CN104393093A - High-detectivity gallium-nitride-based Schottky ultraviolet detector using graphene - Google Patents

High-detectivity gallium-nitride-based Schottky ultraviolet detector using graphene Download PDF

Info

Publication number
CN104393093A
CN104393093A CN201410641038.7A CN201410641038A CN104393093A CN 104393093 A CN104393093 A CN 104393093A CN 201410641038 A CN201410641038 A CN 201410641038A CN 104393093 A CN104393093 A CN 104393093A
Authority
CN
China
Prior art keywords
gallium nitride
graphene
type gallium
lightly doped
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410641038.7A
Other languages
Chinese (zh)
Other versions
CN104393093B (en
Inventor
徐晨
许坤
孙捷
邓军
朱彦旭
解意洋
荀孟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201410641038.7A priority Critical patent/CN104393093B/en
Publication of CN104393093A publication Critical patent/CN104393093A/en
Application granted granted Critical
Publication of CN104393093B publication Critical patent/CN104393093B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F30/00Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
    • H10F30/20Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
    • H10F30/21Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
    • H10F30/22Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
    • H10F30/227Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a Schottky barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass

Landscapes

  • Light Receiving Elements (AREA)

Abstract

应用石墨烯的高探测率氮化镓基肖特基型紫外探测器,其基本结构从下往上依次为重掺杂n型氮化镓、轻掺杂n型氮化镓、二氧化硅绝缘层、金属电极、石墨烯薄膜。金属电极拥有透明、导电的性质,并且拥有半金属性。在和轻掺杂n型GaN直接接触的情况下,能形成大约0.5ev的势垒。形成之势垒表现为接近金属电极的GaN内部能带弯曲,形成空间电荷区可以进行分离电子空穴,从而产生光生电动势和光生电流。通过引入表面缺陷的方法可以大大提高探测器的响应度。这一结构工艺简单,效率高;从而增加电子空穴对的分离能力,增大探测器内量子效率,增大探测率和响应度。

The high detection rate gallium nitride-based Schottky type ultraviolet detector using graphene, its basic structure from bottom to top is heavily doped n-type gallium nitride, lightly doped n-type gallium nitride, silicon dioxide insulating layers, metal electrodes, and graphene films. Metal electrodes are transparent, conductive, and semi-metallic. In the case of direct contact with lightly doped n-type GaN, a potential barrier of about 0.5 eV can be formed. The formed potential barrier shows that the internal energy band of GaN close to the metal electrode bends, and the space charge region can be formed to separate electrons and holes, thereby generating photoelectromotive force and photocurrent. The responsivity of the detector can be greatly improved by introducing surface defects. This structure has a simple process and high efficiency; thereby increasing the separation ability of electron-hole pairs, increasing the quantum efficiency in the detector, and increasing the detection rate and responsivity.

Description

应用石墨烯的高探测率氮化镓基肖特基型紫外探测器High detection rate GaN-based Schottky ultraviolet detector using graphene

技术领域technical field

本发明涉及一种新型的氮化镓基肖特基型紫外探测器结构和制备方式,属于半导体光电子器件技术领域。The invention relates to a novel GaN-based Schottky type ultraviolet detector structure and preparation method, belonging to the technical field of semiconductor optoelectronic devices.

背景技术Background technique

紫外探测技术有诸多应用,可用于聚合材料树脂固化、水净化处理、火焰探测、生物效应、及环境污染监视以及紫外光存储等。在紫外光电探测器件方面,GaN材料有着优良的性能:(1)GaN不吸收可见光,制成的紫外探测器可以做到可见光盲,不需要滤光系统.(2)不需要做成浅结,这样可以大大提高量子效率.(3)GaN的抗辐射能力很强,可以在探索宇宙奥秘方面发挥作用。GaN紫外探测器目前主要分为以下几种:如光电导型、pn结型、pin型、肖特基结型、MSM型、异质结型。其中GaN基肖特基结构紫外探测器由于有较高的响应度、较快的响应速度、工艺简单、光敏面大而受到很大重视。There are many applications of ultraviolet detection technology, which can be used for resin curing of polymeric materials, water purification treatment, flame detection, biological effects, and environmental pollution monitoring and ultraviolet light storage. In terms of ultraviolet photodetection devices, GaN materials have excellent performance: (1) GaN does not absorb visible light, and the ultraviolet detectors made can be blinded to visible light and do not require a filter system. (2) No need to make shallow junctions, This can greatly improve the quantum efficiency. (3) GaN has strong anti-radiation ability and can play a role in exploring the mysteries of the universe. GaN ultraviolet detectors are currently mainly divided into the following types: such as photoconductive type, pn junction type, pin type, Schottky junction type, MSM type, and heterojunction type. Among them, the GaN-based Schottky structure ultraviolet detector has received great attention because of its high responsivity, fast response speed, simple process, and large photosensitive surface.

肖特基型紫外探测器是利用半透明金属和GaN半导体形成的肖特基结来工作。由于半透明金属与GaN形成肖特基结后,半导体的能带在靠近金属的区域发生弯曲。以Ni/Au-nGaN肖特基结为例,由于金属的功函数较高,半导体的功函数较低,半导体的能带靠近金属的部分向上弯曲,而这一部分靠近半导体的表面。当紫外光照射到半导体表面时,会在半导体表面产生光吸收,产生电子空穴对,电子空穴对在这一区域即空间电荷区,由于能带的弯曲发生分离,产生光生电流或者光生电动势。Schottky UV detectors work by using a Schottky junction formed of semi-transparent metal and GaN semiconductor. After the Schottky junction is formed between the translucent metal and GaN, the energy band of the semiconductor bends near the metal. Taking the Ni/Au-nGaN Schottky junction as an example, due to the higher work function of the metal and the lower work function of the semiconductor, the energy band of the semiconductor is bent upward near the part of the metal, and this part is close to the surface of the semiconductor. When ultraviolet light is irradiated on the semiconductor surface, light absorption will occur on the semiconductor surface, and electron-hole pairs will be generated. The electron-hole pairs will be separated in this region, that is, the space charge region, due to the bending of the energy band, resulting in photogenerated current or photoelectromotive force. .

传统的肖特基型器件以采用半透明金属为主,但通常作为肖特基接触的半透明金属Ni/Au(2nm/2nm)在300nm处透光率仅约为60%,对探测率影响非常严重。有研究表明,金属每增加1nm,其透光率下降10%。而且金属的功函数固定,很难改变,目前只有改变金属材料是最为有效的办法。但是即使目前最为理想的金属材料仍然不理想。我们在制作此器件中发现,器件表面缺陷可以大大提高器件的响应度(A/W),而探测率保持不变或者略有提高。Traditional Schottky-type devices mainly use semi-transparent metals, but the translucent metal Ni/Au (2nm/2nm) usually used as a Schottky contact has a light transmittance of only about 60% at 300nm, which affects the detection rate. very serious. Studies have shown that for every 1nm increase in metal, the light transmittance decreases by 10%. Moreover, the work function of metal is fixed and difficult to change. At present, only changing the metal material is the most effective way. But even the most ideal metal materials are still not ideal. We found in the fabrication of this device that surface defects of the device can greatly increase the responsivity (A/W) of the device, while the detection rate remains unchanged or slightly increased.

发明内容Contents of the invention

本发明的目的在于提供一种提高肖特基型紫外探测器的结构及其制备方法。将石墨烯这一新材料合理应用到这一探测器结构中,提高窗口的透光率,提高肖特基势垒以增强其分离电子空穴的能力。从而提高肖特基型探测器的探测性能。The object of the present invention is to provide an improved structure of the Schottky type ultraviolet detector and a preparation method thereof. Graphene, a new material, is rationally applied to this detector structure to increase the light transmittance of the window and increase the Schottky barrier to enhance its ability to separate electrons and holes. Therefore, the detection performance of the Schottky detector is improved.

本发明提供的一种肖特基型紫外探测器的结构,其基本结构从下往上依次为:重掺杂n型氮化镓101、轻掺杂n型氮化镓102、二氧化硅绝缘层103、金属电极104、石墨烯薄膜105。The structure of a Schottky type ultraviolet detector provided by the present invention, its basic structure is as follows from bottom to top: heavily doped n-type gallium nitride 101, lightly doped n-type gallium nitride 102, silicon dioxide insulating Layer 103, metal electrode 104, graphene film 105.

本发明中金属电极104拥有透明、导电的性质,并且拥有半金属性,本征情况下功函数为4.5ev。在和轻掺杂n型GaN直接接触的情况下,能形成大约0.5ev的势垒。形成之势垒表现为接近金属电极104的GaN内部能带弯曲,形成空间电荷区,可以进行分离电子空穴,从而产生光生电动势和光生电流。单层石墨烯的透光率为97.7%,远远高于半金属层(60%)。单层石墨烯的方阻典型值为300-1000欧姆/方块,虽然这一值大于半透明金属层(10-30欧姆/方块),但是对于此种紫外探测器,一般应用在反向的情况下,导电层的方阻对其探测性能影响并不大。通过引入表面缺陷的方法可以大大提高探测器的响应度。In the present invention, the metal electrode 104 is transparent, conductive, and semi-metallic, and its intrinsic work function is 4.5 eV. In the case of direct contact with lightly doped n-type GaN, a potential barrier of about 0.5 eV can be formed. The formed potential barrier shows that the internal energy band of GaN close to the metal electrode 104 bends to form a space charge region, which can separate electrons and holes, thereby generating photoelectromotive force and photocurrent. The light transmittance of single-layer graphene is 97.7%, which is much higher than that of semi-metal layer (60%). The typical value of the square resistance of single-layer graphene is 300-1000 ohms/square, although this value is greater than that of the translucent metal layer (10-30 ohms/square), but for this kind of ultraviolet detector, it is generally used in the reverse situation The square resistance of the conductive layer has little effect on its detection performance. The responsivity of the detector can be greatly improved by introducing surface defects.

本发明提供了一种肖特基型石墨烯-GaN基紫外探测器及其制备方法,The invention provides a Schottky-type graphene-GaN-based ultraviolet detector and a preparation method thereof,

步骤1、采用金属有机化学气相沉积(或者分子束外延系统、液相外延技术等技术)在蓝宝石(或者硅片、碳化硅等衬底)依次制作重掺杂n型氮化镓101,厚度为1-2微米;轻掺杂n型氮化镓102,厚度为300-800纳米。Step 1. Use metal-organic chemical vapor deposition (or molecular beam epitaxy system, liquid phase epitaxy technology, etc.) to sequentially fabricate heavily doped n-type gallium nitride 101 on sapphire (or silicon wafer, silicon carbide, etc. substrate), with a thickness of 1-2 microns; lightly doped n-type gallium nitride 102, with a thickness of 300-800 nanometers.

步骤2、使用电感耦合等离子体刻蚀刻蚀外延片表面,刻蚀深度为10-50nm,增加外延片表面缺陷密度。亦或通过表面腐蚀、离子注入等方式增加外延片表面缺陷密度。Step 2, using inductively coupled plasma etching to etch the surface of the epitaxial wafer, the etching depth is 10-50 nm, and increasing the defect density on the surface of the epitaxial wafer. Or increase the surface defect density of the epitaxial wafer by means of surface etching and ion implantation.

步骤3、将外延片清洗,光刻,腐蚀,形成台面结构,即重掺杂n型氮化镓101、轻掺杂n型氮化镓102。Step 3: Clean the epitaxial wafer, perform photolithography, and etch to form a mesa structure, that is, heavily doped n-type GaN 101 and lightly doped n-type GaN 102 .

步骤4、生长一层二氧化硅,在102之上,并进行光刻、腐蚀,形成二氧化硅绝缘层103,厚度为100-500纳米。Step 4, growing a layer of silicon dioxide on top of 102, and performing photolithography and etching to form a silicon dioxide insulating layer 103 with a thickness of 100-500 nanometers.

步骤5、光刻电极图形,溅射或者蒸发制作金属电极104(Ti/Au,Cr/Au),厚度为15-50/30-3000纳米,在二氧化硅绝缘层103之上,即二氧化硅绝缘层103在轻掺杂n型氮化镓102、金属电极104中间。Step 5, photolithographic electrode patterns, sputtering or evaporation to make metal electrodes 104 (Ti/Au, Cr/Au), with a thickness of 15-50/30-3000 nanometers, on the silicon dioxide insulating layer 103, that is, the silicon dioxide The silicon insulating layer 103 is between the lightly doped n-type gallium nitride 102 and the metal electrode 104 .

步骤6、转移石墨烯至器件表面,层数为1-10层,光刻石墨烯图形,等离子体刻蚀石墨烯,形成石墨烯薄膜105。等离子体刻蚀气体为氧气,流量为10-70L/min,功率为50-100W,刻蚀时间30s-600s。Step 6. Transfer graphene to the surface of the device, the number of layers is 1-10, photolithographically etch the graphene pattern, and plasma etch the graphene to form a graphene film 105 . The plasma etching gas is oxygen, the flow rate is 10-70L/min, the power is 50-100W, and the etching time is 30s-600s.

步骤7、将减薄外延片衬底,激光切割,裂片。Step 7. Thinning the epitaxial wafer substrate, laser cutting, and splitting.

其中步骤5与步骤6可以互换。Wherein step 5 and step 6 can be interchanged.

与现有技术相比,本发明具有如下有益效果。Compared with the prior art, the present invention has the following beneficial effects.

1、石墨烯-氮化镓紫外探测器主要包括两部分,一部分为氮化镓材料,另一部分为石墨烯薄膜。利用石墨烯的半金属性,与氮化镓结合,形成肖特基结,从而形成内建电势场,在氮化镓吸收光子之后在氮化镓表面附近产生电子空穴对,内建电势场把电子空穴对分离,从而形成光电流和内建电势差。这一结构工艺简单,效率高;1. The graphene-gallium nitride ultraviolet detector mainly consists of two parts, one part is gallium nitride material, and the other part is graphene film. Using the semi-metallic nature of graphene, it combines with gallium nitride to form a Schottky junction, thereby forming a built-in electric potential field. After gallium nitride absorbs photons, electron-hole pairs are generated near the surface of gallium nitride, and the built-in electric potential field The electron-hole pair is separated, thereby forming a photocurrent and a built-in potential difference. This structure has simple process and high efficiency;

2、在技术背景中提到,金属难以改变共函数,而共函数是影响此类器件的重要因素。石墨烯是一种单原子层材料,通过化学修饰等方法很容易使其共函数改变。共函数改变可以增强内建电势场,从而增加电子空穴对的分离能力,增大探测器内量子效率,增大探测率和响应度。2. As mentioned in the technical background, it is difficult for metals to change the co-function, and the co-function is an important factor affecting such devices. Graphene is a single atomic layer material, and its co-function can be easily changed by chemical modification and other methods. The change of co-function can enhance the built-in potential field, thereby increasing the separation ability of electron-hole pairs, increasing the quantum efficiency in the detector, and increasing the detection rate and responsivity.

3、实验发现,通过增加器件表面损伤,可以增加器件响应度,但是随着漏电流也有所增加。通过计算,器件的探测率并没有下降,反而有所上升。3. The experiment found that by increasing the surface damage of the device, the device responsivity can be increased, but the leakage current also increases. Through calculation, the detection rate of the device did not decrease, but increased.

附图说明Description of drawings

图1为石墨烯-氮化镓肖特基紫外探测器示意图。Figure 1 is a schematic diagram of a graphene-gallium nitride Schottky ultraviolet detector.

图2为石墨烯-氮化镓肖特基紫外探测器光暗I-V曲线。Figure 2 is the light-dark I-V curve of the graphene-gallium nitride Schottky ultraviolet detector.

图3为石墨烯-表面侵蚀氮化镓肖特基紫外探测器光暗I-V曲线。Figure 3 is the light-dark I-V curve of the graphene-surface eroded gallium nitride Schottky ultraviolet detector.

图中:101、重掺杂n型氮化镓;102、轻掺杂n型氮化镓;103、二氧化硅绝缘层;104、金属电极;105、石墨烯薄膜。In the figure: 101, heavily doped n-type gallium nitride; 102, lightly doped n-type gallium nitride; 103, silicon dioxide insulating layer; 104, metal electrode; 105, graphene film.

具体实施方式Detailed ways

以下结合附图和实施例对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.

如图1所示,一种肖特基型紫外探测器的结构,其基本结构从下往上依次为重掺杂n型氮化镓101、轻掺杂n型氮化镓102、二氧化硅绝缘层103、金属电极104、石墨烯薄膜105。As shown in Figure 1, the structure of a Schottky type ultraviolet detector, its basic structure from bottom to top is heavily doped n-type gallium nitride 101, lightly doped n-type gallium nitride 102, silicon dioxide An insulating layer 103, a metal electrode 104, and a graphene film 105.

其制作工艺方法如下例所示。Its manufacturing process is shown in the example below.

实施例1Example 1

步骤1、采用金属有机化学气相沉积(或者分子束外延系统、液相外延技术等技术)在蓝宝石(或者硅片、碳化硅等衬底)依次制作重掺杂n型氮化镓101、轻掺杂n型氮化镓102。Step 1. Use metal-organic chemical vapor deposition (or molecular beam epitaxy system, liquid phase epitaxy technology, etc.) to sequentially fabricate heavily doped n-type gallium nitride 101, lightly doped hetero n-type gallium nitride 102 .

步骤2、将外延片清洗,光刻,腐蚀,形成台面结构,如重掺杂n型氮化镓101、轻掺杂n型氮化镓102。Step 2, cleaning the epitaxial wafer, photolithography, and etching to form a mesa structure, such as heavily doped n-type GaN 101 and lightly doped n-type GaN 102 .

步骤3、生长一层二氧化硅,并进行光刻、腐蚀,形成二氧化硅绝缘层103。Step 3, growing a layer of silicon dioxide, and performing photolithography and etching to form a silicon dioxide insulating layer 103 .

步骤4、光刻电极图形,溅射或者蒸发制作金属电极104。Step 4, photoetching the electrode pattern, sputtering or evaporating to make the metal electrode 104 .

步骤5、转移石墨烯至器件表面,光刻石墨烯图形,等离子体刻蚀石墨烯,形成石墨烯薄膜105。等离子体刻蚀气体为氧气,流量为10-70L/min,功率为50-100W,刻蚀时间30s-600s。石墨烯与氮化镓接触区域,即光敏区域大小为1×1mm2Step 5, transfer the graphene to the surface of the device, photolithographically etch the graphene pattern, and plasma etch the graphene to form a graphene film 105 . The plasma etching gas is oxygen, the flow rate is 10-70L/min, the power is 50-100W, and the etching time is 30s-600s. The contact area between graphene and gallium nitride, that is, the photosensitive area has a size of 1×1mm 2 .

步骤6、将减薄外延片衬底,激光切割,裂片。Step 6. Thinning the epitaxial wafer substrate, laser cutting, and splitting.

经过中科院半导体所紫外探测测试系统测试,365nm波长响应度为0.18A/W。相应谱见附图2。After the test of the ultraviolet detection and testing system of the Institute of Semiconductors, Chinese Academy of Sciences, the 365nm wavelength responsivity is 0.18A/W. The corresponding spectra are shown in Figure 2.

经过测试在5.6w/cm2,主波长254nm的平行紫外光照射下,在-6V时比探测率为1.05e12cm Hz1/2W-1After testing, the specific detectivity is 1.05e12cm Hz 1/2 W -1 at -6V under the irradiation of parallel ultraviolet light of 5.6w/cm 2 and main wavelength of 254nm.

实施例2Example 2

步骤1、采用金属有机化学气相沉积(或者分子束外延系统、液相外延技术等技术)在蓝宝石(或者硅片、碳化硅等衬底)依次制作重掺杂n型氮化镓101,轻掺杂n型氮化镓102。Step 1. Use metal-organic chemical vapor deposition (or molecular beam epitaxy system, liquid phase epitaxy technology, etc.) to sequentially fabricate heavily doped n-type GaN 101 on sapphire (or silicon wafer, silicon carbide, etc. substrates), lightly doped hetero n-type gallium nitride 102 .

步骤2、使用电感耦合等离子体刻蚀刻蚀外延片表面,刻蚀深度为10-50nm,增加外延片表面缺陷密度。Step 2, using inductively coupled plasma etching to etch the surface of the epitaxial wafer, the etching depth is 10-50 nm, and increasing the defect density on the surface of the epitaxial wafer.

步骤3、将外延片清洗,光刻,腐蚀,形成台面结构,如重掺杂n型氮化镓101、轻掺杂n型氮化镓102。Step 3: Clean the epitaxial wafer, perform photolithography, and etch to form a mesa structure, such as heavily doped n-type GaN 101 and lightly doped n-type GaN 102 .

步骤4、生长一层二氧化硅,并进行光刻、腐蚀,形成二氧化硅绝缘层103。Step 4, growing a layer of silicon dioxide, and performing photolithography and etching to form a silicon dioxide insulating layer 103 .

步骤5、光刻电极图形,溅射或者蒸发制作金属电极104。Step 5, photoetching the electrode pattern, sputtering or evaporating to make the metal electrode 104 .

步骤6、转移石墨烯至器件表面,光刻石墨烯图形,等离子体刻蚀石墨烯,形成石墨烯薄膜105。等离子体刻蚀气体为氧气,流量为10-70L/min,功率为50-100W,刻蚀时间30s-600s。石墨烯与氮化镓接触区域,即光敏区域大小为1×1mm2Step 6, transfer the graphene to the surface of the device, photolithographically etch the graphene pattern, and plasma etch the graphene to form a graphene film 105 . The plasma etching gas is oxygen, the flow rate is 10-70L/min, the power is 50-100W, and the etching time is 30s-600s. The contact area between graphene and gallium nitride, that is, the photosensitive area has a size of 1×1mm 2 .

步骤7、将减薄外延片衬底,激光切割,裂片。Step 7. Thinning the epitaxial wafer substrate, laser cutting, and splitting.

经过测试在5.6w/cm2,主波长254nm的平行紫外光照射下,在-6V时响应度为357A/W。比探测率为1.07e12cm Hz1/2W-1。相应谱见附图3。After testing, the responsivity is 357A/W at -6V under the irradiation of 5.6w/cm 2 parallel ultraviolet light with a dominant wavelength of 254nm. The specific detectivity is 1.07e12cm Hz 1/2 W -1 . The corresponding spectra are shown in Figure 3.

Claims (2)

1.一种应用石墨烯的高探测率氮化镓基肖特基型紫外探测器,其特征在于:该激光器的基本结构从下往上依次为重掺杂n型氮化镓(101)、轻掺杂n型氮化镓(102)、二氧化硅绝缘层(103)、金属电极(104)、石墨烯薄膜(105)。1. A high detection rate gallium nitride-based Schottky type ultraviolet detector using graphene, characterized in that: the basic structure of the laser is successively heavily doped n-type gallium nitride (101), lightly doped n-type gallium nitride (102), a silicon dioxide insulating layer (103), a metal electrode (104), and a graphene film (105). 2.一种应用石墨烯的高探测率氮化镓基肖特基型紫外探测器的制备方法,其特征在于:该方法的实施流程如下,2. A preparation method of a high detection rate GaN-based Schottky type ultraviolet detector using graphene, characterized in that: the implementation process of the method is as follows, 步骤1、采用金属有机化学气相沉积或者分子束外延系统或液相外延在蓝宝石或者硅片或者碳化硅上依次制作重掺杂n型氮化镓(101),厚度为1-2微米;轻掺杂n型氮化镓(102),厚度为300-800纳米;Step 1. Use metal-organic chemical vapor deposition or molecular beam epitaxy system or liquid phase epitaxy to sequentially fabricate heavily doped n-type gallium nitride (101) on sapphire or silicon wafer or silicon carbide, with a thickness of 1-2 microns; lightly doped hetero n-type gallium nitride (102), with a thickness of 300-800 nanometers; 步骤2、使用电感耦合等离子体刻蚀刻蚀外延片表面,刻蚀深度为10-50nm,增加外延片表面缺陷密度;亦或通过表面腐蚀、离子注入方式增加外延片表面缺陷密度;Step 2. Use inductively coupled plasma etching to etch the surface of the epitaxial wafer with an etching depth of 10-50 nm to increase the surface defect density of the epitaxial wafer; or increase the surface defect density of the epitaxial wafer by surface etching and ion implantation; 步骤3、将外延片清洗,光刻,腐蚀,形成台面结构,即重掺杂n型氮化镓(101)、轻掺杂n型氮化镓(102);Step 3, cleaning the epitaxial wafer, photolithography, and etching to form a mesa structure, that is, heavily doped n-type gallium nitride (101) and lightly doped n-type gallium nitride (102); 步骤4、生长一层二氧化硅,在轻掺杂n型氮化镓(102)之上,并进行光刻、腐蚀,形成二氧化硅绝缘层(103),厚度为100-500纳米;Step 4, growing a layer of silicon dioxide on the lightly doped n-type gallium nitride (102), and performing photolithography and etching to form a silicon dioxide insulating layer (103) with a thickness of 100-500 nanometers; 步骤5、光刻电极图形,溅射或者蒸发制作金属电极(104),厚度为15-50/30-3000纳米,在二氧化硅绝缘层(103)之上,即二氧化硅绝缘层(103)在轻掺杂n型氮化镓(102)、金属电极(104)中间;Step 5, photoetching electrode patterns, sputtering or evaporation to make metal electrodes (104), with a thickness of 15-50/30-3000 nanometers, on the silicon dioxide insulating layer (103), that is, the silicon dioxide insulating layer (103 ) between the lightly doped n-type gallium nitride (102) and the metal electrode (104); 步骤6、转移石墨烯至器件表面,层数为1-10层,光刻石墨烯图形,等离子体刻蚀石墨烯,形成石墨烯薄膜(105);等离子体刻蚀气体为氧气,流量为10-70L/min,功率为50-100W,刻蚀时间30s-600s;Step 6, transfer graphene to the surface of the device, the number of layers is 1-10 layers, photolithographic graphene graphics, plasma etching graphene, forming a graphene film (105); plasma etching gas is oxygen, and the flow rate is 10 -70L/min, power 50-100W, etching time 30s-600s; 步骤7、将减薄外延片衬底,激光切割,裂片;Step 7, the thinned epitaxial wafer substrate, laser cutting, splitting; 其中步骤5与步骤6可以互换。Wherein step 5 and step 6 can be interchanged.
CN201410641038.7A 2014-11-13 2014-11-13 High-detectivity gallium-nitride-based Schottky ultraviolet detector using graphene Active CN104393093B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410641038.7A CN104393093B (en) 2014-11-13 2014-11-13 High-detectivity gallium-nitride-based Schottky ultraviolet detector using graphene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410641038.7A CN104393093B (en) 2014-11-13 2014-11-13 High-detectivity gallium-nitride-based Schottky ultraviolet detector using graphene

Publications (2)

Publication Number Publication Date
CN104393093A true CN104393093A (en) 2015-03-04
CN104393093B CN104393093B (en) 2017-02-01

Family

ID=52610965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410641038.7A Active CN104393093B (en) 2014-11-13 2014-11-13 High-detectivity gallium-nitride-based Schottky ultraviolet detector using graphene

Country Status (1)

Country Link
CN (1) CN104393093B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779315A (en) * 2015-04-08 2015-07-15 浙江大学 Graphene/indium phosphide photoelectric detector and preparation method thereof
CN104900745A (en) * 2015-05-26 2015-09-09 北京工业大学 Spectrum detector based on high electron mobility transistor and preparation method thereof
CN106449858A (en) * 2016-11-30 2017-02-22 庞倩桃 A kind of zinc oxide quantum dot enhanced ultraviolet detector and its preparation method
CN107068785A (en) * 2017-05-11 2017-08-18 山东大学 A kind of photodetector and its application
CN108281493A (en) * 2018-01-05 2018-07-13 北京科技大学 Two tungsten selenides and driving photodetector and the preparation certainly of metallic vertical type schottky junction
CN110048305A (en) * 2019-04-19 2019-07-23 北京工业大学 Graphene-medium DBR single-mode vertical cavity surface emitting lasers and preparation method thereof
WO2021002070A1 (en) * 2019-07-04 2021-01-07 三菱電機株式会社 Electromagnetic wave detector
CN112382688A (en) * 2020-10-16 2021-02-19 华南师范大学 Photoelectric detector based on flexible gallium oxide/gallium nitride structure and preparation method
CN112736158A (en) * 2020-12-24 2021-04-30 中国科学院上海微系统与信息技术研究所 High-performance silicon-based germanium detector and preparation method thereof
CN115315818A (en) * 2020-03-27 2022-11-08 三菱电机株式会社 Electromagnetic wave detector, electromagnetic wave detector array, and method for manufacturing electromagnetic wave detector
CN117219689A (en) * 2023-11-03 2023-12-12 安徽大学 Method for improving performance of MXene heterojunction photoelectric detector through doping
JP7633034B2 (en) 2021-02-08 2025-02-19 旭化成株式会社 Manufacturing method of ultraviolet light receiving element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10121926B2 (en) 2016-08-22 2018-11-06 Shahid Rajaee Teacher Training University Graphene-based detector for W-band and terahertz radiations
CN107195724B (en) * 2017-05-16 2019-01-11 江南大学 A method of AlGaN Schottky solar blind ultraviolet detector being prepared on GaN self-supported substrate using Graphene electrodes

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104074A (en) * 1997-12-11 2000-08-15 Apa Optics, Inc. Schottky barrier detectors for visible-blind ultraviolet detection
JP2003273392A (en) * 2002-03-14 2003-09-26 Mitsubishi Cable Ind Ltd GaN SYSTEM SEMICONDUCTOR PHOTO ACCEPTANCE DEVICE
US20050012113A1 (en) * 2003-07-17 2005-01-20 Jinn-Kong Sheu [uv photodetector]
CN1641327A (en) * 2004-01-06 2005-07-20 元砷光电科技股份有限公司 Ultraviolet detector
CN1677694A (en) * 2005-04-27 2005-10-05 中国科学院上海技术物理研究所 Gallium Nitride UV Detector
CN1681134A (en) * 2004-04-07 2005-10-12 中国科学院半导体研究所 Gallium Nitride-based Schottky Structure Ultraviolet Detector and Manufacturing Method
CN1877868A (en) * 2005-06-09 2006-12-13 中国科学院半导体研究所 Gallium nitride-based MSM ultraviolet detector for reducing surface state effect
CN101101935A (en) * 2006-07-06 2008-01-09 中国科学院半导体研究所 Ultraviolet detector and manufacturing method for improving performance of GaN-based Schottky structure
CN101859858A (en) * 2010-05-07 2010-10-13 中国科学院苏州纳米技术与纳米仿生研究所 Graphene-based transparent conductive electrode and its preparation method and application
CN102903617A (en) * 2012-10-22 2013-01-30 西安电子科技大学 GaN substrate-based graphene CVD direct epitaxial growth method and manufactured device
CN203760501U (en) * 2014-03-31 2014-08-06 中国电子科技集团公司第十三研究所 GaN-based plasmon detector

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104074A (en) * 1997-12-11 2000-08-15 Apa Optics, Inc. Schottky barrier detectors for visible-blind ultraviolet detection
JP2003273392A (en) * 2002-03-14 2003-09-26 Mitsubishi Cable Ind Ltd GaN SYSTEM SEMICONDUCTOR PHOTO ACCEPTANCE DEVICE
US20050012113A1 (en) * 2003-07-17 2005-01-20 Jinn-Kong Sheu [uv photodetector]
CN1641327A (en) * 2004-01-06 2005-07-20 元砷光电科技股份有限公司 Ultraviolet detector
CN1681134A (en) * 2004-04-07 2005-10-12 中国科学院半导体研究所 Gallium Nitride-based Schottky Structure Ultraviolet Detector and Manufacturing Method
CN1677694A (en) * 2005-04-27 2005-10-05 中国科学院上海技术物理研究所 Gallium Nitride UV Detector
CN1877868A (en) * 2005-06-09 2006-12-13 中国科学院半导体研究所 Gallium nitride-based MSM ultraviolet detector for reducing surface state effect
CN101101935A (en) * 2006-07-06 2008-01-09 中国科学院半导体研究所 Ultraviolet detector and manufacturing method for improving performance of GaN-based Schottky structure
CN101859858A (en) * 2010-05-07 2010-10-13 中国科学院苏州纳米技术与纳米仿生研究所 Graphene-based transparent conductive electrode and its preparation method and application
CN102903617A (en) * 2012-10-22 2013-01-30 西安电子科技大学 GaN substrate-based graphene CVD direct epitaxial growth method and manufactured device
CN203760501U (en) * 2014-03-31 2014-08-06 中国电子科技集团公司第十三研究所 GaN-based plasmon detector

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779315A (en) * 2015-04-08 2015-07-15 浙江大学 Graphene/indium phosphide photoelectric detector and preparation method thereof
CN104900745A (en) * 2015-05-26 2015-09-09 北京工业大学 Spectrum detector based on high electron mobility transistor and preparation method thereof
CN106449858A (en) * 2016-11-30 2017-02-22 庞倩桃 A kind of zinc oxide quantum dot enhanced ultraviolet detector and its preparation method
CN107068785A (en) * 2017-05-11 2017-08-18 山东大学 A kind of photodetector and its application
CN107068785B (en) * 2017-05-11 2018-12-28 山东大学 A kind of photodetector and its application
CN108281493A (en) * 2018-01-05 2018-07-13 北京科技大学 Two tungsten selenides and driving photodetector and the preparation certainly of metallic vertical type schottky junction
CN108281493B (en) * 2018-01-05 2019-11-12 北京科技大学 Tungsten diselenide and metal vertical Schottky junction self-driven photodetector and its fabrication
CN110048305A (en) * 2019-04-19 2019-07-23 北京工业大学 Graphene-medium DBR single-mode vertical cavity surface emitting lasers and preparation method thereof
WO2021002070A1 (en) * 2019-07-04 2021-01-07 三菱電機株式会社 Electromagnetic wave detector
JP6884288B1 (en) * 2019-07-04 2021-06-09 三菱電機株式会社 Electromagnetic wave detector
CN114041210A (en) * 2019-07-04 2022-02-11 三菱电机株式会社 Electromagnetic wave detector
CN115315818A (en) * 2020-03-27 2022-11-08 三菱电机株式会社 Electromagnetic wave detector, electromagnetic wave detector array, and method for manufacturing electromagnetic wave detector
CN115315818B (en) * 2020-03-27 2025-02-25 三菱电机株式会社 Electromagnetic wave detector, electromagnetic wave detector array, and method for manufacturing electromagnetic wave detector
CN112382688A (en) * 2020-10-16 2021-02-19 华南师范大学 Photoelectric detector based on flexible gallium oxide/gallium nitride structure and preparation method
CN112382688B (en) * 2020-10-16 2022-11-04 华南师范大学 Photoelectric detector based on flexible gallium oxide/gallium nitride structure and preparation method
CN112736158A (en) * 2020-12-24 2021-04-30 中国科学院上海微系统与信息技术研究所 High-performance silicon-based germanium detector and preparation method thereof
JP7633034B2 (en) 2021-02-08 2025-02-19 旭化成株式会社 Manufacturing method of ultraviolet light receiving element
CN117219689A (en) * 2023-11-03 2023-12-12 安徽大学 Method for improving performance of MXene heterojunction photoelectric detector through doping
CN117219689B (en) * 2023-11-03 2024-01-09 安徽大学 Methods to improve the performance of MXene heterojunction photodetectors through doping

Also Published As

Publication number Publication date
CN104393093B (en) 2017-02-01

Similar Documents

Publication Publication Date Title
CN104393093B (en) High-detectivity gallium-nitride-based Schottky ultraviolet detector using graphene
CN106169516B (en) A kind of silicon substrate UV photodetector based on graphene and preparation method thereof
CN108376716A (en) A kind of novel oxidized gallium base PIN structural UV photodetector and preparation method thereof
CN106711241B (en) A kind of graphene transparent electrode diamond base ultraviolet detector and preparation method thereof
CN106784122A (en) Photodetector and preparation method based on graphene/boron-doped silicon quantum dot/silicon
CN102361046B (en) Solar blind ultraviolet detector with AlGaN-based MSM (Metal-Semiconductor-Metal) structure and manufacturing method thereof
Aydın et al. P3HT–graphene bilayer electrode for Schottky junction photodetectors
CN107452823A (en) A kind of micro wire array photo detector and preparation method thereof
CN104157720B (en) A kind of silica-based avalanche photodetector of Graphene and preparation method of mixed structure
CN110047957A (en) A kind of mid-infrared photodetector and preparation method thereof
KR101508889B1 (en) Method and apparatus for converting photon energy to electrical energy
CN102214705A (en) AlGan polarized ultraviolet photoelectric detector and manufacturing method thereof
JP5948148B2 (en) Photoelectric conversion device
CN109980040A (en) A kind of gallium oxide MIS structure ultraviolet detector
CN102496638A (en) Deep-level impurity-doped crystalline silicon infrared detector and preparation method thereof
CN104810427A (en) Ultraviolet detector based on surface acoustic wave enhancing and preparation method thereof
CN115332385A (en) Infrared avalanche photodetector based on macroscopically assembled graphene/epitaxial silicon Schottky junction and its preparation method
CN108231945A (en) Graphene/hexagonal boron nitride/graphene ultraviolet light detector and preparation method
Brendel et al. Degradation of AlGaN-based metal-semiconductor-metal photodetectors
Zhang et al. Vertical Schottky ultraviolet photodetector based on graphene and top–down fabricated GaN nanorod arrays
CN104465818A (en) Photoelectric conversion element
Liu et al. Fabrication and photovoltaic properties of silicon solar cells with different diameters and heights of nanopillars
CN110611010A (en) A kind of silicon nanocrystal/graphene broad-spectrum photodetector and preparation method thereof
CN116364801A (en) Photodiode based on gamma-InSe/Ge mixed-dimensional heterojunction and preparation method and application thereof
CN111244222B (en) Hexagonal boron nitride ultraviolet light detector and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
OL01 Intention to license declared
OL01 Intention to license declared