CN104451600B - 一种氧化铋薄膜材料的制备方法 - Google Patents

一种氧化铋薄膜材料的制备方法 Download PDF

Info

Publication number
CN104451600B
CN104451600B CN201410726713.6A CN201410726713A CN104451600B CN 104451600 B CN104451600 B CN 104451600B CN 201410726713 A CN201410726713 A CN 201410726713A CN 104451600 B CN104451600 B CN 104451600B
Authority
CN
China
Prior art keywords
nitrogen
bismuth
reaction chamber
argon
bismuth oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410726713.6A
Other languages
English (en)
Other versions
CN104451600A (zh
Inventor
李亚巍
乔琦
褚君浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN201410726713.6A priority Critical patent/CN104451600B/zh
Publication of CN104451600A publication Critical patent/CN104451600A/zh
Application granted granted Critical
Publication of CN104451600B publication Critical patent/CN104451600B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种氧化铋薄膜材料的制备方法,该方法以三苯基铋、氧气为原料,基于脉冲方式依次进源、利用表面吸附化学反应生成氧化铋薄膜。本发明具有可在各种衬底上大面积成膜、重复性好、可控性高等优点;所制得的氧化铋薄膜在光学涂层、光催化等领域具有广阔的应用前景。

Description

一种氧化铋薄膜材料的制备方法
技术领域
本发明涉及一种氧化铋薄膜材料的制备方法,是指基于原子层沉积技术在各种衬底上制备氧化铋薄膜的方法。
技术背景
氧化铋(Bi2O3)具有高的折射率、大的非线性光学系数、超快的光响应,在光学涂层、光催化及光电转换等领域有着广泛的应用。根据使用领域和用途的不同,氧化铋薄膜需要覆盖在各种不同的衬底上,并且要求薄膜厚度可控。近来,人们利用各种方法(脉冲激光沉积、反应离子束溅射、化学气相沉积等)制备出了氧化铋薄膜,但现有的各种方法分别存在蒸发温度高、无法大面积成膜等各种问题,难以实现在各种衬底上制备大面积厚度精确可控的氧化铋薄膜。原子层沉积技术是一种基于表面吸附的自限制效应实现薄膜生长的方法,前驱体源被载气依次送入反应腔,并在每种源输送结束后采用惰性气体冲洗反应腔,仅吸附在衬底表面的前驱体源得以保留,使反应仅发生在衬底表面,因此薄膜厚度精确可控;由于前驱体源是以气体形式送入反应腔,因此前驱体可以很好的附着在各种形状的衬底上,包括各种高纵深比的结构,因而适合在各种衬底上大面积成膜。原子层沉积技术的缺点在于每一循环包括各种源的输送和清洗过程,因而耗时较长,有文献报导以三(2,2,6,6-四甲基-3,5-庚二酸)铋为铋源生长氧化铋薄膜,生长速度仅为0.01纳米/循环。
发明内容
基于上述现有技术存在的种种问题,本发明的目的是提出一种氧化铋薄膜材料的制备方法。一方面满足在不同衬底上大面积成膜的要求,另一方面也提高薄膜的生长速率。
实现本发明目的的具体技术方案是:
一种氧化铋薄膜材料的制备方法,包括以下具体步骤:
a、原料
原料包括:铋源即三苯基铋(英文名称为triphenyl bismuth)、氧气,氮气或氩气作为载气和冲洗气体,载气纯度至少为99.999%;
b、衬底的清洗和安装
将衬底依次用纯净水及无水酒精冲洗,用氮气吹干,放置于样品托盘上,送入原子层沉积系统或化学气相沉积系统的真空反应腔,抽真空使真空度达到1~3hpa;
c、薄膜材料的制备
对真空反应腔加热,使反应腔中的样品托盘和衬底温度保持在250~320℃;对装有三苯基铋的源瓶加热,使其温度保持在160~320℃,氧气和氮气按照95∶5的体积比混合均匀后,通过臭氧发生器产生臭氧气体;沉积系统内通入氮气或氩气,使反应腔内及中间空间气压分别保持在1~3hpa和6~15hpa;将铋源及氧源依次通过管道送进真空反应腔体,每次送入原料后通入惰性气体脉冲进行冲洗真空反应腔,对样品托盘上的衬底多重循环生长,每个生长循环包括以下四个脉冲:
i、三苯基铋脉冲0.2~8秒,使用氮气或氩气作为载气输送到反应腔;
ii、氮气或氩气冲洗腔体2~8秒;
iii、臭氧脉冲8~20秒;
iv、氮气或氩气冲洗腔体3~8秒;
利用自限制表面吸附效应,制得氧化铋薄膜,生长速率为0.023纳米/循环。
与现有技术相比,本发明的特点在于:(1) 适合在不同的衬底上大面积成膜;(2)可控性好,利用循环脉冲次数可精确控制材料的厚度;(3)薄膜生长速率显著提高。
附图说明
图1为实施例1所得薄膜的XRD图;
图2为实施例1所得薄膜的AFM图;
图3为图2所示AFM图的高度标尺图;
图4为实施例1所得薄膜的HRTEM图。
具体实施方式
下面将本发明的氧化铋薄膜制备工艺作如下的详细说明:
1)将衬底依次用纯净水及无水酒精冲洗,用氮气吹干,放置于样品托盘上,送入原子层沉积系统或化学气相沉积系统的真空反应腔,抽真空使真空度达到1~3hpa;
2)对真空反应腔加热,使反应腔中的样品托盘和衬底温度保持在250~320℃之间;
3)对装有三苯基铋的源瓶加热,使其温度保持在160~320℃;
4)氧气和氮气按照95∶5的体积比混合均匀后,通过臭氧发生器产生臭氧气体;沉积系统内通入氮气或氩气,使反应腔内及中间空间气压分别保持在1~3hpa和6~15hpa;
5)将铋源及氧源依次通过管道送进真空反应腔体,每次送入原料后通入惰性气体脉冲进行冲洗真空反应腔,对样品托盘上的衬底多重循环生长,每个生长循环包括以下四个脉冲:
i、三苯基铋脉冲0.2~8秒,使用氮气或氩气作为载气输送到反应腔;
ii、氮气或氩气冲洗腔体2~8秒;
iii、臭氧脉冲8~20秒;
iv、氮气或氩气冲洗腔体3~8秒。
实施例1
1)采用(100)取向的单晶硅衬底,将衬底依次用纯净水及无水酒精冲洗,用氮气吹干,放置于样品托盘上,送入原子层沉积系统的真空反应腔,抽真空使真空度达到2hpa;
2)对真空反应腔加热,使反应腔中的样品托盘和衬底温度保持在300 ℃;
3)对装有三苯基铋的源瓶加热,使其温度保持在190 ℃;
4)氧气和氮气按照95∶5的体积比混合均匀后,通过臭氧发生器产生臭氧气体;沉积系统内通入氮气或氩气,使反应腔内及中间空间气压分别保持在3hpa和12hpa;
5)将铋源及氧源依次通过管道送进真空反应腔体,每次送入原料后通入惰性气体脉冲进行冲洗真空反应腔,对样品托盘上的衬底多重循环生长,每个生长循环包括以下四个脉冲:
i、三苯基铋脉冲6秒,使用氮气作为载气输送到反应腔;
ii、氮气冲洗腔体5秒;
iii、臭氧脉冲8秒;
iv、氮气冲洗腔体5秒。
生长2000循环,氧化铋薄膜厚度约46纳米。

Claims (1)

1.一种氧化铋薄膜材料的制备方法,其特征在于该方法包括以下具体步骤:
a、原料
原料包括:铋源即三苯基铋、氧气,氮气或氩气作为载气和冲洗气体,载气纯度至少为99.999%;
b、衬底的清洗和安装
将衬底依次用纯净水及无水酒精冲洗,用氮气吹干,放置于样品托盘上,送入原子层沉积系统或化学气相沉积系统的真空反应腔,抽真空使真空度达到1~3hpa;
c、薄膜材料的制备
对真空反应腔加热,使反应腔中的样品托盘和衬底温度保持在250~320℃ ;对装有三苯基铋的源瓶加热,使其温度保持在160~320℃,氧气和氮气按照95∶5的体积比混合均匀后,通过臭氧发生器产生臭氧气体;沉积系统内通入氮气或氩气,使反应腔内及中间空间气压分别保持在1~3hpa和6~15hpa;将铋源及氧源依次通过管道送进真空反应腔体,每次送入原料后通入惰性气体脉冲进行冲洗真空反应腔,对样品托盘上的衬底多重循环生长,每个生长循环包括以下四个脉冲:
i、三苯基铋脉冲0.2~8秒,使用氮气或氩气作为载气输送到反应腔;
ii、氮气或氩气冲洗腔体2~8秒;
iii、臭氧脉冲8~20秒;
iv、氮气或氩气冲洗腔体3~8秒;
利用自限制表面吸附效应,制得氧化铋薄膜,生长速率为0.023纳米/循环。
CN201410726713.6A 2014-12-04 2014-12-04 一种氧化铋薄膜材料的制备方法 Expired - Fee Related CN104451600B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410726713.6A CN104451600B (zh) 2014-12-04 2014-12-04 一种氧化铋薄膜材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410726713.6A CN104451600B (zh) 2014-12-04 2014-12-04 一种氧化铋薄膜材料的制备方法

Publications (2)

Publication Number Publication Date
CN104451600A CN104451600A (zh) 2015-03-25
CN104451600B true CN104451600B (zh) 2017-01-18

Family

ID=52898333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410726713.6A Expired - Fee Related CN104451600B (zh) 2014-12-04 2014-12-04 一种氧化铋薄膜材料的制备方法

Country Status (1)

Country Link
CN (1) CN104451600B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105296961B (zh) * 2015-11-11 2017-09-22 南通大学 前驱体空间分隔式制备镓酸铋薄膜的方法
CN107447202B (zh) * 2015-11-11 2019-05-14 南通大学 制备铝镓酸铋薄膜的气体脉冲序列
CN105256287B (zh) * 2015-11-11 2017-09-22 南通大学 前驱体空间分隔式制备铝酸铋薄膜的方法
CN112323143B (zh) * 2020-10-14 2021-12-28 南京理工大学 一种化学气相沉积制备二维氧化铋纳米片的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200528390A (en) * 2004-02-25 2005-09-01 Toshiba Mitsubishi Elec Inc Apparatus and method of producing ozone gas
KR100682931B1 (ko) * 2005-02-15 2007-02-15 삼성전자주식회사 비정질 유전막 및 그 제조 방법
CN102212878B (zh) * 2011-05-27 2012-11-28 华东师范大学 一种针状、蘑菇状Bi2O3纳米材料的制备方法

Also Published As

Publication number Publication date
CN104451600A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
Maruyama et al. Aluminum oxide thin films prepared by chemical vapor deposition from aluminum acetylacetonate
CN104451600B (zh) 一种氧化铋薄膜材料的制备方法
CN106757361A (zh) 基于CVD法生长MoS2二维晶体的方法
Yuan et al. Atomic layer deposition of Al-doped ZnO films using ozone as the oxygen source: a comparison of two methods to deliver aluminum
Prasadam et al. Study of VO2 thin film synthesis by atomic layer deposition
CN111020487B (zh) 一种取向可控的准一维结构材料的薄膜制备方法
CN107988586A (zh) 原子层沉积制备氧化锌纳米管的方法
CN112663144B (zh) 二维In2S3/SnS异质结晶体材料的制备方法
CN109023297A (zh) 一种大尺寸单层硒分区掺杂二硫化钨薄膜材料的制备方法
CN106068335A (zh) 锗或氧化锗的原子层沉积
EP2514720B1 (en) Preparation method of high density zinc oxide nanometer granules
WO2011141628A1 (en) A method for producing a deposit and a deposit on a surface of a silicon substrate
CN109136859A (zh) 一种制备高透光率氧化镓薄膜的方法
Chen et al. Spatial atomic layer deposition of ZnO/TiO2 nanolaminates
CN102312217A (zh) 采用复合模式生长半导体薄膜的方法及装置
CN107557756A (zh) 制备BiGaO3薄膜材料的气体脉冲序列
CN102212878B (zh) 一种针状、蘑菇状Bi2O3纳米材料的制备方法
CN110565054B (zh) 一种激光两步溅射制备CsPbBrxI3-x荧光薄膜的方法
CN115044980A (zh) 一种利用化学气相沉积法制备二硫化钼钨单晶的方法
GB2222822A (en) A method of manufacturing perovskite lead scandium tantalate thin films
CN104846333B (zh) 一种组分可控的硼碳氮薄膜的制备方法
CN106086796A (zh) 一种立方结构MgZnO薄膜及其制备方法
CN110607516A (zh) 一种单层或双层二硫化钨薄膜的制备方法
CN107475688B (zh) 用于制备BiGaO3薄膜的真空反应腔
Chaudhuri et al. A non-vacuum method for synthesis of ZnO films by thermal oxidation of ZnS films in air

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170118

Termination date: 20191204

CF01 Termination of patent right due to non-payment of annual fee