CN104353437B - 一种核壳磁性聚间苯二胺纳米粒子及其制备和应用 - Google Patents
一种核壳磁性聚间苯二胺纳米粒子及其制备和应用 Download PDFInfo
- Publication number
- CN104353437B CN104353437B CN201410616618.0A CN201410616618A CN104353437B CN 104353437 B CN104353437 B CN 104353437B CN 201410616618 A CN201410616618 A CN 201410616618A CN 104353437 B CN104353437 B CN 104353437B
- Authority
- CN
- China
- Prior art keywords
- phenylene diamine
- core
- magnetic
- poly
- nano particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/262—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0225—Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
- B01J20/0229—Compounds of Fe
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28009—Magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/285—Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/46—Materials comprising a mixture of inorganic and organic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4806—Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4812—Sorbents characterised by the starting material used for their preparation the starting material being of organic character
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
- C02F2101/22—Chromium or chromium compounds, e.g. chromates
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种核壳磁性聚间苯二胺纳米粒子及其制备和应用,属于磁性复合材料合成及其水处理研究领域。本发明以四氧化三铁为核,以过硫酸盐为引发剂,通过调控表界面间苯二胺单体的聚合速率,首次实现了聚间苯二胺对磁性粒子的均匀包裹,该方法能有效控制聚间苯二胺壳层厚度,产物形貌均匀,尺寸可控,且具备高磁性(127.33‑73.78emu g‑1);所得复合磁性粒子对铬酸根吸附容量高达239.5mg g‑1,且易于分离回收。
Description
技术领域
本发明属于核壳磁性聚间苯二胺纳米粒子合成及其水处理领域,具体涉及一步可控合成的核壳型Fe3O4@PmPD及其制备方法,以及将其用于水体铬吸附的应用方法。
背景技术
电镀、染料、有机合成和轻工纺织业等行业排放大量含铬废水,存在严重的环境污染问题,亟需开发高效铬污染的去除方法。目前铬去除的方法有:物理法(膜处理法、离子交换法),化学法(钡盐法、还原沉淀法、铁氧体法),生物法及物理化学法(电解法、浮选法、吸附法)。其中,吸附法作为一种高效、简便、成本低的方法而备受关注。近年来,开发新型高比表面的纳米吸附剂成为研究热点,如活性碳、有机高分子、纳米无机氧化物等。然而纳米吸附剂由于颗粒尺寸过小,难以直接从水体分离回收,易造成潜在的纳米危害。因此,如何高效回收纳米吸附剂是吸附法处理含铬废水技术的发展趋势之一。
赋予纳米粒子磁性,实现快速分离是当前解决吸附材料难以有效回收的主要手段之一。传统磁性纳米粒子由于易于团聚,活性位点少,难以直接应用于吸附,因此以磁性纳米粒子为基质,复合高吸附性材料,改善吸附性能,成为当前吸附材料研究的重要发展方向。如中国专利CN101215041B、CN100560514C、CN103585978A等提出采用蒙脱石、硅藻土、壳聚糖等原料,与铁盐、亚铁盐混合制备一类磁性复合纳米吸附材料,用于水体中六价铬的吸附处理。但这些吸附材料吸附量偏低,一般适用于低浓度铬污染水体或自来水净化处理。中国专利CN 102079823采用乙二胺改性壳聚糖复合磁性粒子,其六价铬的吸附量仍然低于100mg/g。低的铬吸附量使现有磁性纳米材料大都难以应付日益复杂且庞大的含铬酸性工业废水处理。
在磁性核壳复合物的制备过程中,由于磁性纳米颗粒表面功能位点少,需对磁性纳米颗粒表面改性,如浓酸处理使其表面富含羟基、表面有机官能团嫁接、表面预先包裹二氧化硅等方法(中国专利CN 101837455A,CN 102500291A),这些方法存在潜在破坏磁性颗粒晶格结构的缺点,无磁性成分的负载不可避免削弱复合物的磁性,而且很难实现功能组分在磁性纳米颗粒表面的均匀负载。因此,采用温和、高效的方法合成具有高铬吸附性能的高磁性核壳纳米颗粒,是当前水体铬污染治理的重要发展方向之一。
发明内容
本发明的目的是提供一种对铬具有快速高效吸附性能的核壳Fe3O4@PmPD纳米粒子的吸附剂及其制备和应用方法,该吸附剂制备过程简单,成本低、在酸性条件下对铬吸附容量高,物理化学性能稳定,高磁性,易于固液分离。应用方法操作简单,使用方便。
本发明首次提出高磁性Fe3O4@PmPD纳米粒子用于吸附水体铬,在合成方法上,通过调控表界面聚合速率,一步即可实现Fe3O4@PmPD的合成,无需磁性纳米粒子的表面预处理。所得到的产物具有高磁性,铬吸附性能优异,且能被快速磁性分离回收。
本发明的目的是通过以下方式实现的。
一种核壳磁性聚间苯二胺纳米粒子,是外层聚间苯二胺包裹内核Fe3O4的纳米粒子。
所述的核壳磁性聚间苯二胺纳米粒子的粒径大小范围为100nm-550nm。
外层聚间苯二胺的厚度范围10nm-100nm,磁性为127.33-73.78emu g-1。
一种核壳磁性聚间苯二胺纳米粒子的制备方法,包括以下步骤:
1)将Fe3O4磁性纳米粒子均匀分散到水溶液中,超声分散,然后加入间苯二胺单体,混合均匀;
2)将上述溶液在封闭条件下,在0-20℃(优选冰浴条件下)震荡,加入过硫酸盐;
3)将步骤2)中得到溶液继续在0-20℃(优选冰浴条件下)下震荡,磁性分离,水洗,乙醇洗,烘干,即得。
上述方法中间苯二胺单体与Fe3O4磁性纳米粒子质量比为2:1~1:4。
上述方法中过硫酸盐包括过硫酸钠或过硫酸铵。
上述过硫酸钠与间苯二胺单体物质的量比为1:1。
步骤3)具体是将步骤2)中得到溶液继续在0-20℃(优选冰浴条件下)下震荡4-10h,磁性分离,水洗3-4次,乙醇洗2-3次,60℃烘干,即得。
所述的核壳磁性聚间苯二胺纳米粒子的应用方法,用于脱除水体中铬。
具体是取所述的核壳磁性聚间苯二胺纳米粒子加入含铬的溶液中,浓度为0.1-0.5g L-1,铬溶液的初始pH值为2-7,溶液中铬的初始浓度10ppm-300ppm,反应温度为15℃-45℃,振荡反应5min-1080min后,过滤。
优选取所述的核壳磁性聚间苯二胺纳米粒子加入含铬的溶液中,浓度为0.5g L-1,铬溶液的初始pH值为2,溶液中铬的初始浓度40-100ppm,反应温度为45℃,振荡反应5分钟-6小时后,过滤。
本发明的有益效果:
1.本发明提供的吸附剂—核壳Fe3O4@PmPD纳米粒子制备方法,操作工艺简单,低温至常温合成,成本低,实现磁性纳米表面直接聚合负载功能高分子化合物,产物形貌可控。
2.本发明提供了一种新的复合磁性纳米粒子合成思路。现有磁性粒子改性方法一般需要先将纳米粒子进行表面活化,才能实现活性基团的嫁接、包埋,而本发明无需磁性纳米粒子的表面预处理。
3.本发明所述的吸附剂具有高磁性(127.33-73.78emu g-1),在外磁场条件下,易于固液分离。
4.本发明的吸附剂核壳Fe3O4@PmPD纳米粒子可高效吸附水体中的铬酸根,对铬的吸附容量达到239.5mg g-1,高于现有的大部分吸附剂。且吸附速率快,吸附1h即可基本达到平衡吸附容量。
附图说明
图1为实施例1~4所得产物的TEM图;
图2为实施例5在不同温度下所得产物的TEM图;
图3为实施例3的EDX线性扫描图;
图4为实施例3所得核壳Fe3O4@PmPD对Cr(VI)的等温吸附曲线,考察温度分别为15℃、30℃、45℃;
图5为实施例3所得核壳Fe3O4@PmPD对Cr(VI)的吸附动力学曲线;
图6为实施例3所得核壳Fe3O4@PmPD在不同pH条件下对Cr(VI)的吸附性能;
图7为实施例9中核壳Fe3O4@PmPD中的循环吸附性能。
具体实施方式
以下以具体的实施例来说明本发明中涉及到的吸附剂核壳Fe3O4@PmPD纳米粒子的制备方法及其应用于吸附铬的方法,而不会形成对本发明的限制。
实施例1
取Fe3O40.1g加入到150mL锥形瓶中,加入50mL去离子水,超声分散10min。称取0.025gmPD(间苯二胺单体)溶于10mL去离子水中,溶解后加入四氧化三铁分散液,冰水浴下震荡使其混合均匀。称取0.055g过硫酸钠氧化剂溶于10mL去离子水中,充分溶解,加入四氧化三铁和mPD的混合液中,继续冰水浴震荡5h。取出溶液,磁性分离,水洗3-4次直至上清液为无色,乙醇洗两次。洗过后的样品60℃烘干,称重,收集,样品质量为0.1203g。将样品用于TEM表征,如图1A所示。
实施例2
取Fe3O40.1g加入到150mL锥形瓶中,加入50mL去离子水,超声分散10min。称取0.05gmPD溶于10mL去离子水中,溶解后加入四氧化三铁分散液,冰水浴下震荡使其混合均匀。称取0.11g过硫酸钠氧化剂溶于10mL去离子水中,充分溶解,加入四氧化三铁和mPD的混合液中,继续冰水浴震荡5h。取出溶液,磁性分离,水洗3-4次直至上清液为无色,乙醇洗两次。洗过后的样品60℃烘干,称重,收集,样品质量为0.1254g。将样品用于TEM表征,如图1B所示。
实施例3
取Fe3O40.1g加入到150mL锥形瓶中,加入50mL去离子水,超声分散10min。称取0.1gmPD溶于10mL去离子水中,溶解后加入四氧化三铁分散液,冰水浴下震荡使其混合均匀。称取0.22g过硫酸钠氧化剂溶于10mL去离子水中,充分溶解,加入四氧化三铁和mPD的混合液中,继续冰水浴震荡5h。取出溶液,磁性分离,水洗3-4次直至上清液为无色,乙醇洗两次。洗过后的样品60℃烘干,称重,收集,样品质量为0.1406g。将样品用于TEM表征,如图1C所示。
实施例4
取Fe3O40.1g加入到150mL锥形瓶中,加入50mL去离子水,超声分散10min。称取0.2gmPD溶于10mL去离子水中,溶解后加入四氧化三铁分散液,冰水浴下震荡使其混合均匀。称取0.44g过硫酸钠氧化剂溶于10mL去离子水中,充分溶解,加入四氧化三铁和mPD的混合液中,继续冰水浴震荡5h。取出溶液,磁性分离,水洗3-4次直至上清液为无色,乙醇洗两次。洗过后的样品60℃烘干,称重,收集,样品质量为0.1934g。将样品用于TEM表征,如图1D所示。
以Fe3O4与mPD为1:1合成样品为例,进行EDX线性扫描(图3),可见Fe、O元素集中分布于颗粒内部,C、N元素则集中分布于颗粒外层,表明样品具有典型的聚间二胺/磁性铁核壳纳米结构特征。综合实施例1-4结果,通过控制Fe3O4与mPD的比例即可实现核壳纳米粒子壳层的厚度,mPD比例越高,产物功能基团壳层越厚,Fe3O4与mPD的比例从4:1变化至1:2时,PmPD厚度由10nm增加至100nm。外层功能基团的增加,有望得到Cr吸附性能更高的吸附剂。
实施例5
不同温度(20℃、40℃、80℃)下合成Fe3O4@PmPD样品。称取0.1g Fe3O4三份,放入编号为1-3的150mL锥形瓶中,各加入50mL去离子水,超声分散10min。称取三份0.1gmPD溶于10mL去离子水,充分溶解,分别加入1-3号锥形瓶的溶液中,将1-3号锥形瓶分别在20℃、40℃、80℃条件下震荡反应,再称取三份0.22g过硫酸钠溶于10mL去离子水,充分溶解后加入三个锥形瓶中,震荡5h。取出溶液,磁性分离,水洗3-4次,乙醇洗2次,60℃烘干,产物质量均小于0℃反应产物质量,相对0℃产物质量依次下降5.97%,19.77%,38.33%,其TEM照片如图2所示。
由此可知,样品在温度越低时产率越高,从TEM图也可看出,高温下聚间苯二胺包裹率低,这有可能是高温聚合反应快,部分聚间苯二胺在溶液中快速聚合直接析出,未包裹在磁性粒子表面,导致最后样品产率变低;而在低温条件下,聚合反应较缓慢,趋向于在磁性粒子表面析出,因此界面聚合效率高。
实施例6
用15mg实施例1制备的吸附剂对30mL溶液初始pH为2.0的Cr溶液进行吸附反应,反应持续6小时;其中Cr的浓度范围为10ppm-300ppm,每种浓度的溶液有相同的三组,分别在15℃、30℃、45℃的条件下反应。反应后的混合溶液过滤并收集,滤液中Cr的浓度采用分光光度法测定。该吸附剂对Cr的吸附容量如图4所示。结果表明,在15℃、30℃、45℃吸附容量分别达到213.5,230.4,239.5mg g-1,高于众多报道的Cr吸附剂,而且随着温度升高,吸附量增加。实施例7
室温条件下,用0.1g实施例3制备的吸附剂对200mL溶液初始pH为2.0、Cr浓度分别为70ppm、100ppm的溶液进行吸附反应,其中反应时间控制为5、10、30、60、90、120、180、240、300、360、480、1080min。反应后的混合溶液过滤并用收集,滤液中Cr的浓度采用分光光度法测定。两种浓度溶液在不同反应时间下,Cr的溶液浓度与吸附容量如图5所示。本发明吸附剂对Cr吸附速度快,反应60min左右即可基本达到吸附平衡。
实施例8
室温条件下,用0.02g实施例3制备的吸附剂对40mL溶液含Cr溶液进行吸附反应,反应时间为6小时;分别调节含Cr溶液的初始pH为2、3、4、5、7。吸附后溶液过滤收集,滤液中六价Cr离子的浓度采用分光光度法测定。不同溶液初始pH下,吸附Cr吸附容量如图6所示,初始浓度分别为(A)40ppm,(B)100ppm。结果发现,吸附剂在酸性条件下吸附效果较好,pH=2时,吸附容量最高。
实施例9
室温条件下,采用0.5M NaOH对吸附Cr的Fe3O4@PmPD颗粒进行解析。具体为将0.1g吸附Cr的Fe3O4@PmPD颗粒于100mL NaOH溶液中超声30min,再震荡6h,随后磁性分离,水洗再乙醇洗涤后,干燥,进行循环吸附实验,操作步骤与实例6中相同,温度为30℃。相关循环吸附与解析实验结果如图7所示。图中可看出,在外加磁场作用下,能实现吸附剂快速固液分离,而且再生处理对颗粒铬吸附性能影响较小,循环使用六次后,可保持初始吸附容量的70%,仍然达到170mg/g左右,远优于当前大多数铬吸附材料。
Claims (8)
1.一种核壳磁性聚间苯二胺纳米粒子,其特征在于,是外层聚间苯二胺包裹内核Fe3O4的纳米粒子;制备方法包括以下步骤:
1)将Fe3O4磁性纳米粒子均匀分散到水溶液中,超声分散,然后加入间苯二胺单体,混合均匀,间苯二胺单体与Fe3O4磁性纳米粒子质量比为2:1~1:4;
2)将上述溶液在封闭条件下,在0-20℃震荡,加入过硫酸盐;
3)将步骤2)中得到溶液继续在0-20℃下震荡,磁性分离,水洗,乙醇洗,烘干,即得。
2.根据权利要求1所述的核壳磁性聚间苯二胺纳米粒子,其特征在于,所述的核壳磁性聚间苯二胺纳米粒子的粒径大小范围为100nm-550nm。
3.根据权利要求1所述的核壳磁性聚间苯二胺纳米粒子,其特征在于,外层聚间苯二胺的厚度范围为10nm-100nm,磁性为127.33-73.78emu·g-1。
4.根据权利要求1所述的核壳磁性聚间苯二胺纳米粒子,其特征在于,过硫酸盐包括过硫酸钠或过硫酸铵。
5.根据权利要求4所述的核壳磁性聚间苯二胺纳米粒子,其特征在于,过硫酸钠与间苯二胺单体物质的量比为1:1。
6.根据权利要求1所述的核壳磁性聚间苯二胺纳米粒子,其特征在于,步骤3)具体是将步骤2)中得到溶液继续在0-20℃下震荡4-10h,磁性分离,水洗3-4次,乙醇洗2-3次,60℃烘干,即得。
7.权利要求1~6任一项所述的核壳磁性聚间苯二胺纳米粒子的应用方法,其特征在于,用于脱除水体中铬。
8.根据权利要求7所述的核壳磁性聚间苯二胺纳米粒子的应用方法,其特征在于,取所述的核壳磁性聚间苯二胺纳米粒子加入含铬的溶液中,浓度为0.1-0.5g·L-1,铬溶液的初始pH值为2-7,溶液中铬的初始浓度10ppm-300ppm,反应温度为15℃-45℃,振荡反应5min-1080min后,过滤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410616618.0A CN104353437B (zh) | 2014-11-05 | 2014-11-05 | 一种核壳磁性聚间苯二胺纳米粒子及其制备和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410616618.0A CN104353437B (zh) | 2014-11-05 | 2014-11-05 | 一种核壳磁性聚间苯二胺纳米粒子及其制备和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104353437A CN104353437A (zh) | 2015-02-18 |
CN104353437B true CN104353437B (zh) | 2016-09-07 |
Family
ID=52520799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410616618.0A Active CN104353437B (zh) | 2014-11-05 | 2014-11-05 | 一种核壳磁性聚间苯二胺纳米粒子及其制备和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104353437B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105363422A (zh) * | 2015-11-05 | 2016-03-02 | 常州大学 | 一种聚间苯二胺/凹凸棒石复合材料的制备及其应用于对Cr(Ⅵ)的吸附 |
CN105642255A (zh) * | 2016-01-29 | 2016-06-08 | 中南大学 | 一种Fe3O4聚间苯二胺MnO2磁性核壳结构纳米复合材料及其制备和应用方法 |
CN108855010B (zh) * | 2018-07-12 | 2020-09-01 | 中南大学 | 一种Uio-66/聚芳香复合材料的应用 |
CN111659357B (zh) * | 2019-03-06 | 2021-08-24 | 中南大学 | 聚合席夫碱型吸附材料、制备及其在重金属吸附中的应用 |
CN112044410A (zh) * | 2019-06-05 | 2020-12-08 | 湖南大学 | 二氧化锰@聚间苯二胺@四氧化三铁复合材料及其制备方法和应用 |
CN110449128A (zh) * | 2019-07-11 | 2019-11-15 | 浙江工业大学 | 一种功能化磁性纳米复合材料的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD246291A1 (de) * | 1986-01-15 | 1987-06-03 | Bitterfeld Chemie | Verfahren zur herstellung von divinylbenzen |
CN102360659A (zh) * | 2011-06-24 | 2012-02-22 | 中国科学院宁波材料技术与工程研究所 | 磁性亚微米复合核壳颗粒及其制备方法和应用 |
CN103962110A (zh) * | 2014-04-29 | 2014-08-06 | 浙江大学 | 多功能化Fe3O4磁性纳米材料及其制备方法和应用 |
-
2014
- 2014-11-05 CN CN201410616618.0A patent/CN104353437B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD246291A1 (de) * | 1986-01-15 | 1987-06-03 | Bitterfeld Chemie | Verfahren zur herstellung von divinylbenzen |
CN102360659A (zh) * | 2011-06-24 | 2012-02-22 | 中国科学院宁波材料技术与工程研究所 | 磁性亚微米复合核壳颗粒及其制备方法和应用 |
CN103962110A (zh) * | 2014-04-29 | 2014-08-06 | 浙江大学 | 多功能化Fe3O4磁性纳米材料及其制备方法和应用 |
Non-Patent Citations (2)
Title |
---|
Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite;Madhumita Bhaumik et al.;《Journal of Hazardous Materials》;20110324;第190卷;第381页摘要、第382页第2.1-2.2节、第382页第2.3.1节、第3.3节、第3.6节、第383页右栏第1段、第384页左栏第2段、第4段、图5以及支持文件1-2 * |
Synthesis of poly (m-phenylenediamine) with improved properties and superior prospect for Cr(VI) removal;Wan-ting YU et al.;《Trans. Nonferrous Met. Soc. China》;20130521;第23卷;摘要以及第3491页第2.2节 * |
Also Published As
Publication number | Publication date |
---|---|
CN104353437A (zh) | 2015-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104353437B (zh) | 一种核壳磁性聚间苯二胺纳米粒子及其制备和应用 | |
Liu et al. | Rapid and efficient removal of heavy metal and cationic dye by carboxylate-rich magnetic chitosan flocculants: role of ionic groups | |
Guo et al. | Green and facile synthesis of cobalt-based metal–organic frameworks for the efficient removal of Congo red from aqueous solution | |
Zhu et al. | Preparation, characterization and dye adsorption properties of γ-Fe2O3/SiO2/chitosan composite | |
Meng et al. | Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method | |
Dong et al. | Characterization and adsorption properties of a lanthanum-loaded magnetic cationic hydrogel composite for fluoride removal | |
Tao et al. | Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres | |
Luo et al. | High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon | |
CN107362777B (zh) | 一种磁性秸秆纤维素重金属离子吸附剂的制备方法 | |
CN111359580A (zh) | 一种多孔结构的碳铁复合材料的制备方法及应用 | |
CN107999033A (zh) | 一种吸附砷的聚多巴胺/氨基化碳纳米管/海藻酸钠微球 | |
Zhou et al. | BiOCl0. 875Br0. 125/polydopamine functionalized PVDF membrane for highly efficient visible-light-driven photocatalytic degradation of roxarsone and simultaneous arsenic immobilization | |
Mahmoud et al. | Doping starch-gelatin mixed hydrogels with magnetic spinel ferrite@ biochar@ molybdenum oxide as a highly efficient nanocomposite for removal of lead (II) ions | |
Li et al. | Simultaneous speciation of inorganic rhenium and molybdenum in the industrial wastewater by amino-functionalized nano-SiO2 | |
CN112915972A (zh) | 一种高Cr(Ⅵ)吸附量的核壳结构高分子磁性纳米球及其制备方法和应用 | |
CN106378105A (zh) | 一种磁性壳聚糖复合吸附剂的制备方法 | |
WO2022174551A1 (zh) | 吸附酚类污染物的磁性核壳纳米微球、制备方法及应用 | |
Chai et al. | In-suit ion-imprinted bio-sorbent with superior adsorption performance for gallium (III) capture | |
CN103599749A (zh) | 磁性载钴有序介孔碳及其制备方法和应用 | |
CN103007881A (zh) | 一种可磁分离的竹炭基废水处理剂、制备方法和应用 | |
Zhu et al. | Fabrication of a magnetic porous hydrogel sphere for efficient enrichment of Rb+ and Cs+ from aqueous solution | |
Zhao et al. | Efficient removal of cationic and anionic dyes by surfactant modified Fe3O4 nanoparticles | |
Gao et al. | Persimmon peel-based ion-imprinted adsorbent with enhanced adsorption performance of gallium ions | |
CN108514870B (zh) | 水滑石-聚间苯二胺复合材料及其制备方法和应用 | |
Li et al. | Adsorption of heavy metals and antibacterial activity of silicon-doped chitosan composite microspheres loaded with ZIF-8 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |