CN104411637B - γ‑2CaO·SiO2的制造方法 - Google Patents

γ‑2CaO·SiO2的制造方法 Download PDF

Info

Publication number
CN104411637B
CN104411637B CN201380034489.8A CN201380034489A CN104411637B CN 104411637 B CN104411637 B CN 104411637B CN 201380034489 A CN201380034489 A CN 201380034489A CN 104411637 B CN104411637 B CN 104411637B
Authority
CN
China
Prior art keywords
mass
2caosio
manufacture method
raw mixture
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380034489.8A
Other languages
English (en)
Other versions
CN104411637A (zh
Inventor
庄司慎
盛冈实
樋口隆行
山本贤司
吉野亮悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Publication of CN104411637A publication Critical patent/CN104411637A/zh
Application granted granted Critical
Publication of CN104411637B publication Critical patent/CN104411637B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/345Hydraulic cements not provided for in one of the groups C04B7/02 - C04B7/34
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/345Hydraulic cements not provided for in one of the groups C04B7/02 - C04B7/34
    • C04B7/3453Belite cements, e.g. self-disintegrating cements based on dicalciumsilicate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明提供碳酸化活性高、白色度高、不含有害物质、也不会妨碍水泥的凝结硬化、还能够削减烧成时的能量成本、收率也高的γ‑2CaO·SiO2的制造方法。在回转窑中以烧成温度1300~1600℃烧成原料混合物而制造γ‑2CaO·SiO2,所述原料混合物配混有使碳化钙与水反应产生乙炔之后副产的熟石灰原料、以及硅质原料,并且进行了调整而使CaO/SiO2摩尔比为1.6以上且2.0以下、总碱量为0.05质量%~1.00质量%,或使CaO/SiO2摩尔比超过2.0且为2.4以下、总碱量为0.50质量%以下。

Description

γ-2CaO·SiO2的制造方法
技术领域
本发明主要涉及可作为水泥材料利用的γ-2CaO·SiO2的制造方法。
背景技术
2CaO·SiO2已知有α型、β型、γ型等。其中,在常温下稳定的是β型和γ型。已知β型作为波兰特水泥(portland cement)的成分之一,尽管水硬性弱但仍具有水硬性。另一方面,γ型虽然不具有水硬性,但是碳酸化活性高,近年来发现了作为水泥混合材料的有用性。如此,2CaO·SiO2的β型和γ型都发现了发挥各自的特征的用途,因此若能确立控制2CaO·SiO2的晶体形态的方法,则在工业上有益。
在纯粹的2CaO-SiO2的体系中,不会生成β型的2CaO·SiO2,而会形成为γ型。作为对2CaO·SiO2的晶体形态造成影响的因素,已知有(1)第三成分的影响、(2)冷却条件的影响、(3)氧化-还原气氛等。
作为第三成分的影响,已知若混杂有一定量以上的硼、磷、钡、锶、铁、铝、钼等,则会生成β-2CaO·SiO2(非专利文献1、非专利文献2、非专利文献3)。
γ-2CaO·SiO2作为抑制水泥混凝土的中性化的掺合料使用(专利文献1),此外,也可以通过与强制碳化养护(carbonation curing)组合使用来得到高耐久混凝土(专利文献2)。
现有技术文献
非专利文献
非专利文献1:Schwiete et al.,Zem.-Kalk-Gips,Vol.21,No.9,359,1968
非专利文献2:柴田纯夫(柴田純夫)等,窑业协会志(窯業協会誌), Vol.92,No.2,71,1984
非专利文献3:Niesel et al.Tonind-Ztg.,Vol.93,No.6,197,1969
专利文献
专利文献1:日本再公表专利WO2003/016234号
专利文献2:日本特开2006-348465号公报
发明内容
发明要解决的问题
本发明提供白色度高、不含有害物质、也不会妨碍水泥的凝结硬化、还能够削减烧成时的能量成本、收率也高的γ-2CaO·SiO2的制造方法。
用于解决问题的方案
本发明人等反复进行了各种研究,结果发现,在由碳化钙产生乙炔后副产的熟石灰原料和硅质原料中,虽然微量但包含碱成分,根据CaO/SiO2摩尔比的范围进一步在原料混合物中添加碱成分来调整原料混合物中的总碱量,由此生成γ-2CaO·SiO2。而且发现,由该方法得到的γ-2CaO·SiO2的碳酸化活性高、白色度高、不含有害物质、也不妨碍水泥的凝结硬化,是有用的。
如上所述,本发明人等进行了不懈努力,关于γ-2CaO·SiO2的制造方法,发现碳酸化活性高、白色度高、不含有害物质、也不妨碍水泥的凝结硬化、也能削减烧成时的能量成本、收率也高的γ-2CaO·SiO2的制造方法,从而完成了本发明。
本发明具有以下的要旨。
1.一种γ-2CaO·SiO2的制造方法,其特征在于,在回转窑中以烧成温度1300~1600℃烧成原料混合物,所述原料混合物配混有使碳化钙与水反应产生乙炔之后副产的熟石灰原料、以及硅质原料,并且进行了调整而使CaO/SiO2摩尔比为1.6以上且2.0以下、总碱量为0.05质量%~1.00质量%,或使 CaO/SiO2摩尔比超过2.0且为2.4以下、总碱量为0.50质量%以下。
2.根据上述1所述的γ-2CaO·SiO2的制造方法,其中,回转窑的烧成带的砖为镁氧尖晶石类或高纯度氧化铝类。
3.根据上述1或2所述的γ-2CaO·SiO2的制造方法,其中,熟石灰原料含有71~74质量%的CaO、23~25质量%的烧失量(LOI)、0.5~1.5质量%的SiO2、0.2~0.35质量%的Fe2O3、0.3~0.7质量%的Al2O3、小于0.2质量%的MgO、任一者均小于0.1质量%的Na2O、K2O、以及1.0~1.5质量%的SO3
4.根据上述1~3中任一项所述的γ-2CaO·SiO2的制造方法,其中,硅质原料为硅石微粉、硅灰(silica fume)、硅藻土、或熔融石英的粉尘(dust)。
5.根据上述1~4中任一项所述的γ-2CaO·SiO2的制造方法,其中,熟石灰原料和/或硅质原料具有90质量%以上通过150μm筛的粒度。
6.根据上述1~5中任一项所述的γ-2CaO·SiO2的制造方法,其中,对原料混合物进行造粒,将得到的造粒物加料至回转窑。
7.根据上述6所述的γ-2CaO·SiO2的制造方法,其中,使用按水/原料混合物的质量比计为10~30%的水进行造粒。
8.根据上述1~7中任一项所述的γ-2CaO·SiO2的制造方法,其中,原料混合物中的碱物质为碳酸钾和/或碳酸钠。
9.根据上述1~8中任一项所述的γ-2CaO·SiO2的制造方法,其中,烧成温度为1450℃~1550℃。
发明的效果
根据本发明的γ-2CaO·SiO2的制造方法,得到的γ-2CaO·SiO2发挥碳酸化活性高、白色度高、也不会妨碍水泥的凝结硬化、还能够削减烧成时的能量成本、收率也高等效果。
具体实施方式
以下,详细说明本发明。
需要说明的是,本发明中的份、%在没有特别规定的情况下表示质量基准。
本发明中所说的γ-2CaO·SiO2是指:以CaO和SiO2为主要成分的化合物中的硅酸二钙2CaO·SiO2的一种。硅酸二钙2CaO·SiO2存在α型、α’型(αprime type)、β型、γ型。本发明涉及γ型的硅酸二钙。
本发明中,使用使碳化钙与水反应产生乙炔之后副产的熟石灰原料(氢氧化钙原料)。若使用该原料,则可得到γ型的2CaO·SiO2。即使使用试剂氢氧化钙、其它可作为工业原料而获得的熟石灰,也得不到本发明的γ-2CaO·SiO2
使碳化钙与水反应产生乙炔之后副产的熟石灰的成分按对副产的熟石灰进行加热处理后的氧化物基准计,包含71~74%左右的CaO、23~25%左右的烧失量(LOI)、0.5~1.5%左右的SiO2、0.2~0.35%左右的Fe2O3、0.3~0.7%左右的Al2O3、小于0.2%的MgO、任一者均小于0.1%的Na2O、K2O、1.0~1.5%左右的SO3
本发明中,除了使用使碳化钙与水反应产生乙炔之后副产的熟石灰原料(CaO原料)之外,还使用硅质原料(SiO2原料)。
对硅质原料(SiO2原料)没有特别限定,可以使用硅石微粉、硅灰、硅藻土、熔融石英的粉尘等。为了得到γ-2CaO·SiO2,杂质的存在也有有利的一面。
其中,本发明中,即使使用高纯度的硅质原料(SiO2原料),通过使用使碳化钙与水反应产生乙炔之后副产的熟石灰原料,也可得到γ-2CaO·SiO2
本发明中,总碱量意味着原料混合物中所含的Na2O、K2O、Li2O的含量(质量%)。
对碱物质没有特别限定,可以使用碳酸钾、碳酸钠等。
对热处理方法没有特别限定。可以使用回转窑、电炉、隧道炉、竖式窑、流化床式焚烧炉等。其中,从连续操作、性价比的观点出发,需要选择回转窑。
烧成温度为1300℃~1600℃、优选为1400℃~1550℃、更优选为1450~1550℃。低于1300℃时,有时效率变差、成为生烧,超过1600℃时,发生熔融,不仅操作变得困难,而且变得容易附着结皮(coating),有时收率降低。此处所说的烧成温度是指最高温度,回转窑的情况下,是指烧成带的温度。
本发明中,需要将原料混合物的CaO/SiO2摩尔比调整为1.6~2.4。调整为1.6以上且2.0以下时,需要将总碱量设为0.05%以上且1.00%以下,优选设为0.10%以上且0.95%以下。另外,将原料混合物的CaO/SiO2摩尔比调整为超过2.0且为2.4以下时,需要将总碱量设为0.50%以下,优选设为0.40%以下,也可以为0%。
原料混合物的CaO/SiO2摩尔比低于1.6时,副产α型的硅灰石、硅钙石,γ-2CaO·SiO2的含有率变低。原料混合物的CaO/SiO2摩尔比超过2.4时,副产3CaO·SiO2、游离石灰,γ-2CaO·SiO2的含有率仍然变低。
熟石灰原料和硅质原料的粒度优选调整为使150μm通过率为90%以上,更优选调整为使100μm通过率为90%以上。原料的粒度没有细至前述范围时,存在γ-2CaO·SiO2的纯度变差的倾向。具体而言,游离石灰、不溶性残余成分变多。
本发明中,优选对调配得到的原料混合物进行造粒。若对原料混合物进行造粒,则γ-2CaO·SiO2的生成反应变得容易进行,能量成本能够削减,而且纯度变高。
对造粒后的形状没有特别限定,在进行回转窑中的烧成时,优选为球形。另外,对造粒物的大小也没有特别限定,直径优选为1cm~10cm、更优选为 3cm~7cm。
造粒是指将调配得到的原料混合物成型为丸子状的操作。作为其方法,可列举出:在圆盘型的转鼓中投入原料混合物和水进行造粒的方法、在模具中加入原料混合物并进行加压成形的、使用所谓造粒机的方法等。造粒时所使用的水的用量优选按水/原料混合物的质量比计为10~30%、更优选为15~25%。水的用量小于10%时,经造粒的原料混合物容易崩解,原料混合物被集尘而有时收率变差,有时在回转窑中的烧成时烧成反应未充分进行。另外,水的用量超过30%时,造粒后的原料混合物中的水分多,仍然容易崩解,有时在回转窑中的烧成时烧成反应未充分进行。另外,由于原料混合物中包含较多的水,因此,为了将其蒸发而需要较多的烧成能量,因而不仅不经济,此外,环境负荷也变大,故不优选。
本发明中,进行烧成时,作为烧成带的砖,优选使用镁氧尖晶石类或高纯度氧化铝类。使用非镁氧尖晶石类或高纯度氧化铝类的、例如二氧化硅-氧化铝砖、氧化镁的砖时,难以稳定地制造γ-2CaO·SiO2,有时β-2CaO·SiO2的混杂变得明显。
此处,作为镁氧尖晶石类砖、高纯度氧化铝类砖,分别可例示出JIS R 2302的氧化镁的砖、JIS R 2305的高氧化铝质的耐火砖。
本发明中,在热处理后进行冷却操作,对冷却条件没有特别限定,只要不进行特殊的骤冷操作即可。具体而言,依照通常的波特兰水泥熟料的冷却条件的方法即可,例如在回转窑中烧成后在大气环境下通过冷却器等来进行冷却即可。
以下,列举出实施例、比较例来更详细地说明内容,但本发明不限定于这些例子。
实施例
[实验例1]
调配各种熟石灰原料和硅质原料而使得CaO/SiO2摩尔比为1.6~2.4。用造粒机将该调配原料混合物造粒成球状(直径4cm)。此时,加入相对于粉体为20%的水。在回转窑中对造粒物进行热处理。关于烧成温度,在燃烧器的烧成温度为1450℃下进行。需要说明的是,烧成带的砖使用镁氧尖晶石砖。对得到的烧成物进行分析,结果如表1所示。
<使用材料>
熟石灰原料:使碳化钙与水反应产生乙炔之后副产的熟石灰,按对副产的熟石灰进行加热处理后的氧化物基准计,CaO为73.1%、MgO为0.07%、Al2O3为0.55%、Fe2O3为0.28%、SiO2为0.95%、SO3为1.31%、Na2O为0.03%、K2O为0.02%、烧失量为23.80%。150μm通过率99.5%、100μm通过率96.9%。
硅质原料:硅石微粉末,市售品,SiO2为97.05%、Al2O3为1.89%、Na2O为0.06%、K2O为0.14%、烧失量为0.49%,平均粒径7.8μm,150μm通过率100%、100μm通过率100%。
水:自来水
烧成带的砖:镁氧尖晶石砖,MgO含量为80%且Al2O3含量为20%。
回转窑:入口外径1m、出口外径1.2m、长度25m
<测定方法>
化合物的鉴定:利用粉末X射线衍射法鉴定化合物。
色的观察:通过目视判定白色程度。在200勒克斯的照度的室内进行观察,观察调整为勃氏比表面积为3000±100cm2/g的粉末的白色程度。白色时记为○、黄色时记为△、褐色时记为×。
[表1]
S:Strong,以较强的衍射峰检出。
W:Weak,以微弱的衍射峰检出。
[实验例2]
添加碳酸钾并使总碱量相对于原料混合物如表2所示那样地变化,除此之外,与实验例1同样进行。将结果示于表2。
[表2]
S:Strong,以较强的衍射峰检出。
W:Weak,以微弱的衍射峰检出。
[实验例3]
除了使烧成温度如表3所示那样变化之外,与实验例1同样进行。将结果示于表3。
[表3]
S:Strong,以较强的衍射峰检出。
W:Weak,以微弱的衍射峰检出。
[实验例4]
除了将烧成带的砖如表4所示那样变化之外,与实验例1同样地进行。将结果示于表4。
<使用材料>
高纯度氧化铝质砖:Al2O3含量为95%以上。
二氧化硅-氧化铝砖:SiO2含量为30%且Al2O3含量为70%。
[表4]
产业上的可利用性
根据本发明的γ-2CaO·SiO2的制造方法,为碳酸化活性高、白色度高、也不会妨碍水泥的凝结硬化、还能够削减烧成时的能量成本、收率也高的γ-2CaO·SiO2的制造方法,因此能够在水泥领域等中广泛利用。
另外,将2012年6月27日申请的日本特许出愿2012-143769号的说明书、权利要求书以及摘要的全部内容援引至此,作为本发明的说明书的公开内容而并入。

Claims (8)

1.一种γ-2CaO·SiO2的制造方法,其特征在于,在回转窑中以烧成温度1300℃~1600℃烧成原料混合物,所述原料混合物配混有使碳化钙与水反应产生乙炔之后副产的熟石灰原料、以及硅质原料,并且进行了调整而使CaO/SiO2摩尔比为1.6以上且2.0以下、总碱量为0.10质量%~1.00质量%,或使CaO/SiO2摩尔比超过2.2且为2.4以下、总碱量为0.50质量%以下,
其中,熟石灰原料含有71~74质量%的CaO、23~25质量%的烧失量、0.5~1.5质量%的SiO2、0.2~0.35质量%的Fe2O3、0.3~0.7质量%的Al2O3、小于0.2质量%的MgO、任一者均小于0.1质量%的Na2O、K2O、以及1.0~1.5质量%的SO3
总碱量意味着原料混合物中所含的以质量%计的Na2O、K2O、Li2O的含量。
2.根据权利要求1所述的γ-2CaO·SiO2的制造方法,其中,回转窑的烧成带的砖为镁氧尖晶石类或高纯度氧化铝类。
3.根据权利要求1或2所述的γ-2CaO·SiO2的制造方法,其中,硅质原料为硅石微粉、硅灰、硅藻土、或熔融石英的粉尘。
4.根据权利要求1或2所述的γ-2CaO·SiO2的制造方法,其中,熟石灰原料和/或硅质原料具有90质量%以上通过150μm筛的粒度。
5.根据权利要求1或2所述的γ-2CaO·SiO2的制造方法,其中,对原料混合物进行造粒,将得到的造粒物加料至回转窑。
6.根据权利要求5所述的γ-2CaO·SiO2的制造方法,其中,使用按水/原料混合物的质量比计为10~30%的水进行造粒。
7.根据权利要求1或2所述的γ-2CaO·SiO2的制造方法,其中,原料混合物中的碱物质为碳酸钾和/或碳酸钠。
8.根据权利要求1或2所述的γ-2CaO·SiO2的制造方法,其中,烧成温度为1450℃~1550℃。
CN201380034489.8A 2012-06-27 2013-06-06 γ‑2CaO·SiO2的制造方法 Active CN104411637B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012-143769 2012-06-27
JP2012143769 2012-06-27
PCT/JP2013/065731 WO2014002727A1 (ja) 2012-06-27 2013-06-06 γ-2CaO・SiO2の製造方法

Publications (2)

Publication Number Publication Date
CN104411637A CN104411637A (zh) 2015-03-11
CN104411637B true CN104411637B (zh) 2017-04-12

Family

ID=49782893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380034489.8A Active CN104411637B (zh) 2012-06-27 2013-06-06 γ‑2CaO·SiO2的制造方法

Country Status (3)

Country Link
JP (1) JP6057389B2 (zh)
CN (1) CN104411637B (zh)
WO (1) WO2014002727A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467382B (zh) * 2018-10-24 2021-05-04 武汉理工大学 一种基于γ-C2S的导电材料及其制备方法
CN109694224B (zh) * 2018-12-19 2021-10-22 武汉理工大学 一种梯度结构高耐久混凝土制品及其制备方法
JP6967178B1 (ja) * 2020-04-17 2021-11-17 デンカ株式会社 セメント混和材及びセメント組成物
JP7026741B1 (ja) * 2020-08-18 2022-02-28 デンカ株式会社 セメント混和材、及びセメント組成物
JP2023061713A (ja) * 2021-10-20 2023-05-02 デンカ株式会社 Co2固定化材及びco2固定化物の製造方法
WO2023153259A1 (ja) * 2022-02-10 2023-08-17 デンカ株式会社 セメント、セメント組成物、セメント硬化物、及びセメント硬化物の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063782A1 (ja) * 2010-11-11 2012-05-18 電気化学工業株式会社 β-2CaO・SiO2の製造方法
CN103764562A (zh) * 2011-08-25 2014-04-30 电气化学工业株式会社 γ-2CaO·SiO2的制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217013A (ja) * 1985-07-11 1987-01-26 Onoda Cement Co Ltd γ型珪酸二石灰粉末の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063782A1 (ja) * 2010-11-11 2012-05-18 電気化学工業株式会社 β-2CaO・SiO2の製造方法
CN103764562A (zh) * 2011-08-25 2014-04-30 电气化学工业株式会社 γ-2CaO·SiO2的制造方法

Also Published As

Publication number Publication date
JPWO2014002727A1 (ja) 2016-05-30
WO2014002727A1 (ja) 2014-01-03
CN104411637A (zh) 2015-03-11
JP6057389B2 (ja) 2017-01-11

Similar Documents

Publication Publication Date Title
CN104411637B (zh) γ‑2CaO·SiO2的制造方法
TW422823B (en) Method of producing synthetic silicates and use thereof in glass production
KR20140066714A (ko) 테르네사이트 제조 방법
JP2019507098A (ja) 白色炭酸化可能なケイ酸カルシウム系セメント並びにその製造方法及び使用
CN102791648A (zh) 水泥熟料烧成物及其制造方法
CN102690068A (zh) 水泥熟料的制造方法
KR20120116896A (ko) 칼슘설포알루미네이트계 클링커 조성물,이를 포함하는 시멘트 및 이의 제조방법
CN103764562B (zh) γ-2CaO·SiO2的制造方法
CN103328383B (zh) β-2CaO·SiO2的制造方法
JP7462664B2 (ja) ガラスの製造方法、および工業用ガラス製造設備
CN103209925B (zh) β-2CaO·SiO2的制造方法
JPS63218509A (ja) カルシウム化合物を個体および気体化合物に転化する方法
JP2018002547A (ja) カルシウムアルミネートの製造方法
JP5867929B2 (ja) γ−2CaO・SiO2の製造方法
US6740157B2 (en) Method for cement clinker production using vitrified slag
AU2022368094A1 (en) METHOD FOR PRODUCING CALCINED PRODUCT CONTAINING γ-2CAO∙SIO2
JPS5913457B2 (ja) カルシアクリンカ−の製造法
JP2005281075A (ja) アルミナ質人工骨材の製造方法及びアルミナ質人工骨材
US2287455A (en) Corrected basic refractory
KR20200087622A (ko) 석고를 시멘트 원료로 이용하는 방법
WO2020128077A1 (en) Versatile method for preparing carbonatable clinker materials
PL239948B1 (pl) Sposób otrzymywania wysokoogniotrwałego klinkieru magnezjowego modyfikowanego związkami cyrkonu
PL236014B1 (pl) Sposób otrzymywania kruszywa ogniotrwałego
KR20000040777A (ko) 해수 탈탄산 슬러지로부터 생석회 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant