CN104326501B - 一种钇铝石榴石纳米粉体的合成方法 - Google Patents

一种钇铝石榴石纳米粉体的合成方法 Download PDF

Info

Publication number
CN104326501B
CN104326501B CN201410566946.4A CN201410566946A CN104326501B CN 104326501 B CN104326501 B CN 104326501B CN 201410566946 A CN201410566946 A CN 201410566946A CN 104326501 B CN104326501 B CN 104326501B
Authority
CN
China
Prior art keywords
powder
aluminum
aluminium garnet
gel
yttrium aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410566946.4A
Other languages
English (en)
Other versions
CN104326501A (zh
Inventor
李金平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou qicaifeng data application Co., Ltd
Original Assignee
李金平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李金平 filed Critical 李金平
Priority to CN201410566946.4A priority Critical patent/CN104326501B/zh
Publication of CN104326501A publication Critical patent/CN104326501A/zh
Application granted granted Critical
Publication of CN104326501B publication Critical patent/CN104326501B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种钇铝石榴石纳米粉体的合成方法,具体地,将铝盐溶解于异丙醇中,得到浓度为1.2~3.0mol/L的铝溶液;将Y2O3加入3mol/L的HNO3与其反应得到硝酸盐溶液;按照钇铝石榴石Y3Al5O12的化学计量比混合上述溶液,将混合液逐滴滴入1.0~1.5mol/L碳酸氢铵的水溶液中,同时超声分散,滴定结束后,搅拌得到溶胶;将凝胶经过喷雾干燥、煅烧后得到钇铝石榴石纳米粉体。本发明采用溶胶-凝胶和喷雾干燥相结合技术制备YAG纳米粉体,喷雾干燥代替常规的干燥,避免了粉料因干燥而导致的团聚,从而可以制备出低团聚、烧结活性高的YAG纳米粉体。

Description

一种钇铝石榴石纳米粉体的合成方法
技术领域
本发明属于无机粉体合成及激光透明陶瓷制备领域,具体涉及一种钇铝石榴石纳米粉体的制备方法。
背景技术
到目前为止,固体激光器使用最广泛的工作物质是钇铝石榴石(YAG)单晶,但是此类晶体的制备主要采用提拉生长法,造成生产成本高、生产工艺复杂、生产周期长,同时还需要特殊的设备和贵重金属,因而YAG晶体不能满足市场的大量需求。
在1995年,日本科学家成功地制备出高度透明的Nd:YAG陶瓷并实现了激光抽运,从此透明激光陶瓷受到了越来越多的关注。同YAG晶体相比,多晶陶瓷具有稀土离子掺杂浓度高、容易制造、热稳定性好、易于实现批量生产等优点,因而透明YAG陶瓷是一种很有潜力的激光材料。其中,制备出纯度高、粒度小、烧结活性高的YAG粉体是高光学质量YAG透明陶瓷制备的前提。
目前,国内外报道的制备YAG粉体的方法主要有:固相反应法、共沉淀法、水热法和溶胶~凝胶法等。而一般利用溶胶~凝胶法制备YAG纳米粉体,存在的缺点是在凝胶的干燥过程中,如果干燥不当,容易导致粉料团聚,如果不即时解决,最终将演变成硬团聚,从而降低粉料的烧结活性。
发明内容
本发明要解决的技术问题是:提供一种钇铝石榴石纳米粉体的共沉淀制备法,得到的粉体分散均匀,烧结活性好。
本发明解决其技术问题的解决方案是:提供一种钇铝石榴石纳米粉体的合成方法,包括以下步骤:
1)将铝盐溶解于异丙醇中,得到浓度为1.2~3.0mol/L的铝溶液;将Y2O3粉末放入烧杯中,加入3mol/L的HNO3与其反应得到硝酸盐溶液;
2)按照钇铝石榴石Y3Al5O12的化学计量比混合步骤1)中得到的铝溶液和硝酸盐溶液,将混合液逐滴滴入1.0~1.5mol/L碳酸氢铵的水溶液中,同时超声分散,滴定结束后,在40~50℃的条件下,搅拌1.5~3h,得到溶胶;然后在65~75℃的条件下,继续搅拌2~3h,得到凝胶;
3)将凝胶经过喷雾干燥后得到前驱体;
4)将上述前驱体煅烧后得到钇铝石榴石纳米粉体。
所述步骤1)中,铝盐为异丙醇铝。
所述步骤3)中,喷雾干燥的进口温度200~400℃,出口温度80~150℃,泵速200~500ml/h,风速30~70m3/h。
所述步骤4)中,煅烧温度为850~950℃,煅烧时间1.5~3h。
进一步地,通过上述方案得到的钇铝石榴石纳米粉体的粒径为20~80nm。
本发明的有益效果是:本发明采用溶胶-凝胶和喷雾干燥相结合技术制备YAG纳米粉体,喷雾干燥代替常规的干燥,避免了粉料因干燥而导致的团聚,从而可以制备出低团聚、烧结活性高的YAG纳米粉体。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单说明。显然,所描述的附图只是本发明的一部分实施例,而不是全部实施例。
图1是本发明实施例1制备的YAG纳米粉体的X射线衍射谱图;
图2是本发明实施例1制备的YAG纳米粉体的透射电子显微图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整的描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
本发明提供了一种钇铝石榴石纳米粉体的合成方法,包括以下步骤:
1)将铝盐溶解于异丙醇中,得到浓度为1.2~3.0mol/L的铝溶液;将Y2O3粉末放入烧杯中,加入3mol/L的HNO3与其反应得到硝酸盐溶液;优选地,铝盐为异丙醇铝。
2)按照钇铝石榴石Y3Al5O12的化学计量比混合步骤1)中得到的铝溶液和硝酸盐溶液,将混合液逐滴滴入1.0~1.5mol/L碳酸氢铵的水溶液中,同时超声分散,滴定结束后,在40~50℃的条件下,搅拌1.5~3h,得到溶胶;然后在65~75℃的条件下,继续搅拌2~3h,得到凝胶。
3)将凝胶经过喷雾干燥后得到前驱体;优选地,喷雾干燥的进口温度200~400℃,出口温度80~150℃,泵速200~500ml/h,风速30~70m3/h。
4)将上述前驱体煅烧后得到钇铝石榴石纳米粉体。优选地,煅烧温度为850~950℃,煅烧时间1.5~3h。煅烧后得到的钇铝石榴石纳米粉体的粒径为20~80nm。
实施例1
1)将异丙醇铝102.12g溶解于300ml异丙醇中,得到浓度约为1.66mol/L的铝溶液;将33.87gY2O3粉末放入烧杯中,加入3mol/L的HNO3100ml与其反应得到硝酸盐溶液。
2)按照钇铝石榴石Y3Al5O12的化学计量比混合铝溶液和硝酸盐溶液,将混合液逐滴滴入1.0mol/L碳酸氢铵的水溶液中,同时超声分散,滴定结束后,在40~50℃的条件下,搅拌1.5h,得到溶胶;然后在65℃的条件下,继续搅拌2.5h,得到凝胶。
3)将凝胶经过喷雾干燥后得到前驱体;喷雾干燥的进口温度200℃,出口温度90℃,泵速200ml/h,风速30m3/h。
4)将上述前驱体在850~900℃,煅烧时间1.5h得到钇铝石榴石纳米粉体,粉体粒径为30nm。其XRD谱如图1所示,与标准卡片JCPDS33~40对比,衍射峰的位置和相对强度完全一致,表明产物为纯YAG相。TEM照片如图2所示,平均晶粒尺寸为30nm左右。
实施例2
1)将异丙醇铝102.12g溶解于200ml异丙醇中,得到浓度约为2.5mol/L的铝溶液;将33.87gY2O3粉末放入烧杯中,加入3mol/L的HNO3120ml与其反应得到硝酸盐溶液。
2)按照钇铝石榴石Y3Al5O12的化学计量比混合铝溶液和硝酸盐溶液,将混合液逐滴滴入1.5mol/L碳酸氢铵的水溶液中,同时超声分散,滴定结束后,在40~50℃的条件下,搅拌3h,得到溶胶;然后在70℃的条件下,继续搅拌2h,得到凝胶。
3)将凝胶经过喷雾干燥后得到前驱体;优选地,喷雾干燥的进口温度400℃,出口温度150℃,泵速350ml/h,风速70m3/h。
4)将上述前驱体在850~900℃,煅烧时间2h得到钇铝石榴石纳米粉体。煅烧后得到的钇铝石榴石纳米粉体的粒径为50nm。其XRD图谱和TEM照片特征同实施例1。
实施例3
1)将异丙醇铝102.12g溶解于400ml异丙醇中,得到浓度约为1.25mol/L的铝溶液;将33.87gY2O3粉末放入烧杯中,加入3mol/L的HNO3100ml与其反应得到硝酸盐溶液。
2)按照钇铝石榴石Y3Al5O12的化学计量比混合铝溶液和硝酸盐溶液,将混合液逐滴滴入1.2mol/L碳酸氢铵的水溶液中,同时超声分散,滴定结束后,在40~50℃的条件下,搅拌2h,得到溶胶;然后在72℃的条件下,继续搅拌3h,得到凝胶。
3)将凝胶经过喷雾干燥后得到前驱体;喷雾干燥的进口温度350℃,出口温度80℃,泵速500ml/h,风速50m3/h。
4)将上述前驱体在900~950℃,煅烧时间1.5h得到钇铝石榴石纳米粉体,钇铝石榴石纳米粉体的粒径为40nm。其XRD图谱和TEM照片特征同实施例1。
通过以上实施例可见,利用本发明的制备方法,可以在较低(850~950℃)的温度下,制备出粒度小(20~80nm)、烧结活性高、分散较好的YAG纳米粉体。
以上对本发明的较佳实施方式进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (1)

1.一种钇铝石榴石纳米粉体的合成方法,其特征在于,该方法包括以下步骤:
1)将异丙醇铝溶解于异丙醇中,得到浓度为1.2~3.0mol/L的铝溶液;将Y2O3粉末放入烧杯中,加入3mol/L的HNO3与其反应得到硝酸盐溶液;
2)按照钇铝石榴石Y3Al5O12的化学计量比混合步骤1)中得到的铝溶液和硝酸盐溶液,将混合液逐滴滴入1.0~1.5mol/L碳酸氢铵水溶液中,同时超声分散,滴定结束后,在40~50℃的条件下,搅拌1.5~3h,得到溶胶;然后在65~75℃的条件下,继续搅拌2~3h,得到凝胶;
3)将凝胶经过喷雾干燥后得到前驱体,所述喷雾干燥的进口温度200~400℃,出口温度80~150℃,泵速200~500ml/h,风速30~70m3/h;
4)将上述前驱体煅烧后得到钇铝石榴石纳米粉体,所述煅烧温度为850~950℃,煅烧时间1.5~3h;
上述步骤所得到的钇铝石榴石纳米粉体的粒径为40~80nm。
CN201410566946.4A 2014-10-21 2014-10-21 一种钇铝石榴石纳米粉体的合成方法 Active CN104326501B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410566946.4A CN104326501B (zh) 2014-10-21 2014-10-21 一种钇铝石榴石纳米粉体的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410566946.4A CN104326501B (zh) 2014-10-21 2014-10-21 一种钇铝石榴石纳米粉体的合成方法

Publications (2)

Publication Number Publication Date
CN104326501A CN104326501A (zh) 2015-02-04
CN104326501B true CN104326501B (zh) 2016-01-20

Family

ID=52401330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410566946.4A Active CN104326501B (zh) 2014-10-21 2014-10-21 一种钇铝石榴石纳米粉体的合成方法

Country Status (1)

Country Link
CN (1) CN104326501B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105176531A (zh) * 2015-05-21 2015-12-23 上海大学 铈掺杂硅酸镥球形发光粉体及其制备方法
CN106747413B (zh) * 2017-02-23 2020-08-11 四川环碳科技有限公司 钛酸铜钙纳米单晶粉体及其制备方法
CN111574215B (zh) * 2020-05-26 2022-02-08 莆田学院 一种制备钇铝石榴石粉的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102924073A (zh) * 2012-11-16 2013-02-13 北京雷生强式科技有限责任公司 采用热压后处理制备掺杂钇铝石榴石透明激光陶瓷的方法
CN103214016A (zh) * 2013-04-23 2013-07-24 北京中材人工晶体研究院有限公司 一种钇铝石榴石纳米粉体的制备方法
CN104098120A (zh) * 2014-07-08 2014-10-15 广西民族大学 一种球形无团聚掺杂钇铝石榴石纳米粉体的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048783A (ja) * 2001-08-02 2003-02-21 Toshiba Ceramics Co Ltd アルミナセラミックス接合体及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102924073A (zh) * 2012-11-16 2013-02-13 北京雷生强式科技有限责任公司 采用热压后处理制备掺杂钇铝石榴石透明激光陶瓷的方法
CN103214016A (zh) * 2013-04-23 2013-07-24 北京中材人工晶体研究院有限公司 一种钇铝石榴石纳米粉体的制备方法
CN104098120A (zh) * 2014-07-08 2014-10-15 广西民族大学 一种球形无团聚掺杂钇铝石榴石纳米粉体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"无团聚YAG:Ce3+荧光粉的制备与表征";郜盛夏等;《发光学报》;20101231;第31卷(第6期);第806页左栏第1段 *

Also Published As

Publication number Publication date
CN104326501A (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
CN107151029B (zh) 一种四方相钛酸钡粉体的溶胶-水热法制备工艺
CN102923770B (zh) 一种钇稳定纳米二氧化锆粉体的制备方法
CN104528799B (zh) 一种镁基稀土六铝酸盐超细粉体的制备方法
CN104326501B (zh) 一种钇铝石榴石纳米粉体的合成方法
CN101746825A (zh) 一种制备橄榄球状介孔BiVO4的有机溶剂-水热法
CN108455686B (zh) 一种掺铌钨钽四氧化三钴的制备方法
CN104645963A (zh) 一种抑制二氧化钛相变的方法
CN103214016A (zh) 一种钇铝石榴石纳米粉体的制备方法
CN103754935B (zh) 一种室温下合成钼酸铅塔状晶体的方法
CN103833080B (zh) 一种钼酸镉多孔球的制备方法
CN104779387B (zh) 锂离子电池LiNi1-x-yCoxAlyO2材料的制备方法
CN104226320A (zh) 钒硼共掺杂二氧化钛与氧化镍复合光催化剂的制备方法
CN103071479A (zh) 双稀土元素镧和钆共掺杂二氧化钛纳米管的制备方法
CN104445341B (zh) 一种纯yag相的钇铝石榴石纳米粉体的制备方法
CN106915773B (zh) 一种钼酸锶树枝状晶体的制备方法
CN106316386A (zh) 一种稀土掺杂铋系层状钙钛矿氧化物铁电上转换材料的制备方法
CN109502643B (zh) 一种硼镁共掺杂vo2粉体及其制备方法和应用
CN101214982A (zh) 尿素沉淀法制备Yb3Al5O12纳米粉体的方法
CN103614139B (zh) 采用反向共沉淀制备Gd2Ti2O7:Ce纳米发光粉体的方法
CN103427076B (zh) 一种固相化学反应制备TiO2-B纳米材料的方法
CN105238404A (zh) 介孔核壳荧光粉及液相制备方法
CN109081694A (zh) 前驱液及高温雾化火焰合成钇铝复合氧化物纳米粉体以及其制备方法
CN109346711A (zh) 一种稀土金属元素掺杂的碳包覆钛酸锂、制备方法和应用
CN106140159B (zh) 一种快速制备棒状AgVO3纳米光催化剂的方法
CN105175010B (zh) 一种溶胶凝胶法制备金红石二氧化钛纳米薄膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201023

Address after: 215600 station 0023, 20th floor, building A-1, shazhouhu science and Technology Innovation Park, Huachang Road, yangshe Town, Zhangjiagang City, Suzhou City, Jiangsu Province (cluster registration)

Patentee after: Suzhou qicaifeng data application Co., Ltd

Address before: 528000, No. 12, building 1208, Yongfeng building, Tongji Road, Chancheng District, Guangdong, Foshan

Patentee before: Li Jinping