CN104321623B - 水性组件及控制方法 - Google Patents

水性组件及控制方法 Download PDF

Info

Publication number
CN104321623B
CN104321623B CN201380018865.4A CN201380018865A CN104321623B CN 104321623 B CN104321623 B CN 104321623B CN 201380018865 A CN201380018865 A CN 201380018865A CN 104321623 B CN104321623 B CN 104321623B
Authority
CN
China
Prior art keywords
reactivity
aqueous
aqueous component
aqueous solution
stabilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380018865.4A
Other languages
English (en)
Other versions
CN104321623A (zh
Inventor
格雷戈里·皮耶福尔
埃里克·N·范亚伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunshine Technology Co.,Ltd.
Original Assignee
Phoenix Nuclear Labs LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoenix Nuclear Labs LLC filed Critical Phoenix Nuclear Labs LLC
Publication of CN104321623A publication Critical patent/CN104321623A/zh
Application granted granted Critical
Publication of CN104321623B publication Critical patent/CN104321623B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/18Moderator or core structure; Selection of materials for use as moderator characterised by the provision of more than one active zone
    • G21C5/20Moderator or core structure; Selection of materials for use as moderator characterised by the provision of more than one active zone wherein one zone contains fissile material and another zone contains breeder material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/0005Isotope delivery systems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • G21C1/08Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being highly pressurised, e.g. boiling water reactor, integral super-heat reactor, pressurised water reactor
    • G21C1/084Boiling water reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/24Homogeneous reactors, i.e. in which the fuel and moderator present an effectively homogeneous medium to the neutrons
    • G21C1/26Single-region reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/30Subcritical reactors ; Experimental reactors other than swimming-pool reactors or zero-energy reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/02Control of nuclear reaction by using self-regulating properties of reactor materials, e.g. Doppler effect
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/34Control of nuclear reaction by utilisation of a primary neutron source
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/06Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by neutron irradiation
    • G21G1/08Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by neutron irradiation accompanied by nuclear fission
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/24Homogeneous reactors, i.e. in which the fuel and moderator present an effectively homogeneous medium to the neutrons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

本发明公开了一种具有负反应性系数的水性组件,所述负反应性系数具有一个幅值。所述水性组件包括容器和水溶液。所述水溶液包含可裂变溶质并容纳在所述容器中。反应性稳定器设置在所述水溶液内以在所述水性组件运行过程中降低所述水溶液的负反应性系数的幅值。

Description

水性组件及控制方法
相关申请
本申请主张2012年4月5日申请的美国临时专利申请第61/620735号的优先权,该在先申请的全部内容以引用的方式结合于本案中。
背景技术
本发明涉及水性组件。
在水性组件中,容器容纳溶解在水溶液中的可裂变材料。因为可裂变材料溶解在溶液中,这些组件往往具有大的负反应性温度和空泡系数(negative temperature andvoid coefficients of reactivity),其由溶液膨胀造成。当水性组件用于例如医用同位素的制备时,水性组件希望操作在相对较高的功率水平下。当在次临界状态下,希望具有相对较高的中子倍增因子(neutron multiplication factor)。然而,这个大的负反应性温度和空泡系数可能造成不良的反应性损失和/或功率振荡(power oscillation),从而限制了水性组件的操作参数。
发明内容
在一些实施例中,本发明提供了一种具有负反应性系数的水性组件,所述负反应性系数具有一个幅值。所述水性组件包括容器和水溶液。所述水溶液包含可裂变溶质并容纳在所述容器中。反应性稳定器设置在所述水溶液内以在所述水性组件运行过程中降低所述水溶液的负反应性系数的幅值。
在其它实施例中,提供了一种操作水性组件的方法,所述水性组件具有反应性系数,所述反应性系数具有一个幅值。所述方法包括提供容器。水溶液被添加至所述容器,所述水溶液包含可裂变溶质。反应性稳定器被添加至所述水溶液,从而降低所述反应性系数的幅值。所述水溶液内维持裂变反应。
通过考虑详细说明和附图,本发明的其它方面将变得更加明显。
附图说明
图1是次临界混合体的局部剖视图,该混合体包括中子源组件和水性组件。
图2是靶溶液中的硼浓度对次临界水性组件的归一化生产率的曲线图。
图3是含铀水溶液中的硼浓度对水性组件的反应性温度系数的曲线图。
图4是水性反应堆的截面示意图。
图5是加入稳定措施和未加入稳定措施的次临界水性组件的次临界操作区间的对比示意图。
图6是加入稳定措施和未加入稳定措施的临界水性组件的操作区间的对比示意图。
具体实施方式
在详细描述本发明的任何实施例之前,应当理解,本发明不将其应用局限于下文所述或附图所示的结构细节和部件布置。本发明能够具有其它实施例并且能够以各种方式实施或实现。同样,应当理解,这里使用的措辞和术语是出于描述目的,而不应被看作限制性的。这里使用的“包含”、“包括”或“具有”及其变形是指涵盖其后所列项目和其等同物以及其它项目。除非另有说明或限制,术语“安装”、“连接”、“支撑”和“联接”及其变形被广义地使用并且涵盖直接和间接安装、连接、支撑和联接。另外,“连接”和“联接”不局限于物理或机械连接或联接。也应该特别理解的是,这里记载的任何数值范围包括从下端值到上端值之间的所有值,例如,这里列举的下端值和上端值之间的数值的所有可能的组合都应被视为在本申请中明确描述过。例如,如果一个浓度范围被描述为1%至50%,其预期是本申请明确列举了例如2%至40%、10%至30%或1%至3%等数值。或者,如果一个参数被描述为0.95–0.99,其预期是本申请明确列举了例如0.96–0.98、0.95–0.98等数值。这些只是被特意预期的一些举例。
在此提出的装置和方法可用于各种类型和配置的水性组件,包括例如临界和次临界水性组件。
如图1,次临界混合体10包括中子源组件14和水性组件。具体而言,该水性组件是水性靶组件18。
中子源组件14包括射频驱动等离子体离子源22。离子源22接收原料气,例如氚(T)和氘(D)混合气。离子源22产生包括氘离子D+和氚离子T+的离子束并使该离子束准直,该离子束被导引沿预定路径26前进。
加速器30接收D+和T+离子束并将该离子束加速成加速的D+和T+离子束。该加速器30可包括一系列用以加速D+和T+离子束的加速电极或静电板。
中子源组件14的加速器靶部34接收加速的离子束。该加速器靶部34包括气体靶室38,在所示的实施例中,还包括差分泵浦系统42。气体靶室38含有产生核粒子的靶气体,该靶气体可与加速的离子束反应以发出核粒子,例如,质子或中子。在一种构造中,该气体靶室38填充近似等量混合的D和T气体。
从气体靶室38泄漏进差分泵浦系统42的气体流过高速泵以及冷阱(Cold Trap)然后流回到该靶室内。冷阱及时移除非常小的泄漏即可污染系统的较重的气体。
加速的D+和T+离子束撞击D和T混合靶气体产生D-T和T-D反应,从而导致中子发射。
在本发明的一些构造中,中子倍增器46实质上围绕该气体靶室。该中子倍增器46可基本上由铍(beryllium)或铀(uranium)形成。当气体靶室内的高能中子通过(n,2n)反应将铍原子分裂成两个氦核(helium nuclei)和一个额外的中子时或者当中子与铀发生(n,2n)、(n,3n)或(n,f)反应时,就会发生中子倍增。例如,14.1MeV的中子的能量足以在能量降至倍增阀值以下之前如此反应数次。
该水性靶组件18包括靶溶液容器(TSV)50,且被屏蔽池54围绕。该TSV 50包括内墙58和外墙62,内墙58和外墙62之间形成环形溶液体积66。TSV 50可例如由锆合金(zircaloy)、不锈钢或铝形成。TSV50实质上围绕气体靶室38且在适用时也围绕中子倍增器46。
TSV 50接收该环形靶溶液体积66的水溶液,该水溶液包含可裂变溶质。该可裂变溶质包括以低浓缩铀(LEU)或自然铀形式存在的U-235或者其它可裂变材料。铀可转换为盐(例如,硝酸铀酰(uranyl nitrate)、硫酸铀酰(uranyl sulfate)、磷酸铀酰(uranylphosphate)、碳酸铀酰(uranyl carbonate)、氟化铀酰(uranyl fluoride))以提高溶解度,且可调整pH值以进一步提高溶解度。该水溶液可包括浓度为至少约10克铀/升、至少约20克铀/升、至少约30克铀/升、至少约40克铀/升、至少约60克铀/升、至少约80克铀/升、至少约100克铀/升、至少约120克铀/升、至少约140克铀/升、至少约160克铀/升、至少约180克铀/升、至少约200克铀/升、至少约220克铀/升、至少约240克铀/升、至少约260克铀/升、至少约280克铀/升或至少约300克铀/升的铀。该水溶液可包括浓度为低于约800克铀/升、低于约750克铀/升、低于约700克铀/升、低于约650克铀/升、低于约600克铀/升、低于约550克铀/升、低于约500克铀/升、低于约450克铀/升或低于约400克铀/升的铀。该水溶液可包括浓度为10克铀/升至约800克铀/升、20克铀/升至约700克铀/升、40克铀/升至约600克铀/升、40克铀/升至约500克铀/升或50克铀/升至约400克铀/升的铀。在一些实施例中,水溶液中的铀浓度可在10克铀/升至约800克铀/升的范围内。在一些实施例中,该水溶液中的铀浓度可在40克铀/升至约500克铀/升的范围内。
为了实质上最大化利用该次临界混合体制备医用同位素的产量,同时实质上确保维持该次临界度,使用中子学计算机软件(Neutronics Computer Codes)针对给定的铀浓度和浓缩度计算该系统的有效中子增殖因子(keff)。可用于这种分析的中子学软件包括MCNP5、HELIOS、VARIANT、PN2ND、PHOENIX/ANC、KENO、DENOVO以及很多其它软件。进而,针对期望的keff可以计算期望的铀浓度和浓缩度。
keff是系统的临界接近度的量度,其中:
keff<1.0表示次临界
keff=1.0表示临界
keff>1.0表示超临界
为了实质上最大化医用同位素的产量,同时实质上维持次临界度,希望次临界混合体10运行在水性靶组件18的keff接近1.0的水平,因为更高的keff值由于增加了次临界倍增,因此增加了系统的效率。该混合体10可运行在keff为至少约0.7000、至少约0.7500、至少约0.8000、至少约0.7000、至少约0.8500、至少约0.9000或至少约0.9500的条件下。该混合体10可运行在keff为低于约0.9995、低于约0.9990、低于约0.9980、低于约0.9970、低于约0.9960、低于约0.9950或低于约0.9900的条件下。该混合体10可运行在keff为0.7000至0.9995、0.7500至0.9995、0.8000至0.9995、0.9000至0.9995、0.9500至0.9995、0.9900至0.9995的条件下。
图4是水溶液反应堆70的截面视图。水溶液反应堆70包括位于屏蔽池78内的水性组件74(例如,能够临界运行的水性组件)。该水性组件74包括盛装一定容量的水溶液86的反应堆容器82。该水溶液86包括可裂变溶质。该可裂变溶质可包括以低浓缩铀或自然铀形式存在的U-235或其它可裂变材料。该铀可转换为盐(例如,硝酸铀酰(uranyl nitrate)、硫酸铀酰(uranyl sulfate)或氟化铀酰(uranyl fluoride))以提高溶解度,且可调整pH值以进一步提高溶解度。该水溶液86包括至少临界质量的可裂变溶质。该可裂变溶质的临界质量取决于其核性质(例如,裂变截面)、可裂变溶质在溶液中的浓缩度和浓度、溶液的密度、反应堆容器内溶液的形状、溶液温度、周围物体的中子反射以及其它因素。
控制棒90选择性地定位在水性组件74内。控制棒90的材料具有高中子俘获截面。该材料可包括银、铟(Indium)和镉(Cadmium)。其它可被使用的元素包括例如硼(Boron)、钴(cobalt)、铪(hafnium)、镝(dysprosium)、钆(gadolinium)、钆(samarium)、钐(erbium)、铕(europium)或其合金和化合物,例如高硼钢(high-boron steel)、银-铟-镉合金(silver-indium-cadmium alloy)、碳化硼(boron carbide)、二硼化锆(zirconium diboride)、二氧化钛(titanium diboride)、硼化铪(hafnium diboride)、钛酸钆(gadolinium titanate)、钛酸镝(dysprosium titanate)。
控制棒90利用控制棒驱动机构(CRDM)94定位在水性组件74中。将控制棒90深深地插入到反应堆容器82的水溶液86中会降低水性组件74的反应性,从而避免水性组件74非故意地进入临界状态(即,控制棒维持keff<1.0)。随着控制棒90被CRDM 94可控制地从溶液中抽出,更少的中子被俘获,水性组件74内的反应性增加直到keff=1.0(即,水性组件74处于临界状态)。继续抽出控制棒74将继续插入正反应性。如果控制棒90迅速抽出,充分的正反应性就被插入至水性组件74中,则水性组件74进入瞬发临界(Prompt Critical):仅使用瞬发中子即可维持裂变反应的那个点。然而,该正控制棒反应性可被能够产生负反应性的其它影响抵消,其它影响包括加热溶液,在溶液中形成空泡,甚至是沸腾。
由于可裂变原子(例如,铀235)位于水性组件(即,次临界水性靶组件18或水性组件74)的溶液中,溶液随着温度升高而膨胀,而铀的质量浓度随之降低。这种膨胀将铀从TSV50(图1)或反应堆容器82(图4)的在中子学上更重要的“高价值”中部区域移走,并将铀移动至该溶液的为“低价值”区域的自由表面。
随着溶液温度升高,平均中子能量增加,这加剧了该热膨胀的影响。相对于可能发生的其它事件(例如,从系统中退出、低位共振(Low-lying Resonance)俘获等)而言,热中子温度的升高降低了使铀235分裂的可能性。这种效应可造成很强的负反应性温度系统。该反应性温度系数(αT)是系统反应性随单位温度上升的变化量的量度。αT预测keff因水溶液的温度变化而产生的变化。在100华氏度时,次临界混合体10或水溶液反应堆70的实施例的αT估算为近似-10pcm/°F。αT值可利用中子学计算机软件计算。αT值可低于约-1、低于约-2、低于约-3、低于约-4、、低于约-5、低于约-6、低于约-7、低于约-8、低于约-9或低于约-10。αT值可为-100至-1、-90至-2、-80至-3、-70至-4或-60至-5。
除了负的αT之外,水性组件,例如次临界水性靶组件18(图1)或水性组件74(图4)也具有很强的负空泡系数(αvoid)。αvoid是系统反应性随单位气体或空泡增加的变化量的量度。水性组件具有负空泡系数的原因与前述热膨胀的影响类似(随着空泡加入到溶液中,空泡将铀从溶液表面的高价值中央区域移动至低价值区域)。αvoid值可利用中子学计算机软件进行计算。αvoid值可为至少约-500pcm/(%空泡)、至少约-450、至少约-400、至少约-350、至少约-300、至少约-250、至少约-200、至少约-150或至少约-100。αvoid值可为低于约-10、低于约-20、低于约-30、低于约-40、低于约-50。αvoid值可为-500至-10,-450至-20,-400至-30,-350至-40,or-300至-50pcm/(%空泡)。
大的负αT和αvoid值可导致水溶液系统的两个潜在问题:反应性振荡和产出降低。反应性振荡可以是系统中诱发的任何瞬时变化(例如,功率变化或压力变化)或者自然振荡(例如,紊流)的结果。例如,如果温度上升,该反应性反馈机制将致使功率降低,这将造成温度下降以及随后的功率上升。这个循环将持续进行直到其被外部控制系统抑制或直到其自然衰减。
第二个潜在问题是输出降低。对于次临界水性靶组件18而言,该输出的降低可以是因为该很强的负温度和空泡系数造成keff降低值,从而降低系统的次临界倍增。该很强的负αT和αvoid值可造成系统的运行功率水平的降低以确保设计中有足够的安全边际以应付这种功率振荡。
通过降低αT和αvoid值的幅值,可以同时降低这两个问题造成的影响。
某些同位素具有非常大的中子俘获截面,同时随着温度上升降低密度和/或吸收度,这些同位素可被称为反应性稳定器。反应性稳定器从核系统中吸收中子,从而阻止中子发生裂变。反应性稳定器的一些例子包括,但不限于,硼-10、钆-155和钆-157。硼-10可以硼酸(即,H3BO3或B(OH)3)的形式添加进水溶液中。由于其高溶解度和低pH值,硼酸可能是特别理想的稳定器。除了使用可溶解的硼酸外,硼的其它物理放置也可以使用。这些装置包括含有硼的固定板或棒。商用的硼铝合金因其化学和辐射稳定性也可以被使用。另一个选择是将硼放置在填充有浓硼酸的单独的管中。
通过添加这些反应性稳定器至TSV 50(图1)或反应堆容器82(图4)的水溶液中,溶液中铀的相对重要性可被降低,因为该反应性稳定器与铀就中子展开竞争。如此,当溶液温度被升高(或上升),该溶液膨胀不仅将一些铀从高价值中央区域移走,其还将一些反应性稳定器移走。净效果是这个很强的负αT值的幅值被降低。
αvoid也获得类似的反应。溶液空泡的增加同时移走反应性稳定器和铀。因此,由于铀损失和反应性稳定器损失的竞争效应,溶液中额外的空泡对反应性的影响被降低了。
通过调整反应性稳定器的浓度,反应性反馈系数αT和αvoid可被塑造成任何期望的水平。例如,反应性稳定器浓度可被选择成以降低αT和αvoid值的幅值,但同时保持它们为负的值。负系数帮助确保系统功率的增加会导致反应性降低(自限装置);然而,太过负性的系数会导致上述功率振荡。图3例示次临界水性靶组件在数个选定的硼浓度条件下的反应性温度系数(αT),显示温度系数的幅值随着硼浓度增加而降低。
基本上,当操作次临界混合体组件10时,降低的反应性系数由于降低了反应性振荡而提高了稳定性(αT和αvoid)。该提高的稳定性也可以提高医用同位素的生产率。因为反应性振荡被降至最低,该次临界混合体组件可操作在更高的有效中子倍增因子(keff)条件下。图2是靶溶液中的硼浓度对次临界组件的归一化生产率的曲线图,显示生产率随着硼浓度上升而提高。
图5例示次临界水性组件的keff操作区间。对于不使用反应性稳定器的次临界水性组件,由于大的αT和αvoid值导致温度和空泡反应性的振荡,keff操作区间较宽。为了降低发生临界的可能性,未加稳定措施的操作区间的典型操作keff值是非理想地远离keff=1.0,由于次临界倍增降低,这降低了次临界水性组件的操作效率。相比而言,包含反应性稳定器的水性组件具有较窄的keff操作区间,因为αT和αvoid值的降低造成温度和空泡反应性振荡的降低。而且,加了稳定措施的操作区间的典型操作keff值更接近keff=1.0,但同时维持与临界之间的相同边际,从而通过增加次临界倍增来增加次临界水性组件的操作效率。
图6例示临界水性组件的keff操作区间。对于不使用反应性稳定器的临界水性组件,由于大的αT和αvoid值导致温度和空泡反应性的振荡,keff操作区间较宽。当操作在临界状态时,操作区间的上限非理想地接近瞬发临界(Prompt Criticality)。相比而言,包含反应性稳定器的临界水性组件具有较窄的keff操作区间,因为αT和αvoid值的降低造成温度和空泡反应性振荡的降低。而且,至瞬发临界的边际更大,从而提高了临界水性组件的安全边际。
范例1:提供次临界混合体,包括中子源组件、中子倍增器以及水性组件。水溶液提供在TSV中。该水溶液含有可裂变溶质,包括LEU。
硼或其它反应性稳定器的期望浓度可使用中子学计算机软件进行计算。操作者可选择期望的keff、αT和αvoid值,然后计算硼浓度。中子学软件的其它输入值包括该混合体组件的操作条件,例如,TSV、屏蔽池和中子倍增器的几何尺寸以及所有材料的体积、溶液化学和密度,源粒子能量,核截面数据,以及所有材料的温度。
一旦计算出期望的硼浓度,就制备硼或硼酸并将其添加至该水溶液中。
针对一个期望的可溶反应性稳定器浓度计算αT和αvoid。使用基本情况确定具有高精度的第一keff值(keff1)。然后对变量(例如,溶液温度)做小的扰动(perturbation),然后计算新的keff值(keff2)。视情况,从该基本情况向相反的方向做一个第二扰动,然后计算第三keff值(keff3)。
然后,根据(keff1–keff2)/(keff1*keff2)/ΔΖ计算反应性系数(αT或αvoid),其中ΔΖ是变量的扰动量。这两个扰动量用于确认所计算的反应性系数(αT或αvoid),确定反应性系数的斜率,以及通过取平均值提供更好的统计。
一旦次临界混合体运行,通过仪器和计算来测量αT或αvoid。例如,αT可通过监视温度对系统功率的影响来加以推算。溶液温度将被测量(在溶液的数个具体位置测量),所测的温度然后使用流体动力学计算映射至体积温度(bulk temperature)。然后,测量该温度下的功率或中子通量。知道该源中子项后,该中子通量或功率可被关联至系统中已知的keff。然后,在系统中产生(例如,通过改变冷却流的方式)温度变化(或空泡变化),然后这个过程再重复进行。然后,采用与上述相同的公式计算反应性系数(αT或αvoid)。
范例2:提供水溶液反应堆,包括水性组件。水溶液提供在反应堆容器中。该水溶液含有已知浓度和浓缩度的可裂变溶质。
硼或其它反应性稳定器的期望浓度可使用中子学计算机软件进行计算。操作者可选择期望的αT和αvoid值,然后计算硼浓度。中子学软件的其它输入值可包括该水溶液反应堆的操作条件,例如,该反应堆容器和屏蔽池的几何尺寸以及所有材料的体积、溶液化学和密度,源粒子能量,核截面数据,以及所有材料的温度。
一旦计算出期望的硼浓度,就制备硼或硼酸并将其添加至该水溶液中。
针对一个期望的可溶反应性稳定器浓度计算αT和αvoid。这两个扰动量用于确认所计算的反应性系数(αT或αvoid),确定反应性系数的斜率,以及通过取平均值提供更好的统计。
一旦水溶液反应堆运行,通过仪器和计算来测量αT或αvoid。例如,αT可通过监视温度对系统功率的影响来加以推算。溶液温度将被测量(在溶液的数个具体位置测量),所测的温度然后使用流体动力学计算映射至体积温度(bulk temperature)。然后,测量该温度下的功率或中子通量。然后,采用与上述相同的公式计算反应性系数(αT或αvoid)。
因此,除了别的以外,本发明提供了一种水性组件及其控制方法。本发明的各种特点和优点阐述于下列权利要求中。

Claims (20)

1.一种具有负反应性系数的水性组件,所述水性组件包括:
容器;
水溶液,所述水溶液包含可裂变溶质并容纳在所述容器中;以及
反应性稳定器,所述反应性稳定器设置在所述水溶液内以在所述水性组件运行过程中降低所述水性组件的负反应性系数的幅值,其中所述反应性稳定器吸收中子。
2.如权利要求1所述的水性组件,其中,所述反应性系数是溶液反应性温度系数。
3.如权利要求1所述的水性组件,其中,所述反应性系数是溶液反应性空泡系数。
4.如权利要求1所述的水性组件,其中,所述可裂变溶质包含铀。
5.如权利要求1所述的水性组件,其中,所述可裂变溶质包括硝酸铀酰、硫酸铀酰或氟化铀酰至少其中之一。
6.如权利要求1-5中任意一项所述的水性组件,其中,所述反应性稳定器包括硼-10。
7.如权利要求1-5中任意一项所述的水性组件,其中,所述反应性稳定器包括硼酸。
8.如权利要求1-5中任意一项所述的水性组件,其中,所述反应性稳定器包括钆-155和钆-157至少其中之一。
9.如权利要求1-5中任意一项所述的水性组件,其中,所述反应性稳定器是所述水溶液的溶质。
10.如权利要求1-5中任意一项所述的水性组件,其中,所述水性组件是次临界的,所述水性组件还包括用以在所述容器中维持裂变反应的中子源。
11.如权利要求1-5中任意一项所述的水性组件,其中,所述水性组件能够在临界状态下运行。
12.如权利要求1-5中任意一项所述的水性组件,还包括控制棒,至少所述控制棒的一部分选择性地置于所述水溶液中以至少部分地控制所述水溶液的反应性。
13.一种操作水性组件的方法,所述水性组件具有反应性系数,所述反应性系数具有一个幅值,所述方法包括:
提供容器;
添加水溶液至所述容器,所述水溶液包含可裂变溶质;
添加反应性稳定器至所述水溶液,其中所述反应性稳定器吸收中子;
降低所述反应性系数的幅值;以及
维持所述水溶液内的裂变反应。
14.如权利要求13所述的方法,还包括:
提供中子源;以及
操作所述中子源以维持所述水溶液内的裂变反应。
15.如权利要求13所述的方法,还包括抽出控制棒直到所述水溶液达到临界。
16.如权利要求13至15中任意一项所述的方法,其中添加所述反应性稳定器包括添加硼-10。
17.如权利要求13至15中任意一项所述的方法,其中添加反应性稳定器包括添加硼酸。
18.如权利要求13至15中任意一项所述的方法,其中添加所述反应性稳定器包括添加钆-155和钆-157至少其中之一。
19.如权利要求13至15中任意一项所述的方法,其中降低所述反应性系数的幅值包括降低负反应性温度系数的幅值。
20.如权利要求13至15中任意一项所述的方法,其中降低所述反应性系数的幅值包括降低负反应性空泡系数的幅值。
CN201380018865.4A 2012-04-05 2013-03-15 水性组件及控制方法 Active CN104321623B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261620735P 2012-04-05 2012-04-05
US61/620,735 2012-04-05
PCT/US2013/031837 WO2013187974A2 (en) 2012-04-05 2013-03-15 Aqueous assembly and control method

Publications (2)

Publication Number Publication Date
CN104321623A CN104321623A (zh) 2015-01-28
CN104321623B true CN104321623B (zh) 2018-11-30

Family

ID=49758839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380018865.4A Active CN104321623B (zh) 2012-04-05 2013-03-15 水性组件及控制方法

Country Status (8)

Country Link
US (2) US11361873B2 (zh)
KR (1) KR102172861B1 (zh)
CN (1) CN104321623B (zh)
CA (1) CA2869559C (zh)
HK (1) HK1201575A1 (zh)
IN (1) IN2014DN09137A (zh)
RU (1) RU2649662C2 (zh)
WO (1) WO2013187974A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494484C2 (ru) 2008-05-02 2013-09-27 Шайн Медикал Текнолоджис, Инк. Устройство и способ производства медицинских изотопов
WO2012003009A2 (en) 2010-01-28 2012-01-05 Shine Medical Technologies, Inc. Segmented reaction chamber for radioisotope production
US10734126B2 (en) 2011-04-28 2020-08-04 SHINE Medical Technologies, LLC Methods of separating medical isotopes from uranium solutions
RU2649662C2 (ru) 2012-04-05 2018-04-05 Шайн Медикал Текнолоджиз, Инк. Водная сборка и способ управления
KR101787916B1 (ko) * 2016-12-30 2017-10-19 한국과학기술원 열중성자로 핵연료 집합체
CN107863162B (zh) * 2017-11-28 2019-09-24 中国科学院近代物理研究所 将反应堆从次临界状态转换到临界状态的方法
CN110580957B (zh) * 2019-09-19 2021-04-06 中国核动力研究设计院 一种无外加中子源的反应堆装料启动方法
CN111508620B (zh) * 2020-04-30 2023-03-24 中国核动力研究设计院 一种反应堆机动性自调节方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2837476A (en) * 1956-01-27 1958-06-03 Harold M Busey Steam stirred homogeneous nuclear reactor
US5940461A (en) * 1994-07-08 1999-08-17 Hitachi, Ltd. Reactor core for a light water cooled reactor, fuel assembly and control rod
CN101861627A (zh) * 2007-11-15 2010-10-13 由俄勒冈州高等教育管理委员会代表的俄勒冈州立大学 用于核反应堆的稳定启动系统

Family Cites Families (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB118724A (en) * 1917-10-22 1918-09-12 Edgar Francis Griffin Improvements in Brakes for Cycles.
US2161985A (en) 1934-03-12 1939-06-13 Szilard Leo Process of producing radio-active elements
GB829093A (en) * 1945-01-06 1960-02-24 Atomic Energy Authority Uk Recovery of uranium by precipitation as peroxide
NL274922A (zh) 1955-06-14
BE559845A (zh) 1956-08-06
US3860482A (en) * 1957-09-25 1975-01-14 Atomic Energy Commission Reactor reactivity control by coolant passage coating
US2992333A (en) 1958-04-03 1961-07-11 High Voltage Engineering Corp Compact neutron source
US3030543A (en) 1958-04-15 1962-04-17 John S Luce Method and apparatus for trapping ions in a magnetic field
US3079319A (en) * 1958-09-02 1963-02-26 Westinghouse Electric Corp Neutronic reactor fuel handling system
GB869451A (en) * 1958-10-25 1961-05-31 Asea Ab Fuel composition for aqueous homogeneous nuclear reactors
NL287706A (zh) 1960-02-26
US3085966A (en) 1960-11-08 1963-04-16 North American Aviation Inc Liquid homogeneous fuel element and reactor therefor
US3255092A (en) * 1961-03-24 1966-06-07 Gen Dynamics Corp Control rods
US3418206A (en) 1963-04-29 1968-12-24 Boeing Co Particle accelerator
US3276965A (en) 1963-06-17 1966-10-04 Internuclear Company Single pass superheat reactor
US3218235A (en) 1963-12-09 1965-11-16 Arthur W Ehler Method and apparatus for producing a magnetically confined hot dense plasma
NL289180A (zh) 1965-03-11
US4147590A (en) 1965-09-01 1979-04-03 The United States Of America As Represented By The United States Department Of Energy Nuclear propulsion apparatus with alternate reactor segments
US3320176A (en) * 1966-04-01 1967-05-16 Babcock & Wilcox Co Method of producing ceramic nuclear fuel material having incorporated therein burnable poison
US3386883A (en) 1966-05-13 1968-06-04 Itt Method and apparatus for producing nuclear-fusion reactions
US3473056A (en) 1967-08-09 1969-10-14 Nat Electrostatics Corp Power transmission system for high voltage accelerators
US3530497A (en) 1968-04-24 1970-09-22 Itt Apparatus for generating fusion reactions
DE1816459B1 (de) 1968-12-21 1970-06-25 Kernforschung Gmbh Ges Fuer Neutronengenerator
US3676672A (en) 1969-02-03 1972-07-11 Benjamin B Meckel Large diameter ion beam apparatus with an apertured plate electrode to maintain uniform flux density across the beam
US3617908A (en) 1969-02-24 1971-11-02 Henry Greber Charged particle accelerator with single or multimode operation
BE758571A (fr) 1969-11-06 1971-04-16 Euratom Generateur de plasma a haute frequence
GB1325685A (en) 1969-12-23 1973-08-08 Nat Res Dev Neutron generators
US3668066A (en) 1970-02-18 1972-06-06 Atomic Energy Commission Dynamic stabilizer for plasma instabilities to improve plasma confinement and to increase plasma density
US3624240A (en) 1970-03-24 1971-11-30 Atomic Energy Commission Feedback stabilization of a magnetically confined plasma
US3746859A (en) 1970-04-22 1973-07-17 Atomic Energy Commission High intensity neutron source
US3634704A (en) 1970-09-02 1972-01-11 Atomic Energy Commission Apparatus for the production of highly stripped ions
US3718836A (en) 1970-11-18 1973-02-27 Itt Multipactor ion generator
US3713967A (en) 1971-06-18 1973-01-30 Atomic Energy Commission Energetic neutral particle injection system for controlled fusion reactor
US3799883A (en) 1971-06-30 1974-03-26 Union Carbide Corp Production of high purity fission product molybdenum-99
US3719893A (en) 1971-12-23 1973-03-06 Us Navy System and method for accelerating charged particles utilizing pulsed hollow beam electrons
US3992625A (en) 1973-12-27 1976-11-16 Jersey Nuclear-Avco Isotopes, Inc. Method and apparatus for extracting ions from a partially ionized plasma using a magnetic field gradient
US3925676A (en) 1974-07-31 1975-12-09 Ca Atomic Energy Ltd Superconducting cyclotron neutron source for therapy
US4008411A (en) 1975-07-08 1977-02-15 The United States Of America As Represented By The United States Energy Research And Development Administration Production of 14 MeV neutrons by heavy ions
US4137012A (en) 1976-11-03 1979-01-30 S.A.E.S. Getters S.P.A. Modular getter pumps
US4202725A (en) 1978-03-08 1980-05-13 Jarnagin William S Converging beam fusion system
US4370295A (en) 1978-03-21 1983-01-25 Fdx Associates, L.P. Fusion-fission power generating device having fissile-fertile material within the region of the toroidal field coils generating means
US4314879A (en) 1979-03-22 1982-02-09 The United States Of America As Represented By The United States Department Of Energy Production of field-reversed mirror plasma with a coaxial plasma gun
DE3003088A1 (de) 1980-01-29 1981-07-30 Alkem Gmbh, 6450 Hanau Verfahren zur reinigung einer salpetersauren u/pu-loesung
US4311912A (en) 1980-05-08 1982-01-19 Mobil Oil Corporation Neutron accelerator tube having improved target section
JPS5766686A (en) 1980-10-09 1982-04-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser coupler for single mode optical fiber
US4650630A (en) 1982-02-11 1987-03-17 Boyer John L Process and apparatus for producing nuclear fusion energy
US4663110A (en) 1982-03-12 1987-05-05 Ga Technologies Inc. Fusion blanket and method for producing directly fabricable fissile fuel
DE3225751C1 (de) 1982-07-09 1984-01-26 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Vorrichtung zum Abtrennen der gasfoermigen Wasserstoffisotope
US4800060A (en) 1982-08-03 1989-01-24 Yeda Research & Development Co., Ltd. Window assembly for positron emitter
JPS5968143A (ja) 1982-10-08 1984-04-18 Fujitsu Ltd 電界電離ガスイオン源用エミツタチツプ
US4529571A (en) 1982-10-27 1985-07-16 The United States Of America As Represented By The United States Department Of Energy Single-ring magnetic cusp low gas pressure ion source
US4793961A (en) 1983-07-26 1988-12-27 The United States Of America As Represented By The Department Of Energy Method and source for producing a high concentration of positively charged molecular hydrogen or deuterium ions
US4826646A (en) 1985-10-29 1989-05-02 Energy/Matter Conversion Corporation, Inc. Method and apparatus for controlling charged particles
SE450060B (sv) 1985-11-27 1987-06-01 Rolf Lennart Stenbacka Forfarande for att astadkomma fusionsreaktioner, samt anordning for fusionsreaktor
USRE34575E (en) 1986-04-30 1994-04-05 Science Reseach Corporation Electrostatic ion accelerator
US4752432A (en) 1986-06-18 1988-06-21 Computer Technology And Imaging, Inc. Device and process for the production of nitrogen-13 ammonium ion from carbon-13/fluid slurry target
FR2630576B1 (fr) 1988-04-26 1990-08-17 Realisations Nucleaires Et Dispositif d'amelioration de la duree de vie et de la fiabilite d'un tube neutronique scelle a haut flux
FR2637727A1 (fr) 1988-10-07 1990-04-13 Realisations Nucleaires Et Tube neutronique muni d'une source d'ions a confinement electrostatique des electrons
US5037602A (en) 1989-03-14 1991-08-06 Science Applications International Corporation Radioisotope production facility for use with positron emission tomography
US4976938A (en) 1989-07-14 1990-12-11 The United States Of America As Represented By The United States Department Of Energy Hydrogen isotope separation utilizing bulk getters
US5126574A (en) 1989-10-10 1992-06-30 The United States Of America As Represented By The Secretary Of Commerce Microtip-controlled nanostructure fabrication and multi-tipped field-emission tool for parallel-process nanostructure fabrication
JPH03190097A (ja) 1989-12-20 1991-08-20 Hitachi Ltd 中性粒子入射装置
WO1991014268A1 (en) 1990-03-07 1991-09-19 Combustion Engineering, Inc. Pressurized water reactor fuel
FR2666477A1 (fr) 1990-08-31 1992-03-06 Sodern Tube neutronique a flux eleve.
CA2085590A1 (en) 1991-04-17 1992-10-18 Shigeki Yamazaki Synthesis of labeled compound
US5280505A (en) 1991-05-03 1994-01-18 Science Research Laboratory, Inc. Method and apparatus for generating isotopes
DE4231997C1 (de) 1992-09-24 1994-01-05 Kernforschungsz Karlsruhe Verfahren zum Abtrennen von Spaltmolybdän
US5596611A (en) 1992-12-08 1997-01-21 The Babcock & Wilcox Company Medical isotope production reactor
JP3124140B2 (ja) 1992-12-28 2001-01-15 株式会社東芝 核融合炉の炉内機器
US5468355A (en) 1993-06-04 1995-11-21 Science Research Laboratory Method for producing radioisotopes
US5515234A (en) 1993-06-30 1996-05-07 Texas Instruments Incorporated Antistatic protector and method
FR2710782A1 (fr) 1993-09-29 1995-04-07 Sodern Tube neutronique à confinement magnétique des électrons par aimants permanents et son procédé de fabrication.
FR2711835B1 (fr) * 1993-10-21 1995-11-24 Framatome Sa Réacteur nucléaire à neutrons rapides dans lequel au moins un élément modérateur est incorporé dans des assemblages du réacteur.
EP0725967B2 (en) 1993-10-29 2003-07-09 Carlo Rubbia An energy amplifier for "clean" nuclear energy production driven by a particle beam accelerator
JP3145555B2 (ja) 1994-02-28 2001-03-12 核燃料サイクル開発機構 核融合を利用した放射性廃棄物の消滅処理方法
US5443732A (en) 1994-04-01 1995-08-22 Westinghouse Electric Corporation Boron isotope separation using continuous ion exchange chromatography
US5482865A (en) 1994-06-10 1996-01-09 Associated Universities, Inc. Apparatus and method for preparing oxygen-15 labeled water H2 [15 O] in an injectable form for use in positron emission tomography
WO1996003751A1 (en) 1994-07-21 1996-02-08 Gregory Lowell Millspaugh Method of and system for controlling energy, including in fusion reactors
US20030223528A1 (en) 1995-06-16 2003-12-04 George Miley Electrostatic accelerated-recirculating-ion fusion neutron/proton source
US6011825A (en) 1995-08-09 2000-01-04 Washington University Production of 64 Cu and other radionuclides using a charged-particle accelerator
US5586153A (en) 1995-08-14 1996-12-17 Cti, Inc. Process for producing radionuclides using porous carbon
JPH09113693A (ja) 1995-10-13 1997-05-02 N K K Plant Kensetsu Kk 放射性核種としての15o含有ガスの製造方法
US5745536A (en) 1996-06-05 1998-04-28 Sandia Corporation Secondary electron ion source neutron generator
US5920601A (en) 1996-10-25 1999-07-06 Lockheed Martin Idaho Technologies Company System and method for delivery of neutron beams for medical therapy
US5870447A (en) 1996-12-30 1999-02-09 Brookhaven Science Associates Method and apparatus for generating low energy nuclear particles
US5898279A (en) 1997-01-08 1999-04-27 Kettering Medical Center Cyclotron monitoring system and method
US6541786B1 (en) 1997-05-12 2003-04-01 Cymer, Inc. Plasma pinch high energy with debris collector
US5854531A (en) 1997-05-30 1998-12-29 Science Applications International Corporation Storage ring system and method for high-yield nuclear production
US7796720B1 (en) 1997-06-19 2010-09-14 European Organization For Nuclear Research Neutron-driven element transmuter
JPH1157043A (ja) 1997-08-21 1999-03-02 Mitsubishi Heavy Ind Ltd 治療用中性子照射装置及び照射方法
US5910971A (en) 1998-02-23 1999-06-08 Tci Incorporated Method and apparatus for the production and extraction of molybdenum-99
US5977554A (en) 1998-03-23 1999-11-02 The Penn State Research Foundation Container for transporting antiprotons
SE513192C2 (sv) 1998-09-29 2000-07-24 Gems Pet Systems Ab Förfarande och system för HF-styrning
JP3122081B2 (ja) 1998-11-25 2001-01-09 石油公団 中性子発生管
JP3658235B2 (ja) 1999-03-30 2005-06-08 キヤノン株式会社 電子銃および電子銃を用いた描画装置および電子線応用装置
AU1323301A (en) 1999-04-23 2001-01-22 Adna Corporation Accelerator-driven energy generation from thorium
US6925137B1 (en) 1999-10-04 2005-08-02 Leon Forman Small neutron generator using a high current electron bombardment ion source and methods of treating tumors therewith
AU1241401A (en) 1999-10-27 2001-05-08 Jmar Research, Inc. Method and radiation generating system using microtargets
US6544606B1 (en) 2000-01-11 2003-04-08 Nac International Systems and methods for storing fissile materials
US6337055B1 (en) 2000-01-21 2002-01-08 Tci Incorporated Inorganic sorbent for molybdenum-99 extraction from irradiated uranium solutions and its method of use
EP1258010B1 (en) 2000-02-23 2009-04-29 The University Of Alberta, The Uni. of British, Carlton University, Simon Fraser University, The University of Victoria System and method for the production of 18 f-fluoride
US6593539B1 (en) 2000-02-25 2003-07-15 George Miley Apparatus and methods for controlling charged particles
EP1134771B1 (en) 2000-03-16 2009-08-05 Hitachi, Ltd. Apparatus for producing a flux of charge carriers
JP2001338800A (ja) 2000-05-30 2001-12-07 Hitachi Ltd 中性子発生装置
JP2002062388A (ja) 2000-08-21 2002-02-28 Hitachi Ltd 慣性静電閉じ込め核融合装置およびラジオアイソトープ製造システム
US6917044B2 (en) 2000-11-28 2005-07-12 Behrouz Amini High power high yield target for production of all radioisotopes for positron emission tomography
US6482368B2 (en) 2000-12-19 2002-11-19 Delphi Technologies, Inc. Non-thermal plasma reactor for lower power consumption
JP2002214395A (ja) 2001-01-12 2002-07-31 Hitachi Ltd 同位体核種製造装置
US6664740B2 (en) 2001-02-01 2003-12-16 The Regents Of The University Of California Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
DE50111450D1 (de) 2001-02-16 2006-12-28 Framatome Anp Gmbh Kernreaktor, insbesondere Forschungs- oder Versuchsreaktor
US6907097B2 (en) 2001-03-16 2005-06-14 The Regents Of The University Of California Cylindrical neutron generator
US20020150193A1 (en) 2001-03-16 2002-10-17 Ka-Ngo Leung Compact high flux neutron generator
US6611106B2 (en) 2001-03-19 2003-08-26 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US6567492B2 (en) 2001-06-11 2003-05-20 Eastern Isotopes, Inc. Process and apparatus for production of F-18 fluoride
GB0120280D0 (en) 2001-08-21 2001-10-17 Sved John Low degradation rate linear geometry neutron generator appartus using plasma gas target
GB0125951D0 (en) * 2001-10-30 2001-12-19 British Nuclear Fuels Plc Process for controlling valence states
EP1321948A1 (fr) 2001-12-21 2003-06-25 Ion Beam Applications S.A. Procédé et dispositif pour la production de radio-isotopes à partir d'une cible
US6922455B2 (en) 2002-01-28 2005-07-26 Starfire Industries Management, Inc. Gas-target neutron generation and applications
US7342988B2 (en) 2002-02-06 2008-03-11 The Regents Of The University Of California Neutron tubes
US6777699B1 (en) 2002-03-25 2004-08-17 George H. Miley Methods, apparatus, and systems involving ion beam generation
US6870894B2 (en) 2002-04-08 2005-03-22 The Regents Of The University Of California Compact neutron generator
US20040100214A1 (en) 2002-05-13 2004-05-27 Karl Erdman Particle accelerator assembly with high power gas target
US7200198B2 (en) 2002-05-21 2007-04-03 Duke University Recirculating target and method for producing radionuclide
EP1429345A1 (fr) 2002-12-10 2004-06-16 Ion Beam Applications S.A. Dispositif et procédé de production de radio-isotopes
US20090316850A1 (en) 2003-06-19 2009-12-24 Langenbrunner James R Generating short-term criticality in a sub-critical reactor
JP2005127800A (ja) 2003-10-22 2005-05-19 Toshiba Corp 電子線照射装置と照射方法および電子線描画装置
EP1569243A1 (en) 2004-02-20 2005-08-31 Ion Beam Applications S.A. Target device for producing a radioisotope
US20060017411A1 (en) 2004-06-17 2006-01-26 Accsys Technology, Inc. Mobile/transportable PET radioisotope system with omnidirectional self-shielding
WO2006000104A1 (en) 2004-06-29 2006-01-05 Triumf, Operating As A Joint Venture By The Governors Of The University Of Alberta, The University Of British Columbia, Carleton University, Simon Fraser University, The University Of Toronto, And The Forced convection target assembly
US20060023829A1 (en) 2004-08-02 2006-02-02 Battelle Memorial Institute Medical radioisotopes and methods for producing the same
DE602005005841T2 (de) 2004-08-12 2009-04-09 John Sved Protonengeneratorvorrichtung für isotopproduktion
US20060062342A1 (en) 2004-09-17 2006-03-23 Cyclotron Partners, L.P. Method and apparatus for the production of radioisotopes
US20070297554A1 (en) 2004-09-28 2007-12-27 Efraim Lavie Method And System For Production Of Radioisotopes, And Radioisotopes Produced Thereby
US20110176648A1 (en) 2004-10-08 2011-07-21 Rowland Mark S Portable low energy neutron source for high sensitivity material characterization
US7526058B2 (en) 2004-12-03 2009-04-28 General Electric Company Rod assembly for nuclear reactors
US7419604B1 (en) * 2004-12-29 2008-09-02 University Of Kentucky Research Foundation Use of boron compounds to precipitate uranium from water
US7235216B2 (en) 2005-05-01 2007-06-26 Iba Molecular North America, Inc. Apparatus and method for producing radiopharmaceuticals
KR100643794B1 (ko) 2005-07-29 2006-11-10 한국원자력연구소 감마상 U―Mo 또는 U―Mo-X계 합금의 조대 입자가규칙적으로 배열된 판상 핵연료 및 그 제조 방법
WO2007002455A2 (en) 2005-06-23 2007-01-04 The Regents Of The University Of California Helicon plasma source with permanent magnets
CN101512329A (zh) 2005-06-29 2009-08-19 休斯顿大学 用于主动探测核材料的微型中子发生器
RU2352003C2 (ru) * 2005-08-18 2009-04-10 Лев Николаевич Максимов Аморфизированное ядерное топливо
JP4099187B2 (ja) 2005-09-30 2008-06-11 株式会社日立製作所 放射性同位元素製造装置、及びターゲットのリサイクル方法
ITCO20050028A1 (it) 2005-11-11 2007-05-12 Fond Per Adroterapia Oncologica Complesso di acceleratori di protoni in particolare per uso medicale
JP2007165250A (ja) 2005-12-16 2007-06-28 Hitachi Ltd マイクロ波イオン源、線形加速器システム、加速器システム、医療用加速器システム、高エネルギービーム応用装置、中性子発生装置、イオンビームプロセス装置、マイクロ波プラズマ源及びプラズマプロセス装置
DE102005061560A1 (de) 2005-12-22 2007-07-05 Siemens Ag Verfahren zur Herstellung von radioaktiven Isotopen für die Positronen-Emissions-Tomographie
US20070160176A1 (en) 2006-01-06 2007-07-12 Ryoichi Wada Isotope generator
US20080224106A1 (en) 2006-09-08 2008-09-18 Michael Ernest Johnson Process for treating compositions containing uranium and plutonium
JP4618732B2 (ja) 2006-10-20 2011-01-26 独立行政法人 日本原子力研究開発機構 放射性モリブデンの製造方法と装置
US7968838B2 (en) 2007-10-16 2011-06-28 Dent International Research, Inc. Apparatus and process for generating a neutron beam
US7978804B2 (en) 2007-12-10 2011-07-12 Schlumberger Technology Corporation Low power neutron generators
US8437443B2 (en) 2008-02-21 2013-05-07 Ge-Hitachi Nuclear Energy Americas Llc Apparatuses and methods for production of radioisotopes in nuclear reactor instrumentation tubes
CA2710985C (en) 2007-12-28 2017-03-21 Gregory Piefer High energy proton or neutron source
ATE557400T1 (de) 2008-02-05 2012-05-15 Univ Missouri Herstellung von radioisotopen und behandlung einer zielmateriallösung
AU2009255564B2 (en) 2008-02-27 2013-06-13 Starfire Industries Llc Long life high-efficiency neutron generator
US8767905B2 (en) 2008-03-07 2014-07-01 Babcock & Wilcox Technical Services Group, Inc. Combinatorial heterogeneous-homogeneous reactor
CN101271737B (zh) * 2008-04-30 2010-08-11 中国核动力研究设计院 提高均匀性水溶液核反应堆额定稳态运行功率的方法
RU2494484C2 (ru) 2008-05-02 2013-09-27 Шайн Медикал Текнолоджис, Инк. Устройство и способ производства медицинских изотопов
US20090279658A1 (en) 2008-05-09 2009-11-12 Ottawa Valley Research Associates Ltd. Molten salt nuclear reactor
US8475747B1 (en) 2008-06-13 2013-07-02 U.S. Department Of Energy Processing fissile material mixtures containing zirconium and/or carbon
US20100063344A1 (en) 2008-09-11 2010-03-11 Kotschenreuther Michael T Fusion neutron source for fission applications
US9357629B2 (en) 2009-01-21 2016-05-31 Schlumberger Technology Corporation Neutron generator
US8488734B2 (en) 2009-08-28 2013-07-16 The Invention Science Fund I, Llc Nuclear fission reactor, a vented nuclear fission fuel module, methods therefor and a vented nuclear fission fuel module system
WO2012003009A2 (en) 2010-01-28 2012-01-05 Shine Medical Technologies, Inc. Segmented reaction chamber for radioisotope production
US10500564B2 (en) 2011-03-17 2019-12-10 Perma-Fix Environmental Services, Inc. Preparation of chitosan-based microporous composite material and its applications
US10734126B2 (en) 2011-04-28 2020-08-04 SHINE Medical Technologies, LLC Methods of separating medical isotopes from uranium solutions
RU2649662C2 (ru) 2012-04-05 2018-04-05 Шайн Медикал Текнолоджиз, Инк. Водная сборка и способ управления
JP6160595B2 (ja) 2014-10-29 2017-07-12 コニカミノルタ株式会社 画像形成装置および制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2837476A (en) * 1956-01-27 1958-06-03 Harold M Busey Steam stirred homogeneous nuclear reactor
US5940461A (en) * 1994-07-08 1999-08-17 Hitachi, Ltd. Reactor core for a light water cooled reactor, fuel assembly and control rod
CN101861627A (zh) * 2007-11-15 2010-10-13 由俄勒冈州高等教育管理委员会代表的俄勒冈州立大学 用于核反应堆的稳定启动系统

Also Published As

Publication number Publication date
CN104321623A (zh) 2015-01-28
CA2869559C (en) 2022-03-29
HK1201575A1 (zh) 2015-09-04
RU2649662C2 (ru) 2018-04-05
IN2014DN09137A (zh) 2015-05-22
CA2869559A1 (en) 2013-12-19
KR20150023245A (ko) 2015-03-05
RU2014144290A (ru) 2016-05-27
WO2013187974A3 (en) 2014-02-13
KR102172861B1 (ko) 2020-11-02
WO2013187974A2 (en) 2013-12-19
US11361873B2 (en) 2022-06-14
US20220301736A1 (en) 2022-09-22
US20150092900A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
CN104321623B (zh) 水性组件及控制方法
US20200118698A1 (en) Fission reaction control in a molten salt reactor
Yu et al. Minor actinide incineration and Th-U breeding in a small FLiNaK Molten Salt Fast Reactor
Ashraf et al. Strategies for thorium fuel cycle transition in the SD-TMSR
He et al. Th–U cycle performance analysis based on molten chloride salt and molten fluoride salt fast reactors
Bernard et al. Validation of JEFF-3.1. 1 Thermal and Epithermal Neutron-Induced Capture Cross Sections Through MELUSINE Experiment Analysis
US20200243208A1 (en) Circulating-fuel nuclear reactor
Merle-Lucotte et al. Influence of the processing and salt composition on the thorium molten salt reactor
Heuer et al. A starting procedure for the MSFR: approach to criticality and incident analysis
Tataurov et al. Molten salt reactor for 99 Mo production
Ågren et al. The hybrid reactor project based on the straight field line mirror concept
Pérez et al. Optimization study and neutronic and thermal-hydraulic design calculations of a 75 KWTH aqueous homogeneous reactor for medical isotopes production
Kulesza et al. Dosimetry analyses of the Ringhals 3 and 4 reactor pressure vessels
AU2022218237A1 (en) Method and Target for Mo-99 Manufacture
Leconte et al. Reactivity loss validation of high-burnup PWR fuels with pile-oscillation experiments in MINERVE
Kumar et al. Correlation of kinetic moment of inertia with power formula index
Souto et al. A model to estimate volume change due to radiolytic gas bubbles and thermal expansion in solution reactors
Bandini et al. Fuel Dispersion and Flow Blockage Analyses for MYRRHA-FASTEF Reactor by SIMMER Code
Aures et al. nTRACER and KENO Va Calculations of the VENUS-9/1 Experimental Benchmark
Mahdi Feasibility Study on Conducting a Subcritical Molten Salt Reactor Experiment Using a DD Neutron Source
Hu et al. Development and Applications of Nuclear Design and Safety Assessment Program SuperMC for Fast Reactoron
Wu et al. Parametric study of the burnup credit criticality analysis in BWR fuels
Luo et al. ICONE23-1068 CALCULATION OF KINETIC PARAMETERS FOR ADS CORES WITH MINOR ACTINIDES BY USING MONTE CARLO METHOD
Marguet et al. Reactor Kinetics
Kessler et al. Some Facts About Neutron and Reactor Physics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1201575

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: Room 600, 101 Milwaukee Street East, jansville, Wisconsin, USA

Patentee after: Sunshine Medical Technology Co.,Ltd.

Address before: 2555 Industrial Avenue, Monona, Wisconsin, USA

Patentee before: SHINE MEDICAL TECHNOLOGIES, Inc.

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 3400 innovation District, jansville, Wisconsin, USA

Patentee after: Sunshine Technology Co.,Ltd.

Address before: Room 600, 101 Milwaukee Street East, jansville, Wisconsin, USA

Patentee before: Sunshine Medical Technology Co.,Ltd.