CN104357053B - 防伪用双模式稀土发光材料及其制备方法 - Google Patents

防伪用双模式稀土发光材料及其制备方法 Download PDF

Info

Publication number
CN104357053B
CN104357053B CN201410578475.9A CN201410578475A CN104357053B CN 104357053 B CN104357053 B CN 104357053B CN 201410578475 A CN201410578475 A CN 201410578475A CN 104357053 B CN104357053 B CN 104357053B
Authority
CN
China
Prior art keywords
preparation
luminescent material
false proof
rare earth
earth luminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410578475.9A
Other languages
English (en)
Other versions
CN104357053A (zh
Inventor
林君
张洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHANGZHOU INSTITUTE OF ENERGY STORAGE MATERIALS & DEVICES
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN201410578475.9A priority Critical patent/CN104357053B/zh
Publication of CN104357053A publication Critical patent/CN104357053A/zh
Application granted granted Critical
Publication of CN104357053B publication Critical patent/CN104357053B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种防伪用双模式稀土发光材料及其制备方法,属于发光与显示领域。解决现有防伪用稀土发光材料存在发光颜色单一、制备过程复杂、激发源不便携带、提高防伪鉴别水平的技术问题。其化学组成为:Ca0.99+xM1-xAl1-xSixO4:Eu0.01,式中M为Y或Gd,x=0.05-0.30。还提供了该材料的制备方法。该材料在254nm激发下呈现明亮的红光,而在365nm激发下,能发出绿色荧光。从而形成双重防伪,提高防伪保密程度,克服了一般荧光材料在紫外光激发下单一发光模式的不足。并且所需激发光源仅为常用手提紫外灯。本发明的制备方法步骤简单,原料成本低廉,可重复性强,可以实现批量制备。

Description

防伪用双模式稀土发光材料及其制备方法
技术领域
本发明涉及一种防伪用双模式稀土发光材料及其制备方法,属于发光与显示领域。
背景技术
防伪用荧光材料主要利用这些材料在特定波长的激发源照射下发射出不同颜色的荧光,从而达到鉴别真伪的目的。在荧光防伪方面,多采用紫外光激发实现可见光或余辉输出以实现防伪识别,如CaS:Eu2+,SrAl2O4:Eu2+,Dy3+等。然而,此种发光材料虽然制备方便,但是防伪保密等级较低。此外,采用上转换荧光材料如NaYF4:Yb3+,Er3+等的新型防伪技术手段大大增强了防伪力度,但是相关上转换荧光材料的制备和需用980nm激光器作为激发源的特殊要求却在一定程度上限制了其广泛应用。
发明内容
本发明要解决现有技术中防伪用稀土发光材料存在发光颜色单一、制备过程复杂、激发源不便携带、进一步提高防伪鉴别水平的技术问题,提供一种防伪用双模式稀土发光材料及其制备方法。
为了解决上述技术问题,本发明的技术方案具体如下:
一种防伪用双模式稀土发光材料,其化学组成为:Ca0.99+xM1-xAl1-xSixO4:Eu0.01,式中M为Y或Gd,x=0.05-0.30。
一种防伪用双模式稀土发光材料的制备方法,包括如下步骤:
物料选取根据化学式Ca0.99+xM1-xAl1-xSixO4:Eu0.01,按照其摩尔百分比分别称取高纯度的CaCO3,Al2O3,SiO2,M2O3和Eu2O3,充分研磨后装入坩埚中在1100-1200℃还原气氛H2/N2下烧结4-6h,冷却后取出,研磨后转移至坩埚中,在1500-1600℃还原气氛H2/N2下烧结4-6h,即可得到防伪用双模式稀土发光材料。
在上述技术方案中,所述H2/N2的百分比为10%:90%。
本发明的有益效果是:
本发明的防伪用双模式稀土发光材料晶体结构属于四方晶系,在254nm激发下呈现明亮的红光,而在365nm激发下,能发出绿色荧光。从而,形成了双重防伪,提高了防伪保密程度,克服了一般荧光材料在紫外光激发下单一发光模式的不足。所需激发光源仅为常用手提紫外灯,克服了上转换材料需用980nm激光器的不足。本发明的防伪用双模式稀土发光材料是方便高效,节能,无污染的防伪发光材料。
本发明提供的制备方法步骤简单,原料成本低廉,可重复性强,可以实现批量制备。所得防伪用双模式稀土发光材料在不同波长激发下发光颜色明显不同,区别于以往的单一发光。同时所需激发源简单易得,便于推广应用。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1为由本发明制备得到的防伪用双模式稀土发光材料的XRD图谱;
图2为由本发明制备的Ca0.99+xY1-xAl1-xSixO4:Eu0.01(x=0.20)和Ca0.99+xGd1-xAl1-xSixO4:Eu0.01(x=0.20)发光材料在254nm和365nm激发下的发射光谱。
具体实施方式
下面结合附图对本发明做以详细说明。
本发明所使用的原料是纯度为99.99%的CaCO3,Al2O3,SiO2,Y2O3,Gd2O3和Eu2O3。下面以Ca0.99+xM1-xAl1-xSixO4:Eu0.01(M=Y,Gd,x=0.05-0.30)为例,结合具体实施方式对本发明进一步详细说明,但本发明不局限于这些实施方式。
实施例1
物料选取根据化学式Ca0.99+xY1-xAl1-xSixO4:Eu0.01(x=0.05),按照其摩尔百分比分别称取高纯度的CaCO3,Al2O3,SiO2,Y2O3和Eu2O3,充分研磨后装入坩埚中在1100℃还原气氛H2/N2(10%/90%)下烧结4h,冷却后取出,研磨后转移至坩埚中,在1500℃还原气氛H2/N2(10%/90%)下烧结6h,即可得到最终产物。
实施例2
物料选取根据化学式Ca0.99+xY1-xAl1-xSixO4:Eu0.01(x=0.20),按照其摩尔百分比分别称取高纯度的CaCO3,Al2O3,SiO2,Y2O3和Eu2O3,充分研磨后装入坩埚中在1200℃还原气氛H2/N2(10%/90%)下烧结4h,冷却后取出,研磨后转移至坩埚中,在1500℃还原气氛H2/N2(10%/90%)下烧结6h,即可得到最终产物。
图1a为由本实施例制备得到铕离子掺杂的Ca0.99+xY1-xAl1-xSixO4:Eu0.01(x=0.20)发光材料的XRD图谱;说明我们成功制得该材料。
图2a为由本实施例制备的Ca0.99+xY1-xAl1-xSixO4:Eu0.01(x=0.20)发光材料在254nm和365nm激发下的发射光谱。说明制备的发光材料在254nm激发下呈现明亮的红光,而在365nm激发下,能发出绿色荧光。
实施例3
物料选取根据化学式Ca0.99+xY1-xAl1-xSixO4:Eu0.01(x=0.30),按照其摩尔百分比分别称取高纯度的CaCO3,Al2O3,SiO2,Y2O3和Eu2O3,充分研磨后装入坩埚中在1100℃还原气氛H2/N2(10%/90%)下烧结6h,冷却后取出,研磨后转移至坩埚中,在1600℃还原气氛H2/N2(10%/90%)下烧结4h,即可得到最终产物。
实施例4
物料选取根据化学式Ca0.99+xGd1-xAl1-xSixO4:Eu0.01(x=0.05),按照其摩尔百分比分别称取高纯度的CaCO3,Al2O3,SiO2,Gd2O3和Eu2O3,充分研磨后装入坩埚中在1100℃还原气氛H2/N2(10%/90%)下烧结4h,冷却后取出,研磨后转移至坩埚中,在1600℃还原气氛H2/N2(10%/90%)下烧结4h,即可得到最终产物。
实施例5
物料选取根据化学式Ca0.99+xGd1-xAl1-xSixO4:Eu0.01(x=0.20),按照其摩尔百分比分别称取高纯度的CaCO3,Al2O3,SiO2,Gd2O3和Eu2O3,充分研磨后装入坩埚中在1200℃还原气氛H2/N2(10%/90%)下烧结4h,冷却后取出,研磨后转移至坩埚中,在1500℃还原气氛H2/N2(10%/90%)下烧结6h,即可得到最终产物。
图1b由本发明制备得到铕离子掺杂的Ca0.99+xGdxAl1-xSixO4:Eu0.01(x=0.20)发光材料的XRD图谱;说明我们成功制得该材料。
图2b由本发明制备的Ca0.99+xGdxAl1-xSixO4:Eu0.01(x=0.20)发光材料在254nm和365nm激发下的发射光谱。说明制备的发光材料在254nm激发下呈现明亮的红光,而在365nm激发下,能发出绿色荧光。
实施例6
物料选取根据化学式Ca0.99+xGd1-xAl1-xSixO4:Eu0.01(x=0.30),按照其摩尔百分比分别称取高纯度的CaCO3,Al2O3,SiO2,Gd2O3和Eu2O3,充分研磨后装入坩埚中在1200℃还原气氛H2/N2(10%/90%)下烧结6h,冷却后取出,研磨后转移至坩埚中,在1500℃还原气氛H2/N2(10%/90%)下烧结4h,即可得到最终产物。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (3)

1.一种防伪用双模式稀土发光材料,其特征在于,其化学组成为:Ca0.99+xM1-xAl1-xSixO4:Eu0.01,式中M为Y或Gd,x=0.05-0.30。
2.根据权利要求1所述的防伪用双模式稀土发光材料的制备方法,其特征在于,包括如下步骤:
物料选取根据化学式Ca0.99+xM1-xAl1-xSixO4:Eu0.01,按照其摩尔百分比分别称取高纯度的CaCO3,Al2O3,SiO2,M2O3和Eu2O3,充分研磨后装入坩埚中在1100-1200℃还原气氛H2/N2下烧结4-6h,冷却后取出,研磨后转移至坩埚中,在1500-1600℃还原气氛H2/N2下烧结4-6h,即可得到防伪用双模式稀土发光材料。
3.根据权利要求2所述的防伪用双模式稀土发光材料的制备方法,其特征在于,所述H2/N2的体积百分比为10%:90%。
CN201410578475.9A 2014-10-23 2014-10-23 防伪用双模式稀土发光材料及其制备方法 Active CN104357053B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410578475.9A CN104357053B (zh) 2014-10-23 2014-10-23 防伪用双模式稀土发光材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410578475.9A CN104357053B (zh) 2014-10-23 2014-10-23 防伪用双模式稀土发光材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104357053A CN104357053A (zh) 2015-02-18
CN104357053B true CN104357053B (zh) 2016-04-20

Family

ID=52524372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410578475.9A Active CN104357053B (zh) 2014-10-23 2014-10-23 防伪用双模式稀土发光材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104357053B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105154073A (zh) * 2015-07-20 2015-12-16 中国科学院长春应用化学研究所 一种适用于紫外/近紫外光激发的白光led用蓝/绿色荧光粉及其制备方法
CN107043576B (zh) * 2017-05-12 2020-05-12 武汉大学 双模式发光油墨的制备及其丝网印刷方法及防伪应用
CN110526585B (zh) * 2019-09-26 2021-10-19 福建师范大学 一种防伪玻璃陶瓷复合材料的制备方法
CN111925787B (zh) * 2020-08-04 2024-02-20 兰州大学 一种三模式动态变色防伪材料及其制备方法
CN111978957B (zh) * 2020-08-26 2022-06-21 广东工业大学 双模荧光粉材料的制备方法及双模防伪图案的设计方法
CN113255861B (zh) * 2021-04-25 2022-03-01 燕山大学 一种基于双波长响应上转换光子防伪条形码及其构建方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060055307A1 (en) * 2003-01-23 2006-03-16 Ryo Yoshimatsu Green light-emitting fluorescent material and fluorescent lamp using same
CN102094237A (zh) * 2011-01-14 2011-06-15 中国科学院上海光学精密机械研究所 掺钬铝酸钇钙激光晶体的生长方法

Also Published As

Publication number Publication date
CN104357053A (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
CN104357053B (zh) 防伪用双模式稀土发光材料及其制备方法
Liu et al. Luminescent properties of a white afterglow phosphor CdSiO3: Dy3+
Li et al. Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors
Andrade et al. Tunable light emission and similarities with garnet structure of Ce-doped LSCAS glass for white-light devices
Ma et al. Tunable emission, thermal stability and energy-transfer properties of SrAl2Si2O8: Ce3+/Tb3+ phosphors for w-LEDs
Lei et al. Persistent luminescence in rare earth ion-doped gadolinium oxysulfide phosphors
Cui et al. Preparation of CaAl2O4: Eu2+, Nd3+ and SrAl2O4: Eu2+, Dy3+ long afterglow luminescent materials using oil shale ash
CN115991993B (zh) 一种防伪用钠镥镓锗石榴石基绿光荧光粉及其制备方法
CN102585813B (zh) 一种紫外光激发的可控颜色长余辉材料及其制备方法
CN106544021B (zh) 一种铈、铽共掺的硼酸盐荧光粉及其制备方法
Keskin et al. Structural, optical, luminescence properties and energy transfer mechanism of Tb3+/Eu3+ co-doped SrLa2 (MoO4) 4 phosphors produced by sol-gel process
Zhang et al. Enhanced luminescent properties of Sm3+ doped glass ceramics–as potential red–orange phosphor for white light-emitting diodes
Xiaoqin et al. Synthesis and photoluminescent properties of Eu3+/Dy3+ doped SrO-Al2O3-SiO2 glass-ceramics
Liu et al. Synthesis and energy transfer studies of Eu2+ and Mn2+ co-doped Sr3. 45Y6. 5O2 (PO4) 1.5 (SiO4) 4.5 phosphor
Wang et al. Luminescence and energy transfer properties of single-component Mg0. 5Ti2 (PO4) 3: Dy3+, Eu3+ for warm white UV LEDs
Tang et al. White light emission from Eu3+/Dy3+ co-doped LiYF4 crystal excited by UV light
CN104403668B (zh) 一种硅酸盐绿色荧光粉及其制备方法
CN104152145A (zh) 一种三激活剂单基质白光荧光粉及其制备方法
Xi et al. Color-tunable emission and energy transfer in NaCaPO4: Tb3+/Mn2+ phosphors
Cao et al. Synthesis and luminescence properties of Sr (1− x− y− z) MoO4: xEu3+, yBi3+, zR+ (R+= Li+, Na+, and K+) phosphors
Li et al. White-blue long persistent luminescence in Ca2Ge7O16: Tb3+ via persistent energy transfer
Diao et al. Synthesis of high efficiency Zn2SiO4: Mn2+ green phosphors using nano-particles
CN104818022A (zh) 一种新型上转换荧光粉及其制备方法
Guanming et al. Synthesis of long afterglow phosphors doped B SrAl2O4: Eu2+, Dy3+ and its luminescent properties
Xia et al. A novel charge transfer blue-emitting phosphor: BaY2Si3O10

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201210

Address after: No. 9, river Hai Dong Road, Changzhou, Jiangsu Province

Patentee after: CHANGZHOU INSTITUTE OF ENERGY STORAGE MATERIALS & DEVICES

Address before: 130022 5625 people's street, Chaoyang District, Changchun, Jilin.

Patentee before: Changchun Institute of Applied Chemistry Chinese Academy of Sciences