化试验后的界面氧化物层和界面变质层只以一半以下的厚度生长,具有优良的界面氧化物层和界面变质层的生长抑制效果。 
(实施例2) 
与实施例1使用相同的试验片基体材料,在其表面上使用本实施方式的NiCrAl合金(Ni-22wt%Cr-10wt%Al)粉末和NiCrAlSi合金(Ni-22wt%Cr-10wt%Al-1wt%Si)粉末,在减压气氛中由等离子喷镀形成结合层,作为扩散热处理实施在真空中的1121℃、4h的热处理。 
结合层的厚度约为100μm。然后,在设有结合层的基体材料上使用以下4种方法,都以约200μm的厚度形成氧化钇部分稳定化氧化锆(ZrO2-8wt%Y2O3)的隔热层。 
第1种方法:在大气中用等离子喷镀法形成气孔率约10%的隔热层。 
第2种方法:在大气中用等离子喷镀法形成气孔率约20%的多孔质隔热层。 
第3种方法:在大气中用等离子喷镀法形成具有纵向裂纹的隔热 层。 
第4种方法:用电子束物理蒸发法形成具有柱状组织的隔热层。 
对于这些试验片实施重复在大气中1100℃的温度下保持10小时后冷却至200℃的工序的热循环试验,评价TBC的耐久性。 
直至使试验片的陶瓷层被剥离为止的重复次数示于表2。 
发生剥离的认定条件设定为陶瓷层的剥离面积达整体的20%以上的时间点,求出直至此时的重复次数。 
另外,对于作为比较例、其结合层的材料是CoNiCrAlY合金(Co-32wt%Ni-21wt%Cr-8wt%Al-0.5wt%Y)的试验片也示于表2。 
表2 
Figure S2008100933249D00101
如由表2表明的那样可以看出,陶瓷隔热层的形成方法相同时,与比较例相比,本实施方式的TBC的耐热循环性优良,具有因抑制界面氧化物层生长的效果而产生的改善耐久性的效果。 
另外,在陶瓷隔热层形成方法不同下进行比较时,可以看出,第3种方法和第4种方法的耐热循环性基本同等地优良,然后是第2种方法、第1种方法的顺序。 
如表2所示,各试验片的剥离位置为,第1种方法和第2种方法是在陶瓷隔热层内,第3种方法和第4种方法是在界面氧化物层附近。这是由于,在由第3种方法或第4种方法形成的陶瓷隔热层中,通过由纵向裂纹(第3种方法)和柱状组织(第4种方法)产生的应力缓和,在陶瓷隔热层内不易发生破坏,陶瓷隔热层的剥离发生在界面氧化物层附近。 
从而可以认为,在由第3种方法和第4种方法形成的陶瓷隔热层中,抑制界面氧化物层生长的效果体现更明显。 
另外,如比较剥离时的基体材料的界面变质层的厚度,本实施方式的一方比比较例更能抑制界面变质层的生长(例如,比较以相同次数剥离的No.6和No.12)。 
(实施例3) 
制作本实施方式的设有TBC的燃气轮机的转动叶片。图4示出了表示燃气轮机的转动叶片的整体结构的立体图。 
图4中,该燃气轮机的转动叶片是Ni基耐热合金(与实施例1中所示的Ni基耐热合金的组成相同)的单晶材料,例如,作为具备3级转动叶片的燃气轮机旋转部分的初级转动叶片使用,具有叶片部61、平台部62、体部63、密封凸片64、容屑槽65,借助于燕尾槽66安装在圆盘上。 
另外,该燃气轮机的转动叶片的叶片部61的长度是100mm,平台部42以下的长度是120mm,燃气轮机转动叶片为了从内部可以冷却而通入致冷剂、特别是为了使空气或水蒸汽通过而设有从燕尾槽66通往叶片部61的冷却孔(未图示)。 
另外,该燃气轮机转动叶片在初级最优良,但是也可以设为2级以后的后级的燃气轮机转动叶片。而且,在该燃气轮机转动叶片中的暴露在燃烧气体中的叶片部61及平台部62上形成本实施方式的TBC。 
其成膜方法与实施例2大体相同,在燃气轮机转动叶片的表面上使用NiCrAlSi合金(Ni-22wt%Cr-10wt%Al-1wt%Si)粉末,在减压气氛中由等离子喷镀形成厚度约200μm的结合层,在其上在大气中用等离子喷镀设置具有纵向裂纹组织的氧化钇部分稳定化氧化锆(ZrO2-8wt%Y2O3)的厚度约300μm的陶瓷隔热层。 
为了模拟长时间使用后的氧化状态,对于这样制作的气轮机转动叶片实施大气中1000℃、1000h的氧化处理后,用图5所示的实机模拟加热试验装置实施热负荷试验。 
该试验装置将燃烧喷嘴81产生的高温高压的燃烧火焰86导入燃烧筒82中,使设置在叶片保持台84上的试验叶片83加热,从排热管道85排出,试验叶片83的内部用冷却空气流冷却,可进行模拟实机热负荷的试验。 
试验条件是,燃烧气体温度最大为1500℃,冷却空气温度为170℃,压力为8个大气压。在预先在试验叶片83的前缘部埋入热电偶的气轮机转动叶片保持加热的状态下测定气轮机转动叶片的基体材料温度,求出的热通量的结果是最大3.0MW/m2。 
为了比较,还制作了结合层是CoNiCrAlY合金(Co-32wt%Ni-21wt%Cr-8wt%Al-0.5wt%Y)的气轮机转动叶片。 
燃烧气体温度是1000℃的场合(热流束0.9MW/m2),在重复10次启动、稳定保持、停止的循环条件下,本实施方式的气轮机转动叶片和比较例的气轮机转动叶片都看不到TBC损伤。 
但是,燃烧气体温度是1300℃的场合(热流束1.5MW/m2),在重复10次循环的条件下,在比较例的气轮机转动叶片的叶片前缘及叶片背侧的一部分看到陶瓷隔热层的剥离损伤。 
而本实施方式的气轮机转动叶片是健全的。 
进而,燃烧气体温度是1500℃的场合(热流束3.0MW/m2),即使 在重复10次的循环条件下,本实施方式的燃气气轮机转动叶片也是健全的。 
而比较例的气轮机转动叶片,与1300℃的加热相比较,其叶片前缘及叶片背侧的损伤范围扩大,进而叶片中部的一部分也看到剥离损伤。 
由以上的结果可以看出,本实施方式的设有TBC的气轮机转动叶片比比较例的气轮机转动叶片的耐久性优良。 
工业实用性 
本发明的具有陶瓷隔热层的耐热构件在高温下耐久性优良。因此可以作为燃气轮机转动叶片、定子叶片及燃烧器等的隔热覆盖层使用。 
另外,不仅对于燃气轮机,即使是对于飞机发动机也可以作为耐蚀覆盖层使用。 

Claims (5)

1.一种具有隔热覆盖层的耐热构件,其在耐热合金基体材料的表面上隔着由合金形成的结合层设置由陶瓷形成的隔热层,其特征在于,
上述耐热合金基体材料为以Ni作为主成分的耐热合金的单晶材料,
上述结合层为以重量比计包含50~75%的Ni、5~40%的Cr、1~30%的Al,其余为不可避免的杂质的合金。
2.根据权利要求1所述的具有隔热覆盖层的耐热构件,其特征在于,以重量比计,上述以Ni作为主成分的耐热合金包含以下成分:0.03~0.20%的C,0.004~0.050%的B,0.01~1.50%的Hf,0~0.02%的Zr,1.5~16.0%的Cr,0.4~6.0%的Mo,2~12%的W,0.1~9.0%的Re,2~12%的Ta,0.3~4.0%的Nb,4.0~6.5%的Al,0~0.4%的Ti,0.5~9.0%的Co,其余基本上为Ni。
3.根据权利要求1所述的具有隔热覆盖层的耐热构件,其特征在于,上述隔热层由氧化物系陶瓷形成。
4.根据权利要求3所述的具有隔热覆盖层的耐热构件,其特征在于,上述氧化物系陶瓷由部分稳定化氧化锆形成。
5.根据权利要求4所述的具有隔热覆盖层的耐热构件,其特征在于,上述部分稳定化氧化锆由氧化钇部分稳定化氧化锆形成。
CN2008100933249A 2007-04-18 2008-04-18 具有隔热覆盖层的耐热构件 Active CN101289018B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-108801 2007-04-18
JP2007108801A JP5082563B2 (ja) 2007-04-18 2007-04-18 遮熱被覆を有する耐熱部材

Publications (2)

Publication Number Publication Date
CN101289018A CN101289018A (zh) 2008-10-22
CN101289018B true CN101289018B (zh) 2012-09-05

Family

ID=39650643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100933249A Active CN101289018B (zh) 2007-04-18 2008-04-18 具有隔热覆盖层的耐热构件

Country Status (5)

Country Link
US (1) US20080261069A1 (zh)
EP (1) EP1995350B1 (zh)
JP (1) JP5082563B2 (zh)
CN (1) CN101289018B (zh)
DE (1) DE602008001919D1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8529249B2 (en) * 2007-09-25 2013-09-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flame holder system
EP2420584B1 (en) 2009-04-17 2013-06-19 IHI Corporation Nickel-based single crystal superalloy and turbine blade incorporating this superalloy
DE102010040430A1 (de) 2010-09-08 2012-03-08 Ewald Dörken Ag Extrem hochtemperaturfestes Bauteil mit einer extrem hochtemperaturfesten Beschichtung
US20120128525A1 (en) * 2010-11-24 2012-05-24 Kulkarni Anand A Metallic Bondcoat or Alloy with a High y/y' Transition Temperature and a Component
US9578739B2 (en) * 2011-03-31 2017-02-21 Jx Nippon Mining & Metals Corporation Metal foil provided with electrically resistive layer, and board for printed circuit using said metal foil
WO2013061945A1 (ja) * 2011-10-26 2013-05-02 株式会社ディ・ビー・シー・システム研究所 耐熱合金部材およびその製造方法
US20130164558A1 (en) * 2011-12-27 2013-06-27 United Technologies Corporation Oxidation Resistant Coating with Substrate Compatibility
US20130177441A1 (en) * 2012-01-11 2013-07-11 General Electric Company Compositional Bond Coat for Hindering/Reversing Creep Degradation in Environmental Barrier Coatings
JP5905336B2 (ja) * 2012-05-30 2016-04-20 三菱日立パワーシステムズ株式会社 発電用ガスタービン翼、発電用ガスタービン
CN102744930B (zh) * 2012-06-26 2015-08-19 中国科学院宁波材料技术与工程研究所 空调压缩机零部件表面的强韧润滑复合薄膜及其制备方法
JP6054137B2 (ja) * 2012-10-24 2016-12-27 三菱日立パワーシステムズ株式会社 遮熱コーティングを有するガスタービン用高温部材
EP4130332A3 (en) 2013-03-15 2023-05-31 Raytheon Technologies Corporation Spallation resistant thermal barrier coating
DE102014008083B9 (de) 2014-05-30 2018-03-22 Carl Zeiss Microscopy Gmbh Teilchenstrahlsystem
JP2017001235A (ja) * 2015-06-08 2017-01-05 トヨタ自動車株式会社 断熱構造体
CN106282667B (zh) * 2015-06-12 2018-05-08 中南大学 一种镍基高温合金及其制备方法
US20170122560A1 (en) * 2015-10-28 2017-05-04 General Electric Company Gas turbine component with improved thermal barrier coating system
CN105365302A (zh) * 2015-12-08 2016-03-02 太仓斯普宁精密机械有限公司 一种新型耐热金属材料
CN105463257B (zh) * 2015-12-08 2018-04-24 南通金源智能技术有限公司 一种镍基高温合金粉
TWI604064B (zh) * 2016-09-21 2017-11-01 China Steel Corp Metal rod for holding a sample of hot metal melt test
DE102018204498A1 (de) * 2018-03-23 2019-09-26 Siemens Aktiengesellschaft Keramisches Material auf der Basis von Zirkonoxid mit weiteren Oxiden
RU2678353C1 (ru) * 2018-05-21 2019-01-28 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ" Жаропрочный коррозионно-стойкий сплав на основе никеля для литья крупногабаритных рабочих и сопловых лопаток газотурбинных установок
RU2704343C1 (ru) * 2018-12-15 2019-10-28 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Способ получения объемного композиционного материала никель - диоксид циркония с повышенной устойчивостью к окислению
CN111826570B (zh) * 2020-07-23 2021-11-16 矿冶科技集团有限公司 一种耐高温高耐磨镍基碳化钛粉末及其制备方法
CN114686731B (zh) * 2022-04-12 2022-11-22 北航(四川)西部国际创新港科技有限公司 一种单晶高温合金及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051083A (en) * 1996-02-09 2000-04-18 Hitachi, Ltd. High strength Ni-base superalloy for directionally solidified castings
JP3559670B2 (ja) * 1996-02-09 2004-09-02 株式会社日立製作所 方向性凝固用高強度Ni基超合金
CN1537821A (zh) * 2003-04-18 2004-10-20 张东辉 防水型耐酸耐热轻质隔热浇注料及其制造方法
EP1640477A2 (en) * 2004-09-28 2006-03-29 Hitachi, Ltd. High temperature component with thermal barrier coating and gas turbine using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620693A (en) * 1969-04-22 1971-11-16 Gte Electric Inc Ductile, high-temperature oxidation-resistant composites and processes for producing same
US3869779A (en) 1972-10-16 1975-03-11 Nasa Duplex aluminized coatings
GB1426438A (en) 1972-11-08 1976-02-25 Rolls Royce Nickel or cobalt based alloy composition
FR2737504A1 (fr) 1978-10-03 1997-02-07 Otan Procede de preparation de pigments mineraux, pigments mineraux ansi obtenues, et installation pour la mise en ouvre d'un tel procede
GB2182350B (en) 1985-07-01 1989-04-26 Atomic Energy Authority Uk Coating improvements
GB2182347B (en) 1985-11-01 1989-10-25 Secr Defence Overlay coating of superalloys
JPS62211387A (ja) 1986-03-12 1987-09-17 Hitachi Ltd セラミツク被覆耐熱部材の製造方法
US20020132132A1 (en) * 2000-12-12 2002-09-19 Sudhangshu Bose Method of forming an active-element containing aluminide as stand alone coating and as bond coat and coated article
US6391475B1 (en) * 2000-03-10 2002-05-21 General Electric Company Modified aluminum-containing protective coating and its preparation
EP1522607B1 (en) 2003-10-07 2006-06-14 General Electric Company Method for fabricating a coated superalloy stabilized against the formation of secondary reaction zone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051083A (en) * 1996-02-09 2000-04-18 Hitachi, Ltd. High strength Ni-base superalloy for directionally solidified castings
JP3559670B2 (ja) * 1996-02-09 2004-09-02 株式会社日立製作所 方向性凝固用高強度Ni基超合金
CN1537821A (zh) * 2003-04-18 2004-10-20 张东辉 防水型耐酸耐热轻质隔热浇注料及其制造方法
EP1640477A2 (en) * 2004-09-28 2006-03-29 Hitachi, Ltd. High temperature component with thermal barrier coating and gas turbine using the same

Also Published As

Publication number Publication date
CN101289018A (zh) 2008-10-22
EP1995350B1 (en) 2010-07-28
DE602008001919D1 (de) 2010-09-09
US20080261069A1 (en) 2008-10-23
JP2008266698A (ja) 2008-11-06
EP1995350A1 (en) 2008-11-26
JP5082563B2 (ja) 2012-11-28

Similar Documents

Publication Publication Date Title
CN101289018B (zh) 具有隔热覆盖层的耐热构件
EP2128306B1 (en) Ceramic thermal barrier coating system with two ceramic layers
JP4607530B2 (ja) 遮熱被覆を有する耐熱部材およびガスタービン
US8025984B2 (en) Protective layer for protecting a component against corrosion and oxidation at high temperatures, and component
RU2518850C2 (ru) Нано- и микроструктурное керамическое термобарьерное покрытие
EP1837485B1 (en) Component with a protective layer
US20070224443A1 (en) Oxidation-resistant coating and formation method thereof, thermal barrier coating, heat-resistant member, and gas turbine
CN103796828B (zh) 具有双层的MCrAlX金属层的层系统
KR20080110983A (ko) 높은 다공도의 층상형 열적 배리어 코팅 및 부품
JP2012516388A (ja) 合金、保護層及びコンポーネント
KR20110119800A (ko) 파이로클로르 상을 갖는 2층의 다공성 층 시스템
JP2013530309A (ja) 合金、保護層、及び部品
US20090136769A1 (en) Alloy, Protective Layer for Protecting a Component Against Corrosion and Oxidation at High Temperatures and Component
KR20070099675A (ko) 고온에서의 부식 및 산화에 대해 부품을 보호하기 위한조성을 갖는 합금, 이러한 합금으로 이루어진 보호층, 및이러한 보호층을 갖춘 부품
JP2005350771A (ja) 改良された酸化物安定領域を備えたニッケルアルミナイド・コーティング
US20090263675A1 (en) Alloy, Protective Layer for Protecting a Component Against Corrosion and/or Oxidation at High Tempertures and Component
CN103298607A (zh) 合金、保护层和构件
RU2591096C2 (ru) Сплав, защитное покрытие и конструктивный элемент
KR101597924B1 (ko) 2겹 금속층을 포함하는 층 시스템
Okazaki The potential for the improvement of high performance thermal barrier coatings
US20090081445A1 (en) Ceramic Solid Component, Ceramic Layer With High Porosity, Use of Said Layer, and a Component Comprising Said Layer
US20130337286A1 (en) Alloy, protective coating, and component
US20130288072A1 (en) Alloy, protective layer and component
US20140094356A1 (en) Treatment process, oxide-forming treatment composition, and treated component
JP5281995B2 (ja) 遮熱被覆を有する耐熱部材およびガスタービン

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: MITSUBISHI HITACHI POWER SYSTEM LTD.

Free format text: FORMER OWNER: HITACHI,LTD.

Effective date: 20150318

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150318

Address after: Kanagawa, Japan

Patentee after: Mitsubishi Hitachi Power System Ltd.

Address before: Tokyo, Japan

Patentee before: Hitachi Ltd.

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Kanagawa, Japan

Patentee after: Mitsubishi Power Co., Ltd

Address before: Kanagawa, Japan

Patentee before: MITSUBISHI HITACHI POWER SYSTEMS, Ltd.