CN104302689A - 含有过量活性分子的智能聚合物材料 - Google Patents

含有过量活性分子的智能聚合物材料 Download PDF

Info

Publication number
CN104302689A
CN104302689A CN201380022758.9A CN201380022758A CN104302689A CN 104302689 A CN104302689 A CN 104302689A CN 201380022758 A CN201380022758 A CN 201380022758A CN 104302689 A CN104302689 A CN 104302689A
Authority
CN
China
Prior art keywords
polymer
polymeric
matrixs
chemical reaction
bioactive molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380022758.9A
Other languages
English (en)
Inventor
马克·巴尼斯特
约尔丹·杰罗诺夫
多米尼克·麦格拉思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arizona Board of Regents of University of Arizona
Medipacs Inc
Original Assignee
Arizona Board of Regents of University of Arizona
Medipacs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arizona Board of Regents of University of Arizona, Medipacs Inc filed Critical Arizona Board of Regents of University of Arizona
Publication of CN104302689A publication Critical patent/CN104302689A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2618Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing nitrogen
    • C08G65/2621Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing nitrogen containing amine groups
    • C08G65/2624Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing nitrogen containing amine groups containing aliphatic amine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/003Dendrimers
    • C08G83/004After treatment of dendrimers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/50Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing nitrogen, e.g. polyetheramines or Jeffamines(r)

Abstract

一种三维智能聚合物基质,其是通过第一环氧化学反应连接一种线性聚合物链和一种支化聚合物链形成的,其中聚合物链是柔软的,并且一种或多种活性分子种类维持未反应状态,反应的与未反应的分子和分子种类是预定数学比例的,并且在第一化学反应之后,未反应的分子种类可用于进一步的化学反应,质子化作用或者去质子化。最终生成的智能聚合物基质是亲水的,并且不溶于溶剂或电解质。

Description

含有过量活性分子的智能聚合物材料
本发明是依据美国国家科学基金会(National Science Foundation)所授予的IIP STTR授权号0848528在政府的支持下完成的。因此,美国政府在本发明中享有某些权利。
在一段时间内,智能聚合物、电活性聚合物(EAP)凝胶、水凝胶、以及药物洗脱聚合物凝胶都是人们广泛开发研究的课题。目前大多数文献指出这些中的每一种就像是一个特定学科或材料类别,如果从分子工程方法来看,这些材料中的大多数材料都有共同的作用机理:具有活性或者非活性分子单元或位点的三维(3D)聚合物基质的物理变化或者溶胀和消溶胀。这些结构是基于交联凝胶,交联凝胶在特定分子位点中通过使用各种聚合物引发(如自由基、热、光、氧化还原、阴离子、阳离子、配位)和增长方法(如逐步生长、链增长、开环)以及不同的聚合物类型(如加成、缩合)形成共价交联。
3D聚合物网络对特定的溶剂或电解质的亲合力,使凝胶溶胀或者消溶胀。网络通常被定义为亲水或疏水的,这是由在聚合物链中的分子单元的性质决定的。疏水性或亲水性是由溶剂和电解质与分子单元相互作用的热力学参数所决定的。将电荷引入到聚合物基质中可以显著改变热力学参数,从而改变与溶剂或电解质的相互作用的性质。溶剂或电解质的吸收或排出动力学受聚合物3D网络的孔隙度、密度和表面积,以及扩散定律的影响。一般来说,结构的孔隙度越高,则吸收或排出溶剂越快,但是若聚合物凝胶用作致动器,则孔隙度越高,负载下聚合物的稳定结构越少。尽管如此,我们发现通过在致动器设计中增加聚合物的表面积,可以克服这个限制。
根据本发明,通常认为结构不坚固的聚合物凝胶,作为机械驱动设备是非常有用的,以至于探讨的环氧聚合物凝胶,能被设计来满足各种特定的性能要求。更特别地,我们已经确定,通过改变凝胶中的活性分子的数量、类型和比例,可以分子设计化学动力学、最终产品、物理性质包括3D聚合物基质的溶胀和消溶胀所产生的速度和力。此外,聚合物链长度会通过溶胀反应的大小和链上的分子数量影响致动器,从而产生力。更重要的是我们的发现表明,结合的分子活性单元会提供有效驱动力,并且这些活性分子可以在聚合工艺中保持不发生反应,其中活性分子然后被用于有效地增加由致动器产生的速度和力。因此可以调整分子活性单元的数量、种类和比例,以产生致动器实际应用所需的力。分子活性单元的静电荷的比率和密度,以及对所使用的溶剂或电解质的亲合力,通过质子化或去质子化在凝胶致动性能中起重要作用。质子化是为原子、分子或离子增加质子(H+)。去质子化是从分子中除去质子(H+),形成共轭碱。
分子放弃质子的相对能力是由其pKa值来衡量的,一些分子可以有多个解离pKa值和不同的pH值水平。可以根据所需的性能使用电解质分子或离子。可以根据pKa值混合电解质,这将改变聚合物的性能和溶胀范围。
我们还意外地发现,过量的活性单元并不需要成为聚合物链的一部分,而是可以简单地将其放置或者缠结入聚合物基质中,以对凝胶性能特点产生重大影响。之前我们报道1了环氧-胺水凝胶合成的结果和凝胶特性。本发明扩展了我们在用于工业品或消费品中的致动器所需要的各种条件下,对环氧聚合物凝胶致动器性能的研究。
通过将支化聚乙烯胺聚合物如支化吖丙啶(Ethyleneimine)或聚醚胺(Jeffamine)T-403,与二-环氧聚(乙二醇)缩水甘油醚(PEGDGE)化合物反应,制备的环氧胺水凝胶是水溶性的且容易聚合的。
本发明的进一步特点和优点将在发明内容中结合附图进行描述,其中:
图1示例了聚醚胺(Jeffamine)T-403聚乙二醇缩水甘油醚与水合成凝胶的路线示意图;
图2示例了醋酸钠膨胀凝胶的水合和电解路线;
图3显示的是使用一个聚合物致动器制剂,不同的电解质的冲程比例;
图4显示的是具有不同分子量的PEGDGE,NH/OH比例为1.0的凝胶的被动溶胀;
图5显示的是具有平均PEGDGE链长,不同的活性分子NH/OH比率的致动器凝胶配方的水合作用;
图6对比了在醋酸中,聚合物分解前连接的链对最大溶胀的影响;
图7是显示对比不同的链与NH/OH连接的被动水合压力生成的曲线图;
图8是显示不同的NH/OH比例冲程速度比较的曲线图;
图9是显示不同NH/OH比例的PEGDGE凝胶电致动垂直冲程比例的曲线图;
图10是显示低比例的分子量为600的PEGDGE在不同NH比例的凝胶中的冲程的曲线图;
图11是负载下对比1.75NH比例凝胶的冲程比例的曲线图;
图12是对比不同NH比例的凝胶的电活化压力的曲线图;
图13是在恒定安培下,电活化性能中粘合剂的影响的曲线图;
图14是对比固体磁盘(solid disk)和干磨凝胶的曲线图。
本文所使用的术语“智能聚合物”是刺激-反应聚合物,根据其所在的环境发生变化。特别适用于本发明,智能聚合物改变聚合物的链长、柔性,会以不同速度溶胀或改变形状。通常,智能聚合物是非线性反应的并且是可逆的。
在一个方面中,本发明提供了一种三维智能聚合物基质,其通过第一环氧化学反应连接线性聚合物链和支化聚合物链形成,其中聚合物链是柔性的,并且一种或多种活性分子种类保持未反应状态,反应的和未反应的分子和分子种类数学比例是预定的,并且在第一化学反应后,可以用未反应的分子种类进行进一步化学反应,其中所述智能聚合物基质是亲水性的并且不溶于溶剂或电解质。
由第一环氧化学反应连接线性聚合物链和支化聚合物链形成的三维智能聚合物基质,其中聚合物链是柔性的,并且一种或多种活性分子种类保持未反应状态,反应与未反应的分子和分子种类的数学比例是预定的,并且在第一化学反应后,可以用未反应的分子种类进行进一步的化学反应,其中所述智能聚合物基质是亲水性的并且不溶于溶剂或电解质。
本发明的另一方面,提供了一种三维智能聚合物基质,其由第一和一种或多种第二环氧化学反应形成,其中聚合物链是柔性的和弹性的,并且一种或多种活性分子种类保持未反应状态,反应与未反应的分子和分子种类的数学比例是预定的,并且在第二化学反应后,可以用未反应的分子和分子种类进行进一步的化学反应,其中所述智能聚合物基质是亲水性的并且不溶于溶剂或电解质,并且聚合物链和/或键合(linkage)中至少一种反应的分子种类表现出对溶剂或电解质的极性吸引,并且反应与未反应的分子种类的比例决定了智能材料的物理性能。
在一个实施方式中聚合物链和键合是柔性和弹性的,并且聚合物链和键合中的至少一种反应的分子种类表现出对溶剂或电解质的极性吸引,并且反应与未反应的分子种类的比例决定了智能材料的物理性能。
在另一实施方式中,可以用未反应的一种或多种活性分子种类进行一种或多种第二化学反应。
在另一实施方式中,一种或多种活性分子种类保持未反应,并且可用于在第一化学反应之后,与聚合物内部或周围分散的溶剂或电解质发生第二可逆化学反应。
在另一实施方式中,溶剂或电解质包含一种或多种分子种类,其能够结合并可逆地改变聚合物基质内部或周围的活性分子的分子电荷。
在另一实施方式中,溶剂或电解质包含一种或多种分子种类,其能够可逆地结合并且可逆地改变活性分子种类的分子电荷极性。
在另一实施方式中,溶剂或电解质包括一种或多种分子种类,其能够可逆地结合并且可逆地改变活性分子种类的分子电荷强度。
在另一实施方式中,溶剂和电解质包含一种或多种分子种类,其能够可逆地结合并且可逆地改变活性分子种类的分子电荷。
在另一实施方式中,溶剂和电解质包括一种或多种离子种类。
在另一实施方式中,溶剂或电解质具有多个的pKa值或解离度。
在另一实施方式中,溶剂和或电解质的化学性质对外部能量刺激变化敏感。
在另一实施方式中,聚合物基质的活性分子种类的化学性质对外部能量刺激变化敏感。
在另一实施方式中,线性聚合物链的聚合物链长度在一定范围内是随机的,并且其决定了聚合物基质的最大溶胀尺寸。
在另一实施方式中,线性聚合物的聚合物链长度在一定范围内是随机的,而且是两种或多种线性聚合物的混合物,其中线性聚合物是亲水性的,或者是亲水性和疏水性聚合物的组合。
在另一实施方式中,线性聚合物的聚合物链是两种或多种聚合物的组装嵌段聚合物,并且长度在一定范围内是随机的。
在另一实施方式中,支化聚合物的聚合物链长度是不随机的。
在另一实施方式中,支化聚合物的聚合物链长度在一定范围内是随机的。
在另一实施方式中,支化聚合物的聚合物链长度是组装嵌段聚合物。
在另一个实施方式中,带有一种或多种活性分子种类的支化聚合物组分包括树枝状分子,超支化聚合物或一种或多种带有这样的支化聚合物的组合。
在优选实施方式中,第一环氧化学反应中的一种或多种组分是选自下列组成的组:聚乙二醇缩水甘油醚,聚丙二醇缩水甘油醚,具有离子官能团的聚合物,所述离子官能团选自下列基团组成的组:羧酸,磷酸,磺酸,伯胺,仲胺,叔胺和铵,丙烯酸,甲基丙烯酸,乙烯基乙酸,马来酸,meta-kuriro氧基乙基磷酸(meta-kuriro yloxy ethylphosphoric acid),乙烯基磺酸,苯乙烯磺酸,乙烯基吡啶,乙烯基苯胺,乙烯基咪唑,氨乙基丙烯酸酯,甲胺基丙烯酸乙酯,二甲胺丙烯酸乙酯,乙胺基丙烯酸乙酯,乙基甲胺基丙烯酸乙酯,二乙胺基丙烯酸乙酯,氨乙基甲基丙烯酸酯,甲胺基甲基丙烯酸乙酯,二甲胺基乙基甲基丙烯酸酯,乙胺基甲基丙烯酸乙酯,乙基甲胺基甲基丙烯酸乙酯,二乙胺基甲基丙烯酸乙酯,氨丙基丙烯酸酯,甲基氨丙基丙烯酸酯,二甲基氨丙基丙烯酸酯,乙基氨丙基丙烯酸酯,乙基甲基氨丙基丙烯酸酯,二乙胺基丙基丙烯酸酯,氨丙基甲基丙烯酸酯,甲基氨丙基甲基丙烯酸酯,二甲基氨丙基甲基丙烯酸酯,乙基氨丙基甲基丙烯酸酯,乙基甲基氨丙基甲基丙烯酸酯,聚合物,如二乙胺基丙基甲基丙烯酸酯,二甲基氨乙基丙烯酰胺,二甲基氨丙基丙烯酰胺,和akuriro氧基乙基三甲基铵盐(akuriro yloxy ethyltrimethylammonium salt),聚丁烯,硅树脂,倍半硅氧烷低聚物,氨基官能化硅树脂或硅氧烷,硅醇官能化聚合物,有机硅,甲醇官能化硅树脂,酸酐官能化硅树脂,二环庚烯官能化硅树脂,羧酸官能化硅树脂,聚合物金属醇盐,羟基官能化硅树脂,聚倍半硅氧烷,以及具有官能化环氧基团的组合物。
在另一优选实施方式中,第一化学反应的一种或多种组分选自下列组成的组,支化聚环氧乙烷,聚乙二醇,聚环氧丙烷,聚丙二醇,硅,聚倍半硅氧烷,多功能硅氧烷,聚丁烯,或带有终端胺、羧基、羟基或其它官能单元的另一柔性聚合物。
在另一实施方式中,反应聚合物的聚合物凝胶低于98%,更优选低于90%,并且更优选是在75%-85%之间。
在另一实施方式中,一种或多种非连接聚合物或高分子与活性分子种类缠结、陷入聚合物基质的内部和周围,并且在聚合反应后并不与聚合物基质连接,并可用于化学反应。
在另一实施方式中,一种或多种非连接的聚合物或高分子与活性分子种类缠结、陷入聚合物基质的内部和周围,并且在聚合反应后一种或多种分子位点与聚合物基质部分地连接,并可用于化学反应。
在另一实施方式中,一种或多种非连接聚合物或高分子与活性分子种类缠结、陷入聚合物基质内部或周围,并且在聚合反应后一种或多种分子位点与聚合物基质部分地连接,并可用于化学反应。
在另一实施方式中,可用于化学反应的一种或多种活性分子种类,决定了聚合物材料生成的压力。
在另一实施方式中,可用于化学反应的一种或多种活性分子种类,决定了聚合物致动器生成的压力,并且表面积决定速度。
在另一实施方式中,可用于化学反应的一种或多种活性分子种类,决定了聚合物材料的主动和/或被动溶胀生长的pH值范围。
由如图1所示的胺氢-环氧反应形成的胺固化环氧树脂网络。在T-聚醚胺(Jeffamine)中最接近NH2基团的-CH3基团,会产生空间干扰,与不反应伯胺2,3,4,5相比,减缓了仲胺的反应速率。因此,最终网络中,聚合物基质最后具有比率依赖(胺/环氧)的伯胺氢和仲胺氢组合。
A.胺环氧凝胶中的平衡溶胀和电解致动机理
理解电解质或溶剂在水凝胶溶胀过程的作用很重要。由于聚合物链之间的相互连接,交联聚合物是不溶的,但是该结构将会吸收溶剂或电解质,并且将使聚合物基质膨胀到所允许的程度。如果电解质或溶剂对分子位点的亲合力强于聚合物链或交联键合,则该结构会破裂或分解,减少了致动材料的力。
溶剂或电解质被吸引到聚合物基质上面或内部的活性分子单元上,并且可以保持在聚合物结构中,通常可以分为三种状态:结合、未结合以及游离。这些相互作用的强度会根据分子以及其与溶剂或电解质的相互作用发生变化,因此,在同步动态反应6中可能会存在结合、未结合以及游离状态的各种不同变体的组合。当在电极中溶剂电解分离而生成质子从而在基质中引入电荷时,根据电荷的强度和密度,聚合物凝胶内部和周围的溶剂或电解质会吸引聚合物基质,或与聚合物基质相斥。由于基质中的分子位点具有不同的强度(strengths),因而平衡时具有不同的质子状态,可以通过注入质子或离子浓度,调节溶胀/消溶胀过程的容积、速度和力。
在该环氧胺凝胶研究中,我们仅仅使用了一种支持电解质,乙酸钠水溶液,来考察电解质浓度对溶胀特性在聚合物/分子基质中每个变化的影响。基于此,我们研发了胺环氧凝胶质量体积相对于盐浓度变化的线性模型。为达到溶胀平衡,在水合作用时,混合吸收阶段的合聚合物-水的相互作用产生的渗透压力Pmix用于膨胀。由于聚合物-聚合物的相互作用,聚合物网络通过Pelast的弹力抵消了该膨胀。平衡渗透压力的分子静电相互作用的贡献用膨胀压力Pion表示。在三种压力7,8的平衡下,该环氧-胺凝胶获得溶胀平衡,这可以通过等式I描述。
P=(Pmix+Pion)-Pelast
                                                等式I
该环氧-胺凝胶包括可以被质子化的弱碱基团例如NH和NH2。该聚合物凝胶还包括很容易与水(反应式III-H2O路线)形成氢键的羟基(OH)和醚(O)单元。随着水进入基质,在O和OH和NH位点产生氢键,H键合的水分子同样为该过程作出贡献,提供了另外三个可能的H键位点9,10,每个H键合的水能够与每个新的水分子保持三个以上的H键(式I)。因此,网络内的水带电基团的密度随着水合作用强烈增加。一旦凝胶达到水合平衡,还可以通过凝胶(反应式II-NaAc电路)内部的移动的反离子的适当增长进一步膨胀,其是由于静电排斥而引起相转移,聚合物凝胶会被迫增加溶胀体积。
式I.多个氢水键合
伯胺和仲胺基团与羟基基团是富电子的,并且容易与水分子形成氢键,这些在之后文件中的水合作用研究中得到证实了。在水性介质中,在游离胺基团和它们的质子化形式之间存在平衡(反应式II)。
   反应式II
根据反应式III,应用直流电到水合凝胶时,在水电解质电池中,随着氧释放并且在溶液中形成质子,靠近阳极的区域变得酸性更强。
2H2O→O2+4H++4e   反应式Ⅲ
根据反应式IV靠近阴极的区域变得碱性更强。
2H2O+2e→H2+2OH-   反应式Ⅳ
随着水从施加的电流中电解,在靠近两极的区域产生局部pH梯度。在低pH区,靠近阳极,质子进入基质,使其带正电荷(-NH3 +),这破坏了聚合物凝胶的电中性。为了达到电荷平衡,阴离子随着溶剂进入聚合物凝胶基质(图2-电路,显示乙酸钠膨胀凝胶的水合和电解路线。重要的是要注意,不同的电解质例如碳酸氢钠,会产生相反的静电力排斥)。这导致溶胀增加,添加大量的离子,在更高NH3 +离子浓度中会发生排斥,从而物理迫使凝胶基质打开并溶胀,使得水与水键合增加。该环氧-胺聚合物凝胶在更高pH收缩或排出液体,在阴极附近发生可逆过程,产生羟基离子,凝胶收缩。简单地解释环氧-胺凝胶致动器受溶液pH浓度变化而溶胀/收缩。这是由电解质(乙酸钠)、电流电荷、时间以及电极极性决定的。
我们的研究结果表明,胺环氧凝胶对材料工程非常有益。聚合物凝胶致动器的性能可以通过改变下列配方参数而逐步调整;聚合物交联密度、聚合物链长度、聚合物凝胶程度、活性分子单元的比率,以及结合材料。如图3所示,溶剂和电解质同样在聚合物致动中起非常重要的作用,从而使得为了本研究的目的,水溶液中的电解质浓度固定在一个浓度,这样对聚合物材料的每个变化的影响都显示致动器性能的直接变化。使用盐浓度0.05m的醋酸钠电解质水溶液进行电致动实验,使用3种水溶液,0.05m醋酸、0.05m乙酸钠和去离子水进行被动溶胀实验。所有的凝胶都进行机械拉伸测试,以及电流随时间变化,质量和溶胀性能的水合溶胀变化。独立的和负载重量的致动张力速率,以及随着水合时间产生的力和致动时间都将被记录。根据接下来的研究和结果,然后改变配方,产生一定范围的活性NH与OH分子比例,从2.50H/1.0NH到2.5NH/1.0OH。
胺环氧凝胶的被动水、电解质和酸性的溶胀和扩散
使用固化圆柱聚合物完成被动水合测试,固化圆柱聚合物在加工的模具中被铸造以提供均匀样品尺寸的聚合物。以NH与OH等分子比例配制聚合物凝胶,或者使用f比例1.0:1.0的聚醚胺(Jeffamine)和分子量为200、400、526以及600的PEGDGE配制聚合物凝胶。凝胶溶胀72小时。凝胶圆柱体显示出预期的结果,但有一个例外,如图4所示,证明溶胀尺寸的增量增加,与PEGDGE组分的链长度增加相对应。f1.0比例的分子量为200凝胶比更高分子量凝胶的其余部分显示出溶胀增加。现在还不能理解为什么分子量为200的凝胶会有这样的差异。
使用聚醚胺(Jeffamine)并且固定单一PEGDGE链长,当比较NH/OH比例如何影响致动器凝胶的被动溶胀时,如图3所示,数据支持NH/OH比率影响溶胀结果的关系。使用PEGDGE分子量为526配制致动器凝胶,并且随着比例升高,比例变化产生更高的整体溶胀。该研究也重要地显示了随着OH单元增加,凝胶水溶胀显著地增加,其中凝胶NH比例越高,在水中的溶胀越低,并且在高NH比例下,水溶胀和酸溶胀的差异要高于4倍,表明与水结合更少,直到NH单元的酸质子化状态。这清晰地证明了活性分子比例的变化对致动器材料的整体溶胀性能的高度影响。
B.聚合物交联密度
其他的研究已经证明,树枝状组分为那些包含它们的聚合物网络提供某些令人满意的特性。例如,(a)树枝状分子可以提高密集交联网络的渗透率,并且其可以用于传感器应用;17,18(b)可以通过改变树枝状分子的浓度很容易地调整水凝胶的机械性能和含水量;12(c)水凝胶中PAMAM树枝状分子使其亲水性增加9,这可以增加水凝胶的质子传导;和(d)包含PAMAM的水凝胶的性质,很大程度上取决于水凝胶聚合物的其他组分的性质9。文献表明,与树枝状分子交联的水凝胶没有显示随着交联的增加,明显的溶胀性能的降低。
我们研究了当树枝状分子和超支化聚合物递增地添加到胺基环氧结构中时,对机械性能的影响。此外,使用树枝状分子或者超支化聚合物使得测量的可电离的氨基在胺环氧凝胶中的浓度增加。我们可以推断这将会提高胺环氧凝胶致动器的性能。
如式Ⅱ所示,树枝状大分子是对称的,高度支化的,合成的大分子。树枝状大分子对形成水凝胶的优势包括在低聚合物浓度下的高交联密度,通过树枝状大分子提供的结构变量对物理性能的系统控制,和预处理用前体溶液的低粘度。为了这部分的研究,我们加入PAMAM与0、2和3代DAB树枝状大分子。
式II.显示的是具有PAMAM和DAB端基的对称树枝状大分子的结构
我们用GE-PEG500-GE、聚醚胺(Jeffamine)T-403和树枝状大分子DAB-Am-8、DAB-Am-16、PAMAM-8、PAMAM-16、SP-012和XTJ-582以不同的配方制备胺-环氧水凝胶。先前确定的以给予我们的胺基环氧标准凝胶配方在没有树枝状大分子时最佳的性能和稳定性特性的NH与环氧化物的比例是2.67:1。具有这种配方的水凝胶被称为是标准凝胶(凝胶-1)。胺环氧凝胶配方中NH与环氧的比例维持在2.67:1,但是所使用的水量加倍和变成三倍,分别为X2和X3凝胶(凝胶2-3)。研究了水凝胶致动器配方中的两代DAB和PAMAM树枝状大分子。2.0代和3.0代分别地在末端具有8个和16个剩余胺基。在几个增量中,聚醚胺(Jeffamine)T-403的体积分数被树枝状大分子系统地替代,然而NH与环氧的比例维持在2.67:1(凝胶4-11)。区别这些树枝状大分子的关键参数是在表面的氨基残留数量,其在这些化合物的名称中被表明。我们也在平衡溶胀特性和凝胶度方面来描述这些凝胶。在这个阶段中研究的树枝状大分子配方,探测增加树枝状大分子,减少三分之一聚醚胺(Jeffamine)T-403,而整个配方中NH与环氧的比例维持在2.67:1。
因我们研究树枝状大分子或者超支化聚合物交联剂对胺环氧凝胶性能的影响,我们分析驱动反应,水解稳定性提高,和循环寿命变长。一般来说,交联密度越高导致机械性能增强和网破裂显著地降低。树枝状大分子的明确的结构,其连接数量(密度)和它们化学成分可控制,能够使得得到的水凝胶可重现性能和反应行为更高,允许结构特性关联和随后最佳的材料的系统的研究。
我们的研究表明,将树枝状大分子引入到PEGDGE/聚醚胺(Jeffamine)配方中也提高了机械硬度,从而降低了凝胶的弹性,如表1所示。树枝状大分子在NH2与环氧较高比例下对提高凝胶强度也起到重要作用。成形的凝胶是按配方制造的并且进行机械测试,结果在下面表1中列出。
表1
表1.机械测试结果显示添加树枝状大分子,超支化的,弹性体和粘合剂到基底凝胶配方中的影响。添加弹性体或者粘合剂的36个配方被测试,凝胶维持完整没有破裂。
树枝状大分子的添加确实影响了凝胶整体尺寸的溶胀性能,如图4中数据所示。这意味着,当放入下述的机械隐喻中时,有组织的树枝状大分子的交联部分类似于自行车的轮子,其中辐条产生硬度,并且保持环状轮子的形状,就像一个轮子树枝状大分子提供强度,但是没有弹性。超支化聚合物另一方面是典型的非对称分子结构,其具有分支结构,通常围绕着一个核。它们的结构通常是扇形的,并且用于构建高支化聚合物的基本单元或者单体是多样的,并且它们的分布是不均匀的。聚合物的分支可以具有不同性质和不同的长度,并因此影响弹性,我们还研究了几种分子量的聚吖丙啶超支化聚合物,如式Ⅲ所示的SP-012的整合。
式III.超支化吖丙啶SP-012
高支化聚合物SP-012是不完全线性但是部分支化的聚合物(式VI),其包含伯、仲、叔胺残基。其是水溶性聚合物,通过聚醚胺(Jeffamine)与聚吖丙啶聚合产生水凝胶。水凝胶配方中,其中10wt%的聚醚胺(Jeffamine)T-403被替换为高支化树枝状大分子SP-012。SP-012的分子量为1200并且在其边缘平均具有19个NH残留。上述配方的环氧化物/NH比例计算出来的是1:3.4。与包含如表1所示的使用DAB和PAMMAM配方的树枝状大分子的水凝胶相比较,包含高支化树枝状大分子SP-012的水凝胶表现出了良好的溶胀性能。与标准凝胶相比,它们也显示了相当好的抗张强度。表1显示了用高支化和树枝状大分子配方制备的凝胶样品与标准凝胶相比,拉伸试验的结果。当SP-012的量系统地提高时,可以观察到下面的趋势。随着凝胶中SP-012含量的增加,弹性模量和断裂强度提高,并且断裂应变降低。在高支化配方中加入10%XTJ-582,一种线性远螯二胺(telechelic diamine),大大地降低了弹性模量并且提高了弹性。
C.聚合物链长度
聚合物链长和弹性决定聚合物最终强度、柔软性和聚合物凝胶的溶胀尺寸,我们推理添加更长链的弹性体将会提高包含更高交联的树枝状大分子的水凝胶的溶胀度和机械性能。这被证明是成功的。XTJ-582是一种聚醚二胺,其重量与JT-403大致相同,比标准聚醚胺(Jeffamine)D-400聚醚胺具有更低水平的未转化的羟基基团。聚醚主链有利于水凝胶的柔软性。我们在基底凝胶和包含树枝状大分子的凝胶中系统地用XTJ-582取代10%的JT-403。图6显示了加入XTJ-582的树枝状大分子水凝胶的水溶胀特性的比较。随着凝胶中DAB-8、DAB-16、PAMAM-8、PAMAM-16和SP-012树枝状大分子含量提高,弹性模量和断裂强度增加并且断裂应变降低。树枝状大分子的代数越高,弹性模量的提高越大。我们的结果显示加入10%XTJ-582弹性体到树枝状大分子配方中,极大地降低了弹性模量并且提高了弹性,如表1所示。递增地添加XTJ弹性体,也影响了凝胶中致动性能的程度。加入6%XTJ-582产生了相对更柔软的弹性凝胶。可以进一步的考虑几个其他弹性体,用来提高机械性能而不损害聚合物基质的弹性。凝胶组分添加剂包含用水量,固化温度和时间,都会影响交联密度和凝胶弹性。
在被动溶胀试验中比较聚醚胺(Jeffamine)和PEGDGE凝胶,乙酸的数据趋势显示,链长越长溶胀越大。数据显示活性分子比例具有显著地影响,并且需要被考虑,因为内部产生的力,可以最终降低聚合物基质的完整度,如图6中显示的在最大溶胀率中,结果显示仅仅在几个小时内许多凝胶破裂,200、400和600PEGDGE导致每链长尺寸不同。200、400和600来自于一个供应商,526来自另一个,这可能导致在最大溶胀时不同的稳定性,526被证明是在所有水合状态中是非常稳定的。
D.聚合物凝胶化
一种评估水凝胶的完整度和质量的方法是如下测量凝胶度(G)和溶胀度(Q)。测量致动器在其固化和空气干燥到恒定质量(m)后的质量。随后致动器被放置到蒸馏水中并且被浸泡,直到它们接近平衡,具有恒定的质量(mh)。溶胀的致动器随后被从水浴中取出并空气干燥直到它们达到恒定质量(md)。随后如下测量凝胶度(G)和溶胀度(Q):
G=md/m*100%
Q=1+ρgel(mh/mdH2O–1/ρH2O)*100%
等式V
其中ρgel是再干燥后的凝胶的密度,并且ρH2O是水的密度。
表2显示了几个被研究的致动器在水中的凝胶度,并且表3显示的是其在水中的溶胀度。一些显著的趋势是明显的。提高配方(基底凝胶→X2→X3)中水的用量导致Q显著增加。改变树枝状大分子的性质从DAB到PAMAM,并从2代到3代,导致G的增加和Q的降低,大概是因为代数的增加引入更高的交联密度。同样,相同的树枝状大分子的代数,当聚醚胺(Jeffamine)对树枝状大分子的比例降低,我们看到G的增加和Q的减少,这也是由于相同的原因。
由超支化吖丙啶形成的胺环氧凝胶也显示对凝胶整体溶胀特性上的胶凝影响。从树枝状大分子和超支化聚合物数据,我们可以推断,提高交联密度显著地增强了胶凝。该增强影响了聚合物基质的物理膨胀能力,并且凝胶系数越高,能够在水合作用中自由膨胀的凝胶越少,如当比较表2和3时明显显示,最低的凝胶度显示了最高的溶胀。
表2:水凝胶的凝胶度(G)。
表3:水凝胶的溶胀度(G)。
E.活性单元的类型和密度
为了观察活性分子基团的影响,我们采用了两种研究途径,由于胺环氧凝胶的溶胀动力学取决于分子电荷引力和这些电荷的密度,胺与环氧的比例被递增地增加和降低,来通过设定负荷0.7psi下的冲程性能和随后的总力产生的速度,显示更高的伯胺密度或羟基密度对致动性能的影响。我们展示的另一个方面是链长对产生的压力的影响,由于在PEGDG链上具有水连接O位点,该位点会在压力下发生改变,当使用等比例NH/OH两个不同的链长时,这将会被观察到,如图7所示。
为了观察通过增加凝胶中羟基基团的密度来改变羟基基团与胺基基团的比率的影响,我们使用一种具有一定胺基对环氧基比率的聚酯超支化链,在其外围其具有32个羟基基团,并且收集在每一个凝胶上的被动和电致动溶胀数据。首先,NH/环氧基比例对被动溶胀和电致动的影响,我们使用PEGDGE 526,在2.67比率下开始研究,但是发现当我们尝试加入其他分子量的PEGDGE时,即分子量为200、400、600的PEGDGE时,凝胶在更高胺基比率下没有聚合。随后我们递增地降低NH/环氧基比率达到2.5NH/OH,1.75NH/OH,和1.0/1.0NH/OH。趋势表明OH凝胶越高,最初的水合越快,但是整体产生的力越少,然而NH凝胶越高,最初的水合越慢,但是整体产生的力越高,并且随着时间的流逝可以测试产生的力,如图8所示。
为了允许一对一的比较NH和OH比率,我们制备了5种系列的凝胶,2.5NH/1.0OH,1.75NH/1.0OH,1.0NH/1.0OH,1.75OH/1.0NH和2.5OH/1.0NH。在根据NH/OH比率的负载下,从具有额外的活性分子的增值的比率的聚醚胺(Jeffamine)和PEGDGE 526凝胶中获得,更高的和更快的电致动的积极的结果,如图9所示。
图9中的PEGDGE526凝胶的致动冲程率显示,在每一个活性分子比例的增加处,凝胶性能与其他相对应的分子比例相关。1.0NH/1.0OH表现出最低的冲程,而2.5NH/1.0OH和2.5OH/1.0OH比例显示了最高的冲程。
当加入更高的NH比例到PEGDGE600凝胶,产生了非常大的被动溶胀,但不是结构稳定材料并且其变得更加凝胶状的,这对负载下的冲程性能有非常负面的影响,并且如图8所示,测试的2.5NH凝胶与1.75NH600凝胶几乎不进行。
这也同样适用于PEGDGE400凝胶,PEGDGE400和600凝胶两者在1.75NH配方的电活化下都表现得最好,如图9所示。
电活化下产生的压力也显示,与更高的NH比例凝胶的相同的电冲程趋势一致,获得更高的力,与图9的结果一致。图12显示迄今为止在电流下在PEGDGE526凝胶上产生的最大压力,2.5NH/OH比率的凝胶和1.0NH/OH的凝胶达到最高的压力。因此,很明显,最终的电致动凝胶能够匹配被动溶胀凝胶产生的力。
F.在聚合物基质中粘合剂的作用
没有粘合剂的标准胺基环氧凝胶在水合作用下是非常脆的,致动应变的压力超过200%时,可以导致凝胶破裂。为了消除这个问题,研究了多种具有粘合性能的材料。最初尝试了一些类型的纤维填充物,如玻璃和短切碳,所有这些导致被动溶胀都非常差。然后,我们尝试了高表面积的碾碎的炭,其产生了非常可接受的溶胀结果,如图13所示。粘合剂没有像弹性体一样产生消极的力,但是其确实表现为静态的力,需要通过溶胀的力来克服,粘合剂的增加相当于一种更强的材料,这需要更多的力来致动。因此可能寻找聚合物致动器致动反应与结构完整性之间的最佳的平衡,其取决于交联密度、弹力、活性分子密度,用于致动材料的离子浓度和电流密度,和想要得到的致动器的结构配置。添加弹性体似乎没有克服粘合剂静态力,如图13所示,随着碳粘合剂的百分比增加,我们系统的添加弹性体,这消极地影响性能,在更高粘合剂浓度下和在更低粘合剂浓度下弹性体没有产生很大的差别。
本发明将会参照下面的工作实例进行阐述。
I.材料
收集了分子量为200、400和600的聚乙二醇缩水甘油醚PEGDGE,购自Poly Sciences;聚乙二醇缩水甘油醚PEGDGE 526,DAB和PAMAM树枝状大分子,吖丙啶,超支化聚酯,纳米粘土,纳米级1.30E,表面改性粘土购自Sigma–Aldrich;聚醚胺(JEFFAMINE)T403购自HuntsmanChemical Company;和Printex导电炭黑购自Degussa。去离子水用于所有的实验。聚四氟乙烯凝胶铸件是自制的。
II.凝胶的制备
通过交联剂聚醚胺(JEFFAMINE)T-403与PEGDE的反应制备水凝胶。粘合剂与水随后被添加到混合物中。这些材料在所有的凝胶中保持同样的百分比。根据于它们之间的研究的比率,聚醚胺(JEFFAMINE)T-403和聚EDGE的百分比改变。NH2.6标准凝胶包含聚醚胺(JEFFAMINE)T-403和PEGDGE 526。该组成用于一些呈现的数据。凝胶浇铸之后,它们在60℃下固化5小时,并且室温下干燥48小时。
测定固体凝胶盘和干磨(DMG)高表面积凝胶的冲程比率和产生的力,并且结果显示在图12中,这表明两者产生的压力是相同的,仅表面积变化影响速度。所有压力和冲程数据通过干磨凝胶(DMG)执行。
为了制备高OH比率致动器凝胶,聚合物链(式VII)外围具有32个OH单元的超支化聚酯被添加到凝胶配方中。在它们基础的支化结构中,超支化聚酯与树枝状大分子有关。然而,分支不是完全有规律的,并且该材料具有结构和分子量多分散性更典型的常规聚合物。
式VII带有32OH单元的超支化聚酯
超支化聚酯作为一种添加剂以2种数量被添加到标准凝胶配方中来调节NH/OH比率到过量的1.75OH基团对NH和过量的2.5OH基团对NH。我们相信随着环氧反应的发生,水溶性聚合物变得缠入在胺基环氧聚合物基质内。为了证实这一点,我们进行了5种不同配方的FT-IR分析,这些配方添加超支化树枝状大分子HP-16和HP-32,当与JT-403或者聚合EDGE混合时不会胶凝。所有未掺水的样品的FT-IR都记录在聚乙烯膜上,除了基底胶用KBr记录(作为参照)。表4示出了5种不同配方的主要IR峰,包括不含HP-16或HP-32的聚合凝胶。
表4:HP16和HP-32配方的IR值
在上面的表中,3300到3500cm-1范围中的IR值表明水的O-H伸展(stretch)和伯胺的N-H伸展。2800-2900cm-1表明脂肪链的C-H伸展。1640cm-1是超支化树枝状大分子的C=O伸展。1100-1200cm-1是JT-403,XTJ-582和聚EDGE的C-O的伸展区域。1109cm-1是JT-403的C-N伸展,947是N-H的摆动频率。为了比较,表4显示了JT-403,聚EDGE和超支化聚酯16和32的单独组分的IR值。上面5个样品的IR值显示没有证据表明任何酰胺键的形成涉及高度支化聚合物。然而我们看到了在1730cm-1的峰,我们相信这与聚EDGE和HP组合配方中的聚酯链有关联。剩下的峰与树枝状大分子和其他反应物的结构一致。
III.平衡溶胀
浇铸圆筒在去离子水,水乙酸钠0.05m,和醋酸0.05m中水合72小时。凝胶样品和150cc溶液用于所有的测试。含水的样品从水浴中取出,涂抹干燥,并且称重获得Wt。W0和Wt,是3个样品的平均值。水凝胶样品的质量百分比改变H,根据等式VI计算:
H=(Wt—W0)/Wo
             等式VI
其中,W0是干燥样品的重量。
IV.电致动
凝胶浇铸为20ml批量尺寸并且浇铸为单盘,圆盘随后被干磨获得高表面积。随后称重样品并且在电解质溶液中达到平衡并且随后加载到测试装置。
V.力和冲程测试
在力传感装置和冲程位移装置上,使用1g干磨凝胶在水合溶液中水合,进行力和冲程的测试,并且记录结果。
胺基环氧凝胶弹性取决于交联密度和交联的二环氧的聚合物主链。致动的速度和力极大地取决于胺基-环氧组比率[6,7]。典型的我们发现在NH比率高于2.5时,凝胶是非常粘的并且在进一步的水合下是容易断裂的。通过不同的添填充物如活性炭,粘土[7]和其他高表面积添加剂获得凝胶机械性能提高。聚合物-聚合物亲和力是由于聚合物与溶剂之间的化学相互作用[8]。最终,电解带来的pH溶液的变化影响氢离子的压力。这三种力有助于渗透压,其决定凝胶的平衡状态并且产生了体积变化和总渗透压[8-11],只要其取决于在聚合物链上和聚合物基质中的活性分子种类。
用零、第二和第三代DAB和PAMAM树枝状大分子,研究添加树枝状大分子到水凝胶中。我们也进行了最初的关于添加超支化树枝状大分子SP-012和弹性体XTJ-582的研究。这些凝胶用溶胀特性,机械性能和取决于时间的pH值变化来表征。技术如FTIR、DSC和TGA被用来表征其中某些水凝胶和添加的超支化聚合物。当树枝状大分和超支化材料被添加到凝胶时,我们观察到在致动器的性能中的某些显著的趋势,因此激励我们进一步研究它们。
OH基团的添加,在电活化下最初的5小时内,给予致动器凝胶一个最初的更快的溶胀反应,超过其他版本的胺基环氧凝胶。树枝状大分子配方的凝胶示出了类似的致动溶胀的水合溶胀趋势。
我们示出了在电活化下1小时内制造>500%体积/重量增加的材料。这项工作之前我们仅仅能够获得100%体积/重量增加的活化,并且保持完整的凝胶致动器。我们已经成功地证实添加树枝状大分子和超支化材料获得pH响应水凝胶,其显示出(1)稳定性增加;(2)致动的再现性增加;我们已经证实,由于分子的质子化作用或者去质子化,可以控制活性分子比率来提高在速度和压力产生两方面的致动反应。
参考文献
[1]Plata,E.R,;Rogers,1-1.;Banister,M.;Vohnout,S.;McGrath,D.EAPHydrogels for Pulse-Actuated Cell System(PACS)Architectures,Proceedings-SPIE The International Society for Optical Engineering,2007,6524,65241T.1-65241T.8.
[2]Calvert,P.;Patra,P.;Duggal,D.Epoxy Hydrogels as Sensors andActuators,Proceedings-SPIE The International Society for Optical Engineering,2007,6524,65240M.l-65240M.6.
[3]Calvert,P.Elecetroactive Polymer Gel,in Eletroactive Polymer(EAP)Actuators as Artificial Muscles-Reality,Potential and Challenges,ed.Y.Bar-Chen,SPIE Press.Vol.PM98,123-138,2001.
[4]Yoshioka,Y.;Calvert,P.Epoxy-Based Electroactive Polymer Gels,Experimental Mechanics,2002,42,404-408.
[5]Samui,A.B.;Jayakumar,S.;Jayalakshmi,C.G.;Pandey,K.;Sivaraman,P.Electroactive polymer gels based on epoxy resin,Smart Materialand Structures,2007,16,237-242.
[6]Richter,A.;Paschew,G.;Klatt,S.;Lienig,J.;Arndt,K-F.;Adler,H.-J.P.Review on Hydrogel-based pH Sensors and Microsensors,Sensors,2008,8,561-581.
[7]Omidian H.;Hashemi S.-A.;Askari,F.;Nafisi,S.Swelling andCrosslink Density Measurements for Hydrogels,Iranian Journal of PolymerScience and Technology,1994,3,115-119.
[8]Choe,K.;Kim,K.;Doyeon,K.;Manford,C.;Heo,S.;Shahinpoor,M.Performance Characteristics of ElectroChemically Driven PolyacrylonitrileFiber Bundle Actuators,Journal of Intelligent Material Systems and Structures,2006,17,563-576.
[9]Richter,A.;Paschew,G.;Klatt,S.;Lienig,J.;Arndt,K-F.;Adler,H.-J.P.Review on Hydrogel-based pH Sensors and Microsensors,Sensors,2008,8,561-581.
[10]Schneider,H.-J.;Kato,K.;Strongin,R.Chemomechanical Polymersas Sensors and Actuators for Biological and Medicinal Applications,Sensors,2007,7,~578-1611.
[11]Omidian H.;Hashemi S-A.;Askari,F.;Nafisi,S.Swelling andCrosslink Density Measurements for Hydrogels,Iranian Journal of PolymerScience and Technology,1994,3,115-119.
[12]Bajpai,S.K.;Duhey,S.Synthesis and Swelling Kinetics of apH-Sensitive Terpolymeric Hydrogel System,Iranian Polymer Journal,2004,13,189-203.
[13]Sraydin,D.;Karadag,E.;Oztop,H.N.;Guven,O.Adsorption ofBovine Serum Albumin onto Acrylamide-Maleic Acid Hydrogels,Biomaterials,1994,15,917-920.
[14]Skaarup,S.Polypyrrole for Artificial Muscles:Ionic Mechanisms,Solid State Jonics:Advanced Materials for Emerging Technologies,2006,10,768-779.
[15]Velmurugu,Y,;Skaarup,S.Ion and Solvent Transport in Polypyrrole:Experiment Test of Osmotic Model,lonics,2005,11,370-374.
[16]Gabrielli EC.;Keddam,M.Non-Steady State Techniques,Comprehensive Treatise of Electrochemistry,ed.E.Yeagar,J.O'M.Bockris,B.Conway,S.Sarangaparmi,Plenium Press,Vol.9,62-172(1984).
[17]Tanaka,T.;Fillmore,D.Kinetics of swelling of gels,J.Chem.Phys.,1979,70,1214-1218
[18]Xiang,Y.;Peng,Z.;Chen,D.A new polymer/clay nano-compositehydrogel with improved response rate and tensile mechanical properties,European Polymer Journal,2006,42,2125-2132.

Claims (55)

1. 一种三维智能聚合物基质,其通过第一环氧化学反应连接线性聚合物链和支化聚合物链而形成,其中所述聚合物链是柔软的,并且一种或多种活性分子种类保持未反应状态,反应与未反应的分子和分子种类的数学比例是预定的,并且第一化学反应之后,未反应的分子种类可用于进行进一步的化学反应,其中智能聚合物基质是亲水的,并且不溶于溶剂或者电解质。
2. 如权利要求1所述的聚合物基质,其中所述聚合物链和键合是柔软的和有弹性的,并且聚合物链和键合中的至少一种反应的分子种类表现出对溶剂或电解质的极性吸引,并且反应与未反应的分子种类的比例决定了智能材料的物理性能。
3. 如权利要求1所述的聚合物基质,其中一种或多种剩余的未反应的活性分子种类可用于进行一种或者多种第二化学反应,质子化作用或者去质子化。
4. 如权利要求3所述的聚合物基质,其中剩余的未反应的和第一化学反应后可用的一种或多种活性分子种类,可用于与分散在聚合物基质中和其周围的溶液或者电解质进行第二可逆的化学反应,质子化作用或者去质子化。
5. 如权利要求4所述的聚合物基质,其中溶液或者电解质包含一种或者多种分子种类,其可以结合并且可逆的改变在聚合物基质中或其周围的活性分子的分子电荷。
6. 如权利要求4所述的聚合物基质,其中所述溶剂或电解质包含一种或多种分子种类,其能够可逆地结合并可逆地改变活性分子种类的分子电荷的极性。
7. 如权利要求5所述的聚合物基质,其中所述溶剂或电解质包括一种或多种分子种类,其能够可逆地结合并且可逆地改变活性分子种类的分子电荷、质子化或去质子化强度。
8. 如权利要求5所述的聚合物基质,其中所述溶剂或电解质包括一种或多种分子种类,其能够可逆地结合并且可逆地改变活性分子种类的分子电荷、质子化或去质子化。
9. 如权利要求5所述的聚合物基质,其中所述溶剂或者电解质包括一种或多种离子种类。
10. 如权利要求5所述的聚合物基质,其所述中溶剂或者电解质具有多个pKa值或者解离度。
11. 如权利要求5所述的聚合物基质,其中所述溶剂和/或电解质的化学性质对外部能量刺激变化敏感。
12. 如权利要求5所述的聚合物基质,其中聚合物基质的活性分子种类的化学性质对外部能量刺激变化敏感。
13. 如权利要求5所述的聚合物基质,其中所述线性聚合物链的聚合物链长度在一定范围内是随机的,并且决定了聚合物基质的最大溶胀尺寸。
14. 如权利要求13所述的聚合物基质,其中所述线性聚合物的聚合物链长度在一定范围内是随机的,而且是两种或多种线性聚合物的混合物,其中所述线性聚合物是亲水性的,或者是亲水性和疏水性聚合物的组合。
15. 如权利要求13所述的聚合物基质,其中所述线性聚合物的聚合物链是两种或两种以上聚合物的组装嵌段聚合物,并且长度在一定范围内是随机的。
16. 如权利要求13所述的聚合物基质,其中支化聚合物的聚合物链长度是不随机的。
17. 如权利要求13所述的聚合物基质,其中支化聚合物的聚合物链长度在一定范围内是随机的。
18. 如权利要求13所述的聚合物基质,其中支化聚合物的聚合物链长度是组装嵌段聚合物。
19. 如权利要求13所述的聚合物基质,其中带有一种或多种活性分子种类的支化聚合物组分包括树枝状分子,超支化聚合物或一种或多种带有这样的支化聚合物的组合。
20. 一种三维智能聚合物基质,其由第一和一种或多种第二环氧化学反应形成,其中聚合物链是柔性的和弹性的,并且一种或多种活性分子种类保持未反应状态,反应与未反应的分子和分子种类的数学比例是预定的,并且在第二化学反应后,可以用于进行进一步的化学反应,其中所述智能聚合物基质是亲水性的并且不溶于溶剂或电解质,并且聚合物链和/或键合中至少一种反应的分子种类表现出与溶剂或电解质的极性吸引,并且反应与未反应的分子种类的比例决定了智能材料的物理性能。
21. 如权利要求20所述的聚合物基质,其中剩余的未反应的活性分子种类可用于一种或者多种第二化学反应、质子化作用或者去质子化。
22. 如权利要求21所述的聚合物基质,其中剩余的未反应且在第二化学反应后可用的活性分子种类,可用于与聚合物内部或周围分散的溶剂或电解质发生可逆的化学反应。
23. 如权利要求22所述的聚合物基质,其中所述溶剂或电解质包含一种或多种分子种类,其能够结合并可逆地改变聚合物基质内部或周围的活性分子的分子电荷。
24. 如权利要求22所述的聚合物基质,其中分散在聚合物基质内部和周围的所述溶剂或电解质包含一种或多种分子种类,其能够可逆地结合并且可逆地改变活性分子种类的分子电荷极性。
25. 如权利要求24所述的聚合物基质,其中所述溶剂或电解质包括一种或多种分子种类,其能够可逆地结合并且可逆地改变活性分子种类的分子电荷强度。
26. 如权利要求24所述的聚合物基质,其中所述溶剂或电解质包含一种或多种分子种类,其能够可逆地结合并且可逆地改变活性分子种类的分子电荷。
27. 如权利要求24所述的聚合物基质,其中所述溶剂或者电解质包括一种或多种离子种类。
28. 如权利要求23所述的聚合物基质,其中所述溶剂或者电解质具有多个pKa值或者解离度。
29. 如权利要求25所述的聚合物基质,其中所述溶剂或电解质的化学性质对外部能量刺激变化敏感。
30. 如权利要求25所述的聚合物基质,其中聚合物基质的活性分子种类的化学性质对外部能量刺激变化敏感。
31. 如权利要求25所述的聚合物基质,其中线性聚合物链的聚合物链长度在一定范围内是随机的,并且决定了聚合物基质的最大溶胀尺寸。
32. 如权利要求31所述的聚合物基质,其中线性聚合物链的聚合物链长度在一定范围内是随机的,而且是两种或多种线性聚合物的混合物,其中线性聚合物是亲水性的,或者是亲水性和疏水性聚合物的组合。
33. 如权利要求31所述的聚合物基质,其中线性聚合物的聚合物链是两种或两种以上聚合物的组装嵌段聚合物,并且长度在一定范围内是随机的。
34. 如权利要求31所述的聚合物基质,其中支化聚合物的聚合物链长度是不随机的。
35. 如权利要求31所述的聚合物基质,其中支化聚合物的聚合物链长度在一定范围内是随机的。
36. 如权利要求31所述的聚合物基质,其中支化聚合物的聚合物链长度是组装嵌段聚合物。
37. 如权利要求31所述的聚合物基质,其中带有一种或多种活性分子种类的支化聚合物组分包括树枝状分子,超支化聚合物或一种或多种带有这样的支化聚合物的组合。
38. 如权利要求1所述的聚合物基质,其中第一环氧化学反应中的一种或多种组分是选自下列组成的组:聚乙二醇缩水甘油醚,聚丙二醇缩水甘油醚,具有离子官能团的聚合物,所述离子官能团选自下列基团组成的组,羧酸,磷酸,磺酸,伯胺,仲胺,叔胺和铵,丙烯酸,甲基丙烯酸,乙烯基乙酸,马来酸,meta-kuriro氧基乙基磷酸,乙烯基磺酸,苯乙烯磺酸,乙烯基吡啶,乙烯基苯胺,乙烯基咪唑,氨乙基丙烯酸酯,甲胺基丙烯酸乙酯,二甲胺丙烯酸乙酯,乙胺基丙烯酸乙酯,乙基甲胺基丙烯酸乙酯,二乙胺基丙烯酸乙酯,氨乙基甲基丙烯酸酯,甲胺基甲基丙烯酸乙酯,二甲胺基乙基甲基丙烯酸酯,乙胺基甲基丙烯酸乙酯,乙基甲胺基甲基丙烯酸乙酯,二乙胺基甲基丙烯酸乙酯,氨丙基丙烯酸酯,甲基氨丙基丙烯酸酯,二甲基氨丙基丙烯酸酯,乙基氨丙基丙烯酸酯,乙基甲基氨丙基丙烯酸酯,二乙胺基丙基丙烯酸酯,氨丙基甲基丙烯酸酯,甲基氨丙基甲基丙烯酸酯,二甲基氨丙基甲基丙烯酸酯,乙基氨丙基甲基丙烯酸酯,乙基甲基氨丙基甲基丙烯酸酯,聚合物,如二乙胺基丙基甲基丙烯酸酯,二甲基氨乙基丙烯酰胺,二甲基氨丙基丙烯酰胺,和akuriro氧基乙基三甲基铵盐,聚丁烯,硅树脂,倍半硅氧烷低聚物,氨基官能化硅树脂或硅氧烷,硅醇官能化聚合物,有机硅,甲醇官能化硅树脂,酸酐官能化硅树脂,二环庚烯官能化硅树脂,羧酸官能化硅树脂,聚合物金属醇盐,羟基官能化硅树脂,聚倍半硅氧烷,以及具有官能化环氧基团的组合物。
39. 如权利要求1所述的聚合物基质,其中第一化学反应的一种或多种组分选自下列组成的组,支化聚环氧乙烷,聚乙二醇,聚环氧丙烷,聚丙二醇,硅,聚倍半硅氧烷,多功能硅氧烷,聚丁烯,或带有终端胺、羧基、羟基或其它功能单元的另一柔性聚合物。
40. 如权利要求1所述的聚合物基质,其中反应聚合物的聚合物凝胶化低于98%,更优选低于90%,并且更优选是在75%-85%之间。
41. 如权利要求1所述的聚合物基质,其中一种或多种非连接的聚合物或高分子与活性分子种类缠结、陷入聚合物基质的内部和周围,并且在聚合反应后不连接到聚合物基质中,并可用于化学反应、质子化作用或去质子化。
42. 如权利要求1所述的聚合物基质,其中一种或多种非连接聚合物或高分子与活性分子种类缠结、陷入聚合物基质的内部和周围,并在聚合反应后在一种或多种分子位点与聚合物基质部分地连接,并用于化学反应、质子化作用或者去质子化。
43. 如权利要求1所述的聚合物基质,其中一种或多种非连接聚合物或高分子与活性分子种类缠结、陷入聚合物基质的内部和周围,并在聚合反应后在一种或多种分子位点与聚合物基质部分地连接,并用于化学反应,质子化作用或者去质子化。
44. 如权利要求1所述的聚合物基质,其中用于化学反应,质子化作用或者去质子化的一种或多种活性分子种类,决定了聚合物材料生成的压力。
45. 如权利要求1所述的聚合物基质,其中用于化学反应,质子化作用或者去质子化的一种或多种活性分子种类,决定了聚合物致动器生成的压力,并且表面积决定速度。
46. 如权利要求1所述的聚合物基质,其中用于化学反应的一种或多种活性分子种类,决定了聚合物材料的主动和/或被动溶胀生长的pH值范围。
47. 如权利要求20所述的聚合物基质,其中所述第一环氧化学反应中的一种或多种成分是选自下列组成的组:聚乙二醇缩水甘油醚,聚丙二醇缩水甘油醚,具有离子官能团的聚合物,所述离子官能团选自包含下列基团组成的组,羧酸,磷酸,磺酸,伯胺,仲胺,叔胺和季铵,丙烯酸,甲基丙烯酸,乙烯基乙酸,马来酸,meta-kuriro氧基乙基磷酸,乙烯基磺酸,苯乙烯磺酸,乙烯基吡啶,乙烯基苯胺,乙烯基咪唑,氨乙基丙烯酸酯,甲胺基丙烯酸乙酯,二甲胺丙烯酸乙酯,乙胺基丙烯酸乙酯,乙基甲胺基丙烯酸乙酯,二乙胺基丙烯酸乙酯,氨乙基甲基丙烯酸酯,甲胺基甲基丙烯酸乙酯,二甲胺基乙基甲基丙烯酸酯,乙胺基甲基丙烯酸乙酯,乙基甲胺基甲基丙烯酸乙酯,二乙胺基甲基丙烯酸乙酯,氨丙基丙烯酸酯,甲基氨丙基丙烯酸酯,二甲基氨丙基丙烯酸酯,乙基氨丙基丙烯酸酯,乙基甲基氨丙基丙烯酸酯,二乙胺基丙基丙烯酸酯,氨丙基甲基丙烯酸酯,甲基氨丙基甲基丙烯酸酯,二甲基氨丙基甲基丙烯酸酯,乙基氨丙基甲基丙烯酸酯,乙基甲基氨丙基甲基丙烯酸酯,聚合物,如二乙胺基丙基甲基丙烯酸酯,二甲基氨乙基丙烯酰胺,二甲基氨丙基丙烯酰胺,和akuriro氧基乙基三甲基铵盐,聚丁烯,硅树脂,倍半硅氧烷低聚物,氨基官能化硅树脂或硅氧烷,硅醇官能化聚合物,有机硅,甲醇官能化硅树脂,酸酐官能化硅树脂,二环庚烯官能化硅树脂,羧酸官能化硅树脂,聚合物金属醇盐,羟基官能化硅树脂,聚倍半硅氧烷,以及具有官能化环氧基团的组合物。
48. 如权利要求20所述的聚合物基质,其中第一化学反应的一种或多种组分选自下列组成的组,支化聚环氧乙烷,聚乙二醇,聚环氧丙烷,聚丙二醇,硅,聚倍半硅氧烷,多功能硅氧烷,聚丁烯,或带有终端胺、羧基、羟基或其它功能单元的另一柔性聚合物。
49. 如权利要求20所述的聚合物基质,其中反应聚合物的聚合物凝胶化低于98%,更优选低于90%,并且更优选是在75%-85%之间。
50. 如权利要求20所述的聚合物基质,其中一种或多种非连接聚合物或高分子与活性分子种类缠结、陷入聚合物基质的内部和周围,并且在聚合反应后并不与聚合物基质连接,并用于化学反应,质子化作用和去质子化。
51. 如权利要求20所述的聚合物基质,其中一种或多种非连接聚合物或高分子与活性分子种类缠结、陷入聚合物基质的内部和周围,并且在聚合反应后,在一种或多种分子位点与聚合物基质部分地连接,并可用于化学反应,质子化作用或者去质子化。
52. 如权利要求20所述的聚合物基质,其中一种或多种非连接聚合物或高分子与反应分子种类缠结、陷入聚合物基质的内部和周围,并在聚合反应后,在一种或多种分子位点与聚合物基质部分地连接,并用于化学反应,质子化作用或者去质子化。
53. 如权利要求20所述的聚合物基质,其中用于化学反应,质子化作用或者去质子化的一种或多种活性分子种类,决定了聚合物材料生成的压力。
54. 如权利要求20所述的聚合物基质,其中用于化学反应,质子化作用或者去质子化的一种或多种活性分子种类,决定了聚合物致动器生成的压力,并且表面积决定速度。
55. 如权利要求20所述的聚合物基质,其中用于化学反应的一种或多种活性分子种类,决定了聚合物材料的主动和/或被动溶胀生长的pH值范围。
CN201380022758.9A 2012-03-14 2013-03-13 含有过量活性分子的智能聚合物材料 Pending CN104302689A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261610471P 2012-03-14 2012-03-14
US61/610,471 2012-03-14
PCT/US2013/031062 WO2013138524A1 (en) 2012-03-14 2013-03-13 Smart polymer materials with excess reactive molecules

Publications (1)

Publication Number Publication Date
CN104302689A true CN104302689A (zh) 2015-01-21

Family

ID=49161793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380022758.9A Pending CN104302689A (zh) 2012-03-14 2013-03-13 含有过量活性分子的智能聚合物材料

Country Status (7)

Country Link
US (1) US10000605B2 (zh)
EP (1) EP2847249A4 (zh)
JP (1) JP2015510956A (zh)
CN (1) CN104302689A (zh)
CA (1) CA2906274A1 (zh)
HK (1) HK1206374A1 (zh)
WO (1) WO2013138524A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11771017B2 (en) 2016-01-29 2023-10-03 Mark Banister Method of conserving irrigation water using a woven fabric substrate
CN107446135B (zh) * 2016-06-01 2020-04-10 翁秋梅 一种具有动态交联结构的动态聚合物
US10978735B2 (en) 2018-01-23 2021-04-13 Samsung Electronics Co., Ltd. Stretchable polymer electrolyte, stretchable electrode, stretchable polymer, electrocheical device, and method of preparing stretchable polymer
CN111876075A (zh) * 2020-07-10 2020-11-03 浙江温州轻工研究院 环氧基聚硅氧烷-聚十二烷基氨基倍半硅氧烷纳米杂化超疏水材料的制备方法及其应用
CN114792840A (zh) 2021-01-26 2022-07-26 清华大学 锂离子电池电解质及其制备方法
CN114790278A (zh) * 2021-01-26 2022-07-26 清华大学 甘油醚类环氧树脂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080063716A1 (en) * 2002-11-06 2008-03-13 Uluru Inc. Method of formation of shape-retentive aggregates of gel particles and their uses
US20080255307A1 (en) * 2001-09-27 2008-10-16 Ppg Industries Ohio, Inc. Copolymers comprising low surface tension (meth)acrylates
CN101528830A (zh) * 2006-07-10 2009-09-09 麦德医像公司 超弹性环氧水凝胶
US20100280561A1 (en) * 2007-04-19 2010-11-04 University Of Massachusetts Medical School Thermal-Responsive Polymer Networks, Compositions, And Methods And Applications Related Thereto
US20110274725A1 (en) * 2008-09-16 2011-11-10 Louis Breton Decomposable biocompatible hydrogels and system and method for using same

Family Cites Families (328)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3029743A (en) 1960-04-14 1962-04-17 Curtiss Wright Corp Ceramic diaphragm pump
BE789774A (fr) 1972-02-18 1973-02-01 Sinclair Koppers Co Procede et appareil pour la fabrication de profiles en mousse
JPS51117530A (en) 1975-04-08 1976-10-15 Ricoh Co Ltd Ink drop jet device
US4111202A (en) 1976-11-22 1978-09-05 Alza Corporation Osmotic system for the controlled and delivery of agent over time
JPS6025194B2 (ja) 1977-08-04 1985-06-17 株式会社クラレ 遠心接着装置
US5133727A (en) 1990-05-10 1992-07-28 Symbiosis Corporation Radial jaw biopsy forceps
US4203440A (en) 1978-10-23 1980-05-20 Alza Corporation Device having variable volume chamber for dispensing useful agent
US4299220A (en) 1979-05-03 1981-11-10 The Regents Of The University Of Minnesota Implantable drug infusion regulator
US4327725A (en) 1980-11-25 1982-05-04 Alza Corporation Osmotic device with hydrogel driving member
US4395719A (en) 1981-01-05 1983-07-26 Exxon Research And Engineering Co. Ink jet apparatus with a flexible piezoelectric member and method of operating same
US4423166A (en) 1981-07-20 1983-12-27 Ppg Industries, Inc. Ungelled polyepoxide-polyoxyalkylenepolyamine resins, aqueous dispersions thereof, and their use in cationic electrodeposition
ZA824373B (en) 1981-07-20 1984-02-29 Ppg Industries Inc Ungelled polyepoxide-polyoxyalkylenepolyamine resins,aqueous dispersions thereof,and their use in cationic electrodeposition
US4551139A (en) 1982-02-08 1985-11-05 Marion Laboratories, Inc. Method and apparatus for burn wound treatment
US4449983A (en) 1982-03-22 1984-05-22 Alza Corporation Simultaneous delivery of two drugs from unit delivery device
US4432699A (en) 1982-05-04 1984-02-21 The Abet Group Peristaltic piezoelectric pump with internal load sensor
US4449893A (en) 1982-05-04 1984-05-22 The Abet Group Apparatus and method for piezoelectric pumping
US5100933A (en) 1986-03-31 1992-03-31 Massachusetts Institute Of Technology Collapsible gel compositions
US4524762A (en) 1983-05-16 1985-06-25 Schulman David A Seat having movable supporting surfaces
US4781714A (en) 1983-11-02 1988-11-01 Alza Corporation Dispenser for delivering thermo-responsive composition
US4538607A (en) 1984-02-06 1985-09-03 Ab Fixfabriken Tracheostomy valve
US4595583A (en) 1984-03-19 1986-06-17 Alza Corporation Delivery system controlled administration of beneficial agent to ruminants
US5000957A (en) 1984-03-19 1991-03-19 Alza Corporation Dispenser comprising hydrophilic osmopolymer
US4772474A (en) 1985-08-09 1988-09-20 Alza Corporation Dispenser with internal arrangement of lamina means for dispensing beneficial agent
US4663149A (en) 1984-03-21 1987-05-05 Alza Corporation Dispenser comprising inner and outer walls functioning as cooperative unit
US4508854A (en) 1984-04-27 1985-04-02 Personal Products Company Quaternized cellular polymers from amine terminated poly(aminoethers) and polyfunctional epoxides
US4507363A (en) 1984-05-03 1985-03-26 Union Carbide Corporation Polyoxyalkyleneamine modified epoxy coatings for corroded metal surfaces
US4624848A (en) 1984-05-10 1986-11-25 Ciba-Geigy Corporation Active agent containing hydrogel devices wherein the active agent concentration profile contains a sigmoidal concentration gradient for improved constant release, their manufacture and use
US4559038A (en) 1984-10-19 1985-12-17 Deltec Systems, Inc. Drug delivery system
US4650469A (en) 1984-10-19 1987-03-17 Deltec Systems, Inc. Drug delivery system
US4655767A (en) 1984-10-29 1987-04-07 Dow Corning Corporation Transdermal drug delivery devices with amine-resistant silicone adhesives
US4624847A (en) 1985-04-22 1986-11-25 Alza Corporation Drug delivery device for programmed delivery of beneficial drug
US4963141A (en) 1985-08-16 1990-10-16 Alza Corporation Dispensing system for administering beneficial agent formulation to ruminants
US4675174A (en) 1985-08-16 1987-06-23 Alza Corporation Veterinary dispenser delivering beneficial agent by gas power generated in situ
JP2644730B2 (ja) 1986-03-24 1997-08-25 株式会社日立製作所 微量流体移送装置
US4863456A (en) 1986-04-30 1989-09-05 Alza Corporation Dosage form with improved delivery capability
US4948592A (en) 1986-05-09 1990-08-14 Alza Corporation Pulsed drug delivery
US4723958A (en) 1986-05-23 1988-02-09 Merck & Co., Inc. Pulsatile drug delivery system
US4986260A (en) 1986-06-06 1991-01-22 Superspine, Inc. Apparatus and method for providing continuous passive motion to the spine
EP0268204B1 (de) 1986-11-14 1991-09-18 Qenico AB Piezoelektrische Pumpe
US4810535A (en) 1988-02-01 1989-03-07 Ppg Industries, Inc. Glycidol-modified polyepoxide-polyoxyalkylenepolyamine adducts
US5474783A (en) 1988-03-04 1995-12-12 Noven Pharmaceuticals, Inc. Solubility parameter based drug delivery system and method for altering drug saturation concentration
US5656286A (en) 1988-03-04 1997-08-12 Noven Pharmaceuticals, Inc. Solubility parameter based drug delivery system and method for altering drug saturation concentration
US5802640A (en) 1992-04-03 1998-09-08 Hill-Rom, Inc. Patient care system
JPH02137930A (ja) 1988-11-18 1990-05-28 Nec Home Electron Ltd インクジェット・ヘッド
US5034229A (en) 1988-12-13 1991-07-23 Alza Corporation Dispenser for increasing feed conversion of hog
US5059423A (en) 1988-12-13 1991-10-22 Alza Corporation Delivery system comprising biocompatible beneficial agent formulation
US5110596A (en) 1988-12-13 1992-05-05 Alza Corporation Delivery system comprising means for delivering agent to livestock
US5037420A (en) 1988-12-13 1991-08-06 Alza Corporation Delivery system comprising two sections for delivering somatotropin
US5061242A (en) 1989-07-18 1991-10-29 Infusaid, Inc. Adjustable implantable drug infusion system
CA1331889C (en) 1989-09-19 1994-09-06 Bruno H. Walter Bed mattress or the like
US5029939A (en) 1989-10-05 1991-07-09 General Motors Corporation Alternating pressure pad car seat
US5105983A (en) 1989-10-31 1992-04-21 Block Medical, Inc. Infusion apparatus
US5304121A (en) 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US5674192A (en) 1990-12-28 1997-10-07 Boston Scientific Corporation Drug delivery
US5554117A (en) 1990-03-01 1996-09-10 Michigan Transtech Corporation Implantable access devices
CA2039586A1 (en) 1990-05-02 1991-11-03 Marian R. Appelt Crosslinked pressure-sensitive adhesives tolerant of alcohol-based excipients used in transdermal delivery devices and method of preparing same
US5431921A (en) 1990-09-28 1995-07-11 Pfizer Inc Dispensing device containing a hydrophobic medium
ATE163949T1 (de) 1990-10-03 1998-03-15 Dow Chemical Co Hydroxy-funktionalisierte polyetheramine zur verwendung als sperrschicht bei sauerstoffempfindlichen materialien
US5070560A (en) 1990-10-22 1991-12-10 Healthflex, Inc. Pressure relief support system for a mattress
US5443727A (en) 1990-10-30 1995-08-22 Minnesota Mining And Manufacturing Company Articles having a polymeric shell and method for preparing same
US5633009A (en) 1990-11-28 1997-05-27 Sano Corporation Transdermal administration of azapirones
US5279544A (en) 1990-12-13 1994-01-18 Sil Medics Ltd. Transdermal or interdermal drug delivery devices
US5192304A (en) 1991-06-17 1993-03-09 Rassman William R Apparatus for manipulating back muscles
US5262696A (en) 1991-07-05 1993-11-16 Rockwell International Corporation Biaxial transducer
US5300299A (en) 1991-07-22 1994-04-05 Dow Corning Corporation Silicone pressure sensitive adhesive containing alkylmethylsiloxane wax and related methods and devices
US5328696A (en) 1991-07-22 1994-07-12 Dow Corning Corporation Devices using silicone pressure sensitive adhesives containing organic wax
US5232702A (en) 1991-07-22 1993-08-03 Dow Corning Corporation Silicone pressure sensitive adhesive compositons for transdermal drug delivery devices and related medical devices
US5288214A (en) 1991-09-30 1994-02-22 Toshio Fukuda Micropump
ATE192936T1 (de) 1991-10-24 2000-06-15 Insutech Inc Durch mittels elektrolyse in hydrogel erzeugten gasdruck angetriebenes infusionssystem
US5192197A (en) 1991-11-27 1993-03-09 Rockwell International Corporation Piezoelectric pump
US5200195A (en) 1991-12-06 1993-04-06 Alza Corporation Process for improving dosage form delivery kinetics
US5175246A (en) 1992-01-22 1992-12-29 University Of Akron, The Medical grade adhesives and their preparation
US5546932A (en) 1992-03-25 1996-08-20 Tebro Sa Powder jet dispenser for medicament inhalation therapies
US5246705A (en) 1992-04-08 1993-09-21 Cygnus Therapeutic System Occlusive, elastomeric backing materials in transdermal drug delivery systems, and associated methods of manufacture and use
US5284133A (en) 1992-07-23 1994-02-08 Armstrong Pharmaceuticals, Inc. Inhalation device with a dose-timer, an actuator mechanism, and patient compliance monitoring means
US5274036A (en) 1992-11-17 1993-12-28 Ralf Korpman Associates Pressure sensitive adhesive
CA2087506A1 (en) 1993-01-18 1994-07-19 Simon Liang Multi-function cushion
US5279565A (en) 1993-02-03 1994-01-18 Localmed, Inc. Intravascular treatment apparatus and method
US5288827A (en) 1993-02-17 1994-02-22 Ciba-Geigy Corporation Copolymer of (meth)acryloxy-alkyl-siloxysilane and alkyl(meth)acrylates and the use thereof as pressure sensitive adhesives
US5497763A (en) 1993-05-21 1996-03-12 Aradigm Corporation Disposable package for intrapulmonary delivery of aerosolized formulations
CA2168554A1 (en) 1993-08-11 1995-02-16 Thomas John Berrigan Implantable drug delivery means
US5498255A (en) 1993-08-17 1996-03-12 Alza Corporation Osmotic device for protracted pulsatile delivery of agent
US5997501A (en) 1993-11-18 1999-12-07 Elan Corporation, Plc Intradermal drug delivery device
US5380760A (en) 1993-11-19 1995-01-10 Minnesota Mining And Manufacturing Company Transdermal prostaglandin composition
IT1269700B (it) 1994-01-07 1997-04-15 Abbott Lab Sistema e apparecchiatura per collegare un contenitore di anestetico ad un vaporizzatore
US5798600A (en) 1994-08-29 1998-08-25 Oceaneering International, Inc. Piezoelectric pumps
US5718700A (en) 1994-09-20 1998-02-17 Alza Corporation Exit means in dosage form
KR100199844B1 (ko) 1994-10-31 1999-06-15 배길훈 형상기억합금을 이용한 유압펌프
BR9404646A (pt) 1994-12-02 1997-03-04 Brasil Compressores Sa Compressor hermético para sistema de refrigeraçao
US5648409A (en) 1994-12-29 1997-07-15 Henkel Corporation Aqueous self-dispersible epoxy resin based on epoxy-amine adducts containing aromatic polyepoxide
DE59602204D1 (de) 1995-01-26 1999-07-22 Ciba Geigy Ag Härtbares Epoxidharzgemisch
US6630238B2 (en) 1995-02-16 2003-10-07 3M Innovative Properties Company Blended pressure-sensitive adhesives
US6632522B1 (en) 1995-02-16 2003-10-14 3M Innovative Properties Company Blended pressure-sensitive adhesives
US5779668A (en) 1995-03-29 1998-07-14 Abbott Laboratories Syringe barrel for lyophilization, reconstitution and administration
EP0736556B1 (de) 1995-04-04 2003-05-07 Vantico AG Wollastonit enthaltendes, härtbares Epoxidharzgemisch
US5564142A (en) 1995-05-11 1996-10-15 Liu; Tsung-Hsi Air mattress collaboratively cushioned with pulsative and static symbiotic sacs
US6316022B1 (en) 1995-06-07 2001-11-13 Noven Pharmaceuticals, Inc. Transdermal compositions containing low molecular weight drugs which are liquid at room temperatures
US5692256A (en) 1995-08-04 1997-12-02 Hill-Rom, Inc. Mattress for a hospital bed
AU732803B2 (en) 1996-01-17 2001-05-03 National Starch And Chemical Investment Holding Corporation Adhesives resistant to skin-penetration enhancers
CA2243527A1 (en) 1996-01-18 1997-07-24 University Of New Mexico Soft actuators and artificial muscles
US6475639B2 (en) 1996-01-18 2002-11-05 Mohsen Shahinpoor Ionic polymer sensors and actuators
US5630709A (en) 1996-02-09 1997-05-20 California Institute Of Technology Pump having pistons and valves made of electroactive actuators
US5645855A (en) 1996-03-13 1997-07-08 Ridge Scientific Enterprises, Inc. Adhesive compositions including polyvinylpyrrolidone acrylic acid polymers, and polyamines
US6206850B1 (en) 1996-03-14 2001-03-27 Christine O'Neil Patient controllable drug delivery system flow regulating means
US6461644B1 (en) 1996-03-25 2002-10-08 Richard R. Jackson Anesthetizing plastics, drug delivery plastics, and related medical products, systems and methods
JPH09287571A (ja) 1996-04-18 1997-11-04 Fuji Electric Co Ltd マイクロポンプ
AUPN970096A0 (en) 1996-05-06 1996-05-30 Pumping Systems Technologies Pty Limited Pseudo static peristaltic pump
US5961298A (en) 1996-06-25 1999-10-05 California Institute Of Technology Traveling wave pump employing electroactive actuators
US5687748A (en) 1996-07-01 1997-11-18 R. J. Reynolds Tobacco Company Spool and shell with pressurizing fluid activated seal
EP0921840B1 (en) 1996-07-03 2003-05-28 Altea Therapeutics Corporation Multiple mechanical microporation of skin or mucosa
US5716621A (en) 1996-07-03 1998-02-10 Pharmadyn, Inc. Nonocclusive drug delivery device and process for its manufacture
US6066325A (en) 1996-08-27 2000-05-23 Fusion Medical Technologies, Inc. Fragmented polymeric compositions and methods for their use
US6365178B1 (en) 1996-09-06 2002-04-02 Watson Pharmaceuticals, Inc. Method of making pressure sensitive adhesive matrix patches for transdermal drug delivery using hydrophilic salts of drugs and hydrophobic pressure sensitive adhesive dispersions
WO1998011926A1 (en) 1996-09-20 1998-03-26 Novo Nordisk A/S Working cylinder
AUPO295696A0 (en) 1996-10-09 1996-11-07 Berrigan, Thomas John Drug delivery means
NZ337222A (en) 1997-01-17 2000-10-27 Niagara Pump Corp Linear peristaltic pump
US6809462B2 (en) 2000-04-05 2004-10-26 Sri International Electroactive polymer sensors
US5860957A (en) 1997-02-07 1999-01-19 Sarcos, Inc. Multipathway electronically-controlled drug delivery system
US6781284B1 (en) 1997-02-07 2004-08-24 Sri International Electroactive polymer transducers and actuators
US5951999A (en) 1997-02-21 1999-09-14 Adhesives Research, Inc. Transdermal pressure sensitive adhesive drug delivery system
US5836900A (en) 1997-03-19 1998-11-17 Jb Research, Inc. Massaging apparatus having transformable pad
US6074178A (en) 1997-04-15 2000-06-13 Face International Corp. Piezoelectrically actuated peristaltic pump
GB9709612D0 (en) 1997-05-12 1997-07-02 Univ Cambridge Tech Opto-mechanical device
US5955549A (en) 1997-05-29 1999-09-21 Chang; Ching-Jen Crosslinked poly(amino acids) and method of preparation
JP3625357B2 (ja) 1997-06-06 2005-03-02 キヤノン株式会社 液体輸送方法および液体輸送装置
US6796970B1 (en) 1997-06-17 2004-09-28 Novo Nordisk A/S Dose setting device
US6106245A (en) 1997-10-09 2000-08-22 Honeywell Low cost, high pumping rate electrostatically actuated mesopump
EP1030577A4 (en) 1997-11-14 2004-04-28 Span America Medical Syst SUPPORT SURFACES FOR PATIENTS
US6180133B1 (en) 1997-11-25 2001-01-30 Watson Pharmaceuticals, Inc. Antioxidant composition for topical/transdermal prevention and treatment of wrinkles
AU1800099A (en) 1997-11-25 1999-06-15 Theratech, Inc. Transdermal delivery devices containing polydiorganosiloxane polymers to regulate adhesive properties
EP1035834B1 (en) 1997-12-05 2002-04-17 Alza Corporation Osmotic dosage form comprising first and second coats
US6368318B1 (en) 1998-01-23 2002-04-09 The Regents Of The University Of California Opto-acoustic recanilization delivery system
US6682500B2 (en) 1998-01-29 2004-01-27 David Soltanpour Synthetic muscle based diaphragm pump apparatuses
US5939477A (en) 1998-02-02 1999-08-17 Dow Corning Corporation Silicone pressure sensitive adhesive composition containing functionalized polyisobutylene
US6352715B1 (en) 1998-02-19 2002-03-05 Sagittarius Life Science Corp Transdermal rate-controlled delivery of Huperzine A for treatment of alzheimer's disease
CA2262286C (en) 1998-02-20 2006-09-19 Agency Of Industrial Science And Technology, Ministry Of International Trade And Industry Polymeric actuators and process for producing the same
US6157113A (en) 1998-03-06 2000-12-05 Massachusetts Institute Of Technology Conducting polymer generator-actuator with energy storage/recovery
US6365185B1 (en) 1998-03-26 2002-04-02 University Of Cincinnati Self-destructing, controlled release peroral drug delivery system
US6193996B1 (en) 1998-04-02 2001-02-27 3M Innovative Properties Company Device for the transdermal delivery of diclofenac
US7087244B2 (en) * 2000-09-28 2006-08-08 Battelle Memorial Institute Thermogelling oligopeptide polymers
US6249076B1 (en) 1998-04-14 2001-06-19 Massachusetts Institute Of Technology Conducting polymer actuator
US6312715B1 (en) 1998-05-01 2001-11-06 3M Innovative Properties Company Adhesive microsphere drug delivery composition
US5979892A (en) 1998-05-15 1999-11-09 Xerox Corporation Controlled cilia for object manipulation
US6143138A (en) 1998-08-20 2000-11-07 The United States Of America As Represented By The Secretary Of The Navy Visible light pH change for activating polymers and other pH dependent reactants
US6367132B2 (en) 1998-08-31 2002-04-09 Eastman Kodak Company Method of making a print head
US6531152B1 (en) 1998-09-30 2003-03-11 Dexcel Pharma Technologies Ltd. Immediate release gastrointestinal drug delivery system
EP1163446B1 (en) 1998-11-06 2007-01-03 Honeywell Inc. Electrostatically actuated pumping array
US6391937B1 (en) 1998-11-25 2002-05-21 Motorola, Inc. Polyacrylamide hydrogels and hydrogel arrays made from polyacrylamide reactive prepolymers
JP3584761B2 (ja) 1998-11-25 2004-11-04 松下電工株式会社 マッサージ用マット
US6184608B1 (en) 1998-12-29 2001-02-06 Honeywell International Inc. Polymer microactuator array with macroscopic force and displacement
US6337086B1 (en) 1999-02-06 2002-01-08 Dow Corning Corporation Pressure sensitive adhesive compositions for transdermal drug delivery devices
US6565872B2 (en) 1999-02-16 2003-05-20 Xiao Yu Wu Polymeric system for drug delivery and solute separation
IL144948A0 (en) 1999-02-18 2002-06-30 Biovalve Technologies Inc Electroactive pore
JP2000314381A (ja) 1999-03-03 2000-11-14 Ngk Insulators Ltd ポンプ
DE19912606A1 (de) 1999-03-22 2000-12-14 Johannes Trabert Pumpeneinrichtung unter Anwendung eines elektrisch gesteuerten chemomechanischen Antriebs
US6200257B1 (en) 1999-03-24 2001-03-13 Proxima Therapeutics, Inc. Catheter with permeable hydrogel membrane
US20070021697A1 (en) 2004-07-26 2007-01-25 Kci Licensing, Inc. System and method for use of agent in combination with subatmospheric tissue treatment
US6152898A (en) 1999-04-30 2000-11-28 Medtronic, Inc. Overfill protection systems for implantable drug delivery devices
US6277401B1 (en) 1999-05-07 2001-08-21 U.S. Dermatologics, Inc. Drug delivery device
US6074179A (en) 1999-05-10 2000-06-13 The United States Of America As Represented By The Secretary Of The Navy Magnetostrictive peristaltic pump
US7147633B2 (en) 1999-06-02 2006-12-12 Boston Scientific Scimed, Inc. Method and apparatus for treatment of atrial fibrillation
ATE290166T1 (de) 1999-06-28 2005-03-15 California Inst Of Techn Elastisches mikropumpen- oder mikroventilsystem
US6664718B2 (en) 2000-02-09 2003-12-16 Sri International Monolithic electroactive polymers
US6949079B1 (en) 1999-09-03 2005-09-27 Baxter International Inc. Programmable, fluid pressure actuated blood processing systems and methods
US6586512B1 (en) 1999-09-30 2003-07-01 The Dow Chemical Company Binding superabsorbent polymers to substrates
KR20010036685A (ko) 1999-10-11 2001-05-07 김윤 펜타닐을 함유하는 매트릭스형 경피투여제
US8465468B1 (en) 2000-06-29 2013-06-18 Becton, Dickinson And Company Intradermal delivery of substances
US7943162B2 (en) 1999-10-21 2011-05-17 Alcon, Inc. Drug delivery device
EP1240230B1 (en) 1999-11-12 2006-03-01 MacroMed, Inc. Swelling and deswelling polymer blends
US7458956B1 (en) 1999-11-12 2008-12-02 Boston Scientific Scimed, Inc. Apparatus for delivery of controlled doses of therapeutic drugs in endoluminal procedures
CA2392006C (en) 1999-11-17 2011-03-15 Microchips, Inc. Microfabricated devices for the delivery of molecules into a carrier fluid
US6476006B2 (en) 2000-06-23 2002-11-05 Teva Pharmaceutical Industries, Ltd. Composition and dosage form for delayed gastric release of alendronate and/or other bis-phosphonates
US6881420B2 (en) 2000-06-23 2005-04-19 Teva Pharmaceutical Industries Ltd. Compositions and dosage forms for gastric delivery of irinotecan and methods of treatment that use it to inhibit cancer cell proliferation
CA2353208C (en) 2000-07-18 2010-12-14 Span-America Medical Systems, Inc. Air-powered low interface pressure support surface
JP2004505730A (ja) 2000-08-15 2004-02-26 ユニバーシティ オブ ケンタッキー リサーチ ファウンデーション プログラム可能多用量鼻腔内薬物送達デバイス
US6560803B2 (en) 2000-09-05 2003-05-13 Levy Zur Pressure relief pneumatic area support device and system
US6387077B1 (en) 2000-10-13 2002-05-14 Mallinckrodt Inc. Apparatus and method for providing a suspended agent
US7235914B2 (en) 2000-10-25 2007-06-26 Washington State University Research Foundation Piezoelectric micro-transducers, methods of use and manufacturing methods for same
IL156209A0 (en) 2000-10-31 2003-12-23 Onkoworks Ges Fur Herstellung Device for administering liquids
US6378292B1 (en) 2000-11-10 2002-04-30 Honeywell International Inc. MEMS microthruster array
JP2004514770A (ja) 2000-11-21 2004-05-20 バンティコ ゲーエムベーハー ウント コー.カーゲー ヒドロキシル基含有ポリエーテルアミン付加物
WO2002045701A2 (en) 2000-12-05 2002-06-13 Noven Pharmaceuticals, Inc. Crystallization inhibition of drugs in transdermal drug delivery systems
US6464476B2 (en) 2000-12-22 2002-10-15 Anthony C. Ross Linear pump and method
EP1347790A1 (de) 2000-12-29 2003-10-01 Basf Aktiengesellschaft Aborbierende zusammensetzungen
CN1262604C (zh) 2001-01-26 2006-07-05 株式会社日本触媒 吸水剂及其制法以及吸水制品
US6726678B1 (en) 2001-02-22 2004-04-27 Isurgical, Llc Implantable reservoir and system for delivery of a therapeutic agent
TW574918U (en) 2001-03-07 2004-02-01 Shan Lin Heat Treat Co Ltd Air bed with massage device
US6450773B1 (en) 2001-03-13 2002-09-17 Terabeam Corporation Piezoelectric vacuum pump and method
US8043239B2 (en) 2001-05-10 2011-10-25 Pptt, Llc External counterpulsation (ECP) device for use in an ambulance or the like for heart attack patients to limit heart muscle damage
DE60239868D1 (de) 2001-06-12 2011-06-09 Univ Johns Hopkins Med Reservoirvorrichtung für die intraokulare arzneimittelabgabe
US6767341B2 (en) 2001-06-13 2004-07-27 Abbott Laboratories Microneedles for minimally invasive drug delivery
US7163688B2 (en) 2001-06-22 2007-01-16 Alza Corporation Osmotic implant with membrane and membrane retention means
US7572239B1 (en) 2001-07-09 2009-08-11 Brotz Gregory R Wave exercise device and method of use
WO2003005951A2 (en) 2001-07-10 2003-01-23 Teva Pharmaceutical Industries Ltd. Drug delivery system for zero order, zero order-biphasic, ascending or descending drug delivery
US6766817B2 (en) 2001-07-25 2004-07-27 Tubarc Technologies, Llc Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action
DE10140699A1 (de) 2001-08-24 2003-03-13 Roche Diagnostics Gmbh Anordnung und Verfahren zur Untersuchung der Fließfähigkeit einer physiologischen Flüssigprobe
EP1424972A1 (en) 2001-09-14 2004-06-09 3M Innovative Properties Company Non-contact printing method for making a medical pressure sensitive adhesive article
CA2499838C (en) 2001-09-21 2012-12-18 Biovalve Technologies, Inc. Gas pressure actuated microneedle arrays, and systems and methods relating to same
US6808518B2 (en) 2001-09-28 2004-10-26 Ethicon, Inc. Methods and devices for treating diseased blood vessels
US6876135B2 (en) 2001-10-05 2005-04-05 Sri International Master/slave electroactive polymer systems
US6893655B2 (en) 2001-10-09 2005-05-17 3M Innovative Properties Co. Transdermal delivery devices
US20040078028A1 (en) 2001-11-09 2004-04-22 Flaherty J. Christopher Plunger assembly for patient infusion device
WO2003043552A1 (en) 2001-11-16 2003-05-30 Biocure, Inc. Methods for initiating in situ formation of hydrogels
US7291126B2 (en) 2001-11-26 2007-11-06 Nilimedix Ltd. Drug delivery device and method
CA2467587A1 (en) 2001-11-30 2003-06-12 Fluidigm Corporation Microfluidic device and methods of using same
JP3832338B2 (ja) 2001-12-25 2006-10-11 松下電工株式会社 電歪ポリマーアクチュエータ
US7049479B2 (en) 2002-02-07 2006-05-23 Corium Corporation Ultra thin film transdermal/dermal or transmucosal/mucosal delivery system
US7004928B2 (en) 2002-02-08 2006-02-28 Rosedale Medical, Inc. Autonomous, ambulatory analyte monitor or drug delivery device
US6869275B2 (en) 2002-02-14 2005-03-22 Philip Morris Usa Inc. Piezoelectrically driven fluids pump and piezoelectric fluid valve
US20050033230A1 (en) 2002-02-15 2005-02-10 Alchas Paul G. Prefillable intradermal delivery device with hidden needle and passive shielding
US6685442B2 (en) 2002-02-20 2004-02-03 Sandia National Laboratories Actuator device utilizing a conductive polymer gel
JP4624678B2 (ja) 2002-02-21 2011-02-02 パイオニア・サージカル・オーソバイオロジックス,インコーポレイテッド 架橋生物活性ヒドロゲルマトリックス
US6902704B2 (en) 2002-02-28 2005-06-07 Equistar Chemicals, L.P Injection pump assembly for a combinatorial reactor and related method
US7035773B2 (en) 2002-03-06 2006-04-25 Fisher-Rosemount Systems, Inc. Appendable system and devices for data acquisition, analysis and control
US8116860B2 (en) 2002-03-11 2012-02-14 Altea Therapeutics Corporation Transdermal porator and patch system and method for using same
US7329414B2 (en) 2002-05-03 2008-02-12 Biopsy Sciences, Llc Biodegradable polymer for marking tissue and sealing tracts
US20050058695A1 (en) 2002-05-30 2005-03-17 Watson Pharmaccuticals, Inc. Norethindrone sustained release formulations and methods associated therewith
KR101323980B1 (ko) 2002-07-19 2013-10-30 쓰리엠 이노베이티브 프로퍼티즈 컴파니 마이크로 니들 장치, 마이크로 니들 장치를 사용하는 방법 및 마이크로 니들 장치를 송출하는 방법
US6864295B2 (en) 2002-07-23 2005-03-08 Asahi Kasei Chemicals Corporation Gas-generating, pressure-sensitive adhesive composition
EP1550689B1 (en) 2002-08-09 2013-04-24 Eamex Corporation Process for producing conductive polymer
AU2002951193A0 (en) 2002-09-04 2002-09-19 Northern Sydney Area Health Service Movement faciliatation device
ATE510494T1 (de) 2002-09-06 2011-06-15 Massachusetts Inst Technology Messung der eigenschaften eines anatomischen körpers
DE10242110A1 (de) 2002-09-11 2004-03-25 Thinxxs Gmbh Mikropumpe und Verfahren zu ihrer Herstellung
AU2003282875A1 (en) 2002-09-25 2004-04-19 California Institute Of Technology Microfluidic large scale integration
US20040068224A1 (en) 2002-10-02 2004-04-08 Couvillon Lucien Alfred Electroactive polymer actuated medication infusion pumps
US6829797B2 (en) 2002-10-08 2004-12-14 Syrus Jacob Partian Contour and topography adjusting massaging mattress
DE10251256A1 (de) 2002-11-04 2004-05-13 Novosis Ag Transdermales Wirkstoffabgabesystem für Oxybutynin
WO2004047133A2 (en) 2002-11-18 2004-06-03 Washington State University Research Foundation Thermal switch, methods of use and manufacturing methods for same
US7014636B2 (en) 2002-11-21 2006-03-21 Alza Corporation Osmotic delivery device having a two-way valve and a dynamically self-adjusting flow channel
US7285255B2 (en) 2002-12-10 2007-10-23 Ecolab Inc. Deodorizing and sanitizing employing a wicking device
US20040220518A1 (en) 2002-12-23 2004-11-04 Medtronic, Inc. Drug solution density adjustment systems and methods
US8043281B2 (en) 2002-12-23 2011-10-25 Medtronic, Inc. Catheters incorporating valves and permeable membranes
US8246602B2 (en) 2002-12-23 2012-08-21 Medtronic, Inc. Catheters with tracking elements and permeable membranes
US7252651B2 (en) 2003-01-07 2007-08-07 Becton, Dickinson And Company Disposable injection device
DE10304394B4 (de) 2003-02-04 2005-10-13 Dräger Safety AG & Co. KGaA Atemgerät mit einem Kreislauf für Atemgas
US20040234401A1 (en) 2003-02-24 2004-11-25 Mark Banister Pulse activated actuator pump system
JP2004261045A (ja) 2003-02-28 2004-09-24 Mitsubishi Gas Chem Co Inc 水耕栽培用保水剤
US6916505B2 (en) 2003-03-04 2005-07-12 Air Products And Chemicals, Inc. Mannich based adducts as water based epoxy curing agents with fast cure capabilities for green concrete application
US20040176748A1 (en) 2003-03-04 2004-09-09 Stanley Abramson Device, method and kit for preventing sexually transmitted disease, generating penile erection and effecting birth control by injecting beneficial agents deep into the male urethra canal prior to sexual intercourse
US20040202708A1 (en) 2003-04-14 2004-10-14 3M Innovative Properties Company Transdermal drug delivery device with translucent inorganic barrier layer
US8021334B2 (en) 2004-05-30 2011-09-20 Nilimedix Ltd. Drug delivery device and method
US7064929B2 (en) 2003-06-30 2006-06-20 Hitachi Global Storage Netherlands B.V. Sliders bonded by a debondable encapsulant containing styrene and acrylate polymers
US7791860B2 (en) 2003-07-09 2010-09-07 Maxwell Technologies, Inc. Particle based electrodes and methods of making same
US20050009976A1 (en) 2003-07-10 2005-01-13 Honeywell International, Inc. Delamination-resistant, barrier polyamide compositions for 3-layer pet beverage bottles
WO2005007223A2 (en) 2003-07-16 2005-01-27 Sasha John Programmable medical drug delivery systems and methods for delivery of multiple fluids and concentrations
US7491185B2 (en) 2003-08-21 2009-02-17 Boston Scientific Scimed, Inc. External counterpulsation device using electroactive polymer actuators
JP2007511605A (ja) 2003-11-18 2007-05-10 スリーエム イノベイティブ プロパティズ カンパニー オランザピン含有経皮薬物送達組成物
WO2005061014A1 (de) 2003-12-19 2005-07-07 Basf Aktiengesellschaft Quellbare hydrogelbildende polymere mit geringem feinstaubanteil
US20050137579A1 (en) 2003-12-23 2005-06-23 Medtronic, Inc. Permeable membrane catheters, systems, and methods
WO2005079440A2 (en) 2004-02-17 2005-09-01 Children's Hospital Medical Center Improved injection devicew for administering a vaccine
JP4433840B2 (ja) 2004-03-18 2010-03-17 ソニー株式会社 高分子アクチュエータ
US7727228B2 (en) 2004-03-23 2010-06-01 Medtronic Cryocath Lp Method and apparatus for inflating and deflating balloon catheters
WO2005118008A2 (en) 2004-05-27 2005-12-15 International Paper Company Compositions and articles containing a crosslinked polymer matrix and an immobilized active liquid, as well as methods of making and using the same
US7766885B2 (en) 2004-06-07 2010-08-03 Medtronic, Inc. Drug delivery system
US8251981B2 (en) 2004-06-07 2012-08-28 Medtronic, Inc. Regulator
WO2006007351A2 (en) 2004-06-28 2006-01-19 Alza Corporation Squeeze controlled oral dosage form
US20080058706A1 (en) 2004-06-30 2008-03-06 Genetronics, Inc. Modular electroporation device with disposable electrode and drug delivery components
WO2006016364A2 (en) 2004-08-10 2006-02-16 Hellman De Picciotto, Tania Drug delivery devices
WO2006023644A2 (en) 2004-08-20 2006-03-02 3M Innovative Properties Company Transdermal drug delivery device with translucent protective film
TW200616589A (en) 2004-10-08 2006-06-01 Noven Pharma Transdermal delivery of drugs based on crystal size
WO2006044206A2 (en) 2004-10-08 2006-04-27 Noven Pharmaceuticals, Inc. Transdermal drug delivery device including an occlusive backing
DE602005007513D1 (de) 2004-10-11 2008-07-24 Smm Medical Ab Elektroaktive kompressionsbandage
CA2583644A1 (en) 2004-10-12 2006-04-20 Aradigm Corporation Device and method for generating an aerosol from a liquid formulation and ensuring its sterility
US7627938B2 (en) 2004-10-15 2009-12-08 Board Of Regents, The Univeristy Of Texas System Tapered hollow metallic microneedle array assembly and method of making and using the same
US7544260B2 (en) 2004-10-20 2009-06-09 Mark Banister Micro thruster, micro thruster array and polymer gas generator
US7637897B2 (en) 2004-10-25 2009-12-29 Codman Neuro Sciences Sarl Implantable pump with integrated refill detection
JP2006144017A (ja) 2004-11-24 2006-06-08 Natl Starch & Chem Investment Holding Corp 医療用途用ホトメルト接着剤
IES20040803A2 (en) 2004-12-01 2006-06-14 Medtronic Vascular Connaught Drug delivery device
US20080009800A1 (en) 2004-12-02 2008-01-10 Nickel Janice H Transdermal drug delivery device
CN104819119A (zh) 2004-12-14 2015-08-05 麦德医像公司 致动器泵系统
US20060135911A1 (en) 2004-12-17 2006-06-22 Aravindkumar Mittur Temperature modulation of transdermal drug delivery
US20060142478A1 (en) 2004-12-29 2006-06-29 Mengkui Luo Carboxyalkyl cellulose polymer network
US20060183216A1 (en) 2005-01-21 2006-08-17 Kalyan Handique Containers for liquid storage and delivery with application to microfluidic devices
US20060188558A1 (en) 2005-02-18 2006-08-24 Mylan Technologies, Inc. Transdermal systems having control delivery system
US7837653B2 (en) 2005-02-18 2010-11-23 Bioquiddity, Inc. Fluid delivery apparatus with vial fill
US7686788B2 (en) 2005-03-03 2010-03-30 Boston Scientific Scimed, Inc. Catheter having a distal drug delivery unit and method of using same
US7198111B2 (en) 2005-03-22 2007-04-03 Ford Global Technologies, Llc Automotive vehicle with fire suppression system
CA2602979C (en) 2005-03-28 2014-01-28 Bg Industries Llc. Improved mattress
EP1714642A1 (en) 2005-04-18 2006-10-25 Bracco Research S.A. Pharmaceutical composition comprising gas-filled microcapsules for ultrasound mediated delivery
US7834527B2 (en) 2005-05-05 2010-11-16 SmartMotion Technologies, Inc. Dielectric elastomer fiber transducers
EP1898975A2 (en) 2005-05-13 2008-03-19 Novo Nordisk A/S Medical device adapted to detect disengagement of a transcutaneous device
WO2006127508A2 (en) 2005-05-20 2006-11-30 Wilson Greatbatch Technologies Inc. Improved configuration for drug delivery systems
TWI419717B (zh) 2005-06-17 2013-12-21 Altea Therapeutics Corp 滲透傳送系統及其使用方法
JP4848681B2 (ja) 2005-06-17 2011-12-28 ソニー株式会社 高分子アクチュエータ
US8844079B2 (en) 2005-07-08 2014-09-30 Hill-Rom Services, Inc. Pressure control for a hospital bed
WO2007012114A1 (en) 2005-07-25 2007-02-01 Nanotechnology Victoria Pty Ltd Microarray device
US7536739B2 (en) 2005-08-10 2009-05-26 Kreg Medical, Inc. Therapeutic mattress
US20070055199A1 (en) 2005-08-10 2007-03-08 Gilbert Scott J Drug delivery device for buccal and aural applications and other areas of the body difficult to access
US20070033738A1 (en) 2005-08-15 2007-02-15 Eezcare Medical Corp. Air bed having independent air chambers
US20070098772A1 (en) 2005-09-23 2007-05-03 Westcott Tyler D Transdermal norelgestromin delivery system
EP1937226A2 (en) 2005-09-23 2008-07-02 Alza Corporation Transdermal galantamine delivery system
WO2007035942A2 (en) 2005-09-23 2007-03-29 Alza Corporation Transdermal risperidone delivery system
EP1948142B1 (en) 2005-09-23 2014-04-09 ALZA Corporation High enhancer-loading polyacrylate formulation for transdermal applications
WO2007040938A1 (en) 2005-09-30 2007-04-12 Tti Ellebeau, Inc. Functionalized microneedles transdermal drug delivery systems, devices, and methods
US20070100355A1 (en) 2005-10-27 2007-05-03 Medtronic, Inc. Method and device for controlling bulking agent depth in tissue
US9067047B2 (en) 2005-11-09 2015-06-30 The Invention Science Fund I, Llc Injectable controlled release fluid delivery system
TW200800223A (en) 2005-12-21 2008-01-01 Shire Pharmaceuticals Inc Transdermal delivery of meptazinol
US9278173B2 (en) 2005-12-23 2016-03-08 Unomedical A/S Device for administration
US7918814B2 (en) 2006-05-02 2011-04-05 Georgia Tech Research Corporation Method for drug delivery to ocular tissue using microneedle
US9308325B2 (en) 2006-06-19 2016-04-12 Corium International, Inc. Methods, devices, and kits for microjet drug delivery
US7960498B2 (en) * 2006-06-30 2011-06-14 Actamax Surgical Materials, Llc Tissue adhesives with modified elasticity
EP2043728A2 (en) 2006-07-11 2009-04-08 Microchips, Inc. Multi-reservoir pump device for dialysis, biosensing, or delivery of substances
JP4849991B2 (ja) 2006-08-03 2012-01-11 有限会社 健康百二十才 床ずれ防止用ベッド
WO2008066642A2 (en) 2006-11-03 2008-06-05 Durect Corporation Transdermal delivery systems comprising bupivacaine
US20080110463A1 (en) 2006-11-14 2008-05-15 Julius Hajgato Nebulizer mask for delivery of aerosolized and nebulized medications
US20080152592A1 (en) 2006-12-21 2008-06-26 Bayer Healthcare Llc Method of therapeutic drug monitoring
US20080214987A1 (en) 2006-12-22 2008-09-04 Nanomed Devices, Inc. Microdevice And Method For Transdermal Delivery And Sampling Of Active Substances
WO2008091602A2 (en) 2007-01-22 2008-07-31 Corium International, Inc. Applicators for microneedle arrays
US7813811B2 (en) 2007-02-08 2010-10-12 Neuropace, Inc. Refillable reservoir lead systems
JP4714700B2 (ja) 2007-02-26 2011-06-29 日本航空電子工業株式会社 高分子電解質膜アクチュエータの作製方法及び高分子電解質膜アクチュエータ
US20080221552A1 (en) 2007-03-09 2008-09-11 Abbott Cardiovascular Systems Inc. Agent delivery perfusion catheter
WO2008111397A1 (ja) 2007-03-12 2008-09-18 Murata Manufacturing Co., Ltd. 流体移送装置
ES2395775T3 (es) 2007-04-23 2013-02-15 Steadymed. Ltd. Dispositivo de suministro de fármaco controlable accionado por batería expansible
US20090020521A1 (en) 2007-07-18 2009-01-22 Thomas Blaszczykiewicz Heating Pad System For Orthopedic Braces And The Like
JP2009046649A (ja) 2007-07-24 2009-03-05 Sony Corp ポリマーアクチュエータ素子
US20090026069A1 (en) 2007-07-24 2009-01-29 Atomic Energy Council - Institute Of Nuclear Energy Research Hydrogenation electrolysis apparatus
BRPI0814986A2 (pt) 2007-08-06 2015-02-03 Serenity Pharmaceuticals Corp Métodos e dispositivos para a distribuição de fármaco desmopresina.
US8048044B2 (en) 2007-08-14 2011-11-01 Stryker Corporation Drug delivery system
US7971300B2 (en) 2007-10-09 2011-07-05 Hill-Rom Services, Inc. Air control system for therapeutic support surfaces
EP2047876B1 (en) 2007-10-12 2012-08-29 Dentsply IH AB Self-contained portable apparatus for administration of a drug solution
RU2490738C2 (ru) 2007-11-27 2013-08-20 Мария СТРЕММЕ Композитные материалы, включающие внутренне-проводящий полимер, и способ, и устройства
US20100004638A1 (en) 2008-07-01 2010-01-07 Gibson Scott R Implantable Infusion Devices With Overfill Protection
WO2011032011A1 (en) 2009-09-10 2011-03-17 Medipacs, Inc. Low profile actuator and improved method of caregiver controlled administration of therapeutics
US20110172645A1 (en) 2010-01-08 2011-07-14 Ratio, Inc. Wearable drug delivery device including integrated pumping and activation elements
US9500186B2 (en) 2010-02-01 2016-11-22 Medipacs, Inc. High surface area polymer actuator with gas mitigating components
WO2012092542A2 (en) 2010-12-30 2012-07-05 University Of Massachusetts Lowell Responsive cell culture hydrogel
WO2012148357A1 (en) 2011-04-27 2012-11-01 Freddie Eng Hwee Lee Fluid delivery apparatus
US8420567B1 (en) 2011-12-30 2013-04-16 Evonik Stockhausen, Llc Process for superabsorbent polymer and crosslinker composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080255307A1 (en) * 2001-09-27 2008-10-16 Ppg Industries Ohio, Inc. Copolymers comprising low surface tension (meth)acrylates
US20080063716A1 (en) * 2002-11-06 2008-03-13 Uluru Inc. Method of formation of shape-retentive aggregates of gel particles and their uses
CN101528830A (zh) * 2006-07-10 2009-09-09 麦德医像公司 超弹性环氧水凝胶
US20100280561A1 (en) * 2007-04-19 2010-11-04 University Of Massachusetts Medical School Thermal-Responsive Polymer Networks, Compositions, And Methods And Applications Related Thereto
US20110274725A1 (en) * 2008-09-16 2011-11-10 Louis Breton Decomposable biocompatible hydrogels and system and method for using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARK BANISTER ET AL.: "Molecular Engineering of Polymer Actuators for Biomedical and Industrial Use", 《ELECTROACTIVE POLYMER ACTUATORS AND DEVICES(EAPAD) 2012》, vol. 8340, 26 April 2012 (2012-04-26) *

Also Published As

Publication number Publication date
US20150094448A1 (en) 2015-04-02
WO2013138524A1 (en) 2013-09-19
EP2847249A4 (en) 2016-12-28
HK1206374A1 (zh) 2016-01-08
EP2847249A1 (en) 2015-03-18
JP2015510956A (ja) 2015-04-13
CA2906274A1 (en) 2013-09-19
US10000605B2 (en) 2018-06-19

Similar Documents

Publication Publication Date Title
CN104302689A (zh) 含有过量活性分子的智能聚合物材料
Mohamadhoseini et al. Supramolecular self-healing materials via host-guest strategy between cyclodextrin and specific types of guest molecules
Chang et al. Self-activated healable hydrogels with reversible temperature responsiveness
Shao et al. A self-healing cellulose nanocrystal-poly (ethylene glycol) nanocomposite hydrogel via Diels–Alder click reaction
Liu et al. Healable strain sensor based on tough and eco-friendly biomimetic supramolecular waterborne polyurethane
JP6085887B2 (ja) ゲルおよびヒドロゲル
Wu et al. Relationship between reaction kinetics and chain dynamics of vitrimers based on dioxaborolane metathesis
Apostolides et al. Dynamic covalent star poly (ethylene glycol) model hydrogels: A new platform for mechanically robust, multifunctional materials
Feng et al. Synthesis and swelling behaviors of yeast-g-poly (acrylic acid) superabsorbent co-polymer
Yoshioka et al. Epoxy-based electroactive polymer gels
Xu et al. High-performance cross-linked self-healing material based on multiple dynamic bonds
He et al. Highly stretchable and tough alginate-based cyclodextrin/Azo-polyacrylamide interpenetrating network hydrogel with self-healing properties
CN101045793B (zh) 形成交联的聚合物凝胶的方法
CN109627800A (zh) 形状记忆聚合物材料组合物、方法和应用
Zhang et al. Unique self-reinforcing and rapid self-healing polyampholyte hydrogels with a pH-induced shape memory effect
Gitsov et al. Amphiphilic hydrogels constructed by poly (ethylene glycol) and shape-persistent dendritic fragments
CN101280061A (zh) 有机硅-聚氨酯-丙烯酸酯三元复合离聚物乳液的合成方法
Ma et al. A transparent self-healing polyurethane–isophorone-diisocyanate elastomer based on hydrogen-bonding interactions
Qian et al. Click synthesis of ionic strength-responsive polyphosphazene hydrogel for reversible binding of enzymes
Li et al. Noncovalently cross-linked polymeric materials reinforced by well-designed in situ-formed nanofillers
Wang et al. Dynamically Cross-Linked Waterborne Polyurethanes: Transalkylation Exchange of C–N Bonds Toward High Performance and Reprocessable Thermosets
CN103709411B (zh) 含有吗啉-2,5-二酮衍生物共聚物的两亲性三嵌段共聚物及制备方法及用途
CN103724616B (zh) 一种两亲性三嵌段共聚物及制备方法及用途
Bu et al. Ultratough and Reversibly Stretchable Zwitterionic poly (ionic liquid) Copolymer Hydrogel with High Ionic Conductivity for High-Performance Flexible and Cold-Resistant Supercapacitor
CN111171494B (zh) 一种抗冲击剪切增稠聚氨酯水凝胶及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1206374

Country of ref document: HK

WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150121

WD01 Invention patent application deemed withdrawn after publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1206374

Country of ref document: HK