EP1347790A1 - Aborbierende zusammensetzungen - Google Patents

Aborbierende zusammensetzungen

Info

Publication number
EP1347790A1
EP1347790A1 EP01272659A EP01272659A EP1347790A1 EP 1347790 A1 EP1347790 A1 EP 1347790A1 EP 01272659 A EP01272659 A EP 01272659A EP 01272659 A EP01272659 A EP 01272659A EP 1347790 A1 EP1347790 A1 EP 1347790A1
Authority
EP
European Patent Office
Prior art keywords
water
hydrogels
acid
sfc
crc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01272659A
Other languages
English (en)
French (fr)
Inventor
Volker Frenz
Norbert Herfert
Ulrich Riegel
William E. Volz
Thomas H. Majette
James M. Hill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1347790A1 publication Critical patent/EP1347790A1/de
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31975Of cellulosic next to another carbohydrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31975Of cellulosic next to another carbohydrate
    • Y10T428/31978Cellulosic next to another cellulosic

Definitions

  • the invention relates to water-absorbent compositions with increased permeability, capacity and swelling rate, hygiene articles containing them and methods for improving the property profile of such hygiene articles.
  • hydrophilic, highly swellable hydrogels in hygiene articles, it was possible to significantly reduce the volume of the hygiene articles while maintaining the water absorption capacity.
  • the hydrogels were selected primarily on the basis of their water absorption capacity.
  • the current trend in diaper construction is towards producing even thinner constructions with a reduced cellulose fiber content and an increased hydrogel content.
  • the advantage of thinner constructions is not only evident in improved wearing comfort, but also in reduced packaging and storage costs.
  • the requirement profile for the water-swellable hydrophilic polymers has changed significantly.
  • the ability of the hydrogel to transfer and distribute fluids is now critical. Due to the higher loading of the hygiene article (polymer per unit area), the polymer in the swollen state must not form a barrier layer for subsequent liquid (gel blocking). If the product has good transport properties, optimal utilization of the entire hygiene article can be guaranteed.
  • WO 91/11162 describes a hygiene article which has an additional liquid distribution layer made from chemically crosslinked cellulose fibers.
  • the liquid is drained off from the point of impact, buffered and then absorbed by the hydrogel material at the rate set by long optimization work has been.
  • the only path that was followed was to generate optimal absorption values (PAI), especially with regard to absorption values under pressure load (AUL), or in the latest studies on a whole range of different pressure loads and the effect of gel blocking, which primarily affects large ones
  • PAI optimal absorption values
  • AUL absorption values under pressure load
  • gel blocking which primarily affects large ones
  • the amount of highly swellable hydrogel particles used can be observed as given and compensated for by incorporating additional acquisition layers in the hygiene article.
  • an improved permeability of the absorption layer is achieved if the highly swellable hydrogels have a saline flow conductivity (SFC) of at least 30 x 10 "7 cm 3 s / g.
  • SFC saline flow conductivity
  • the SFC measures the ability of the hydrogel layer formed to transmit liquid under one
  • the high swellable hydrogels must have performance under pressure (PUP) values of at least 23 g / g to achieve the above objective, and are expressed as 60 minute absorbance values for synthetic urine weighing less than 0.7 psi (5 kPa) determined
  • PUP performance under pressure
  • the object of the present invention is to provide absorbent compositions which have excellent permeability, a high absorption capacity and a high swelling rate, so that the effect of gel blocking can be avoided. This circumstance allows a higher loading with highly swellable hydrogels, which in turn enables the production of thinner hygiene articles with clear advantages in terms of wearing comfort and logistics.
  • a water-absorbing composition containing 30 to 100% by weight, based on the water-absorbing composition, of non-water-soluble water-swellable hydrogels, the hydrogels having the following features: centrifuge retention capacity (CRC) of at least 24 g / g, saline flow Conductivity (SFC) of at least 80 x 10 "7 cm 3 s / g and Free swell rate (FSR) of at least 0.15 g / gs and / or vortex time of maximum 160 s.
  • CRC centrifuge retention capacity
  • SFC saline flow Conductivity
  • FSR Free swell rate
  • the object is achieved according to the invention by a method for improving the performance profile of water-absorbing compositions by increasing the permeability, capacity and swelling rate of the water-absorbing compositions by using non-water-soluble, water-swellable hydrogels which have the following property spectrum: centrifuge retention capacity (CRC) of at least 24 g / g, Saline Flow Conductivity (SFC) of at least 80 x 10 "7 cm s / g and Free Swell Rate (FSR) of at least 0.15 g / gs and / or Vortex Time of maximum 160 s, in the water-absorbing compositions.
  • CRC centrifuge retention capacity
  • SFC Saline Flow Conductivity
  • FSR Free Swell Rate
  • the object is achieved according to the invention by a method for determining water-absorbing compositions with high permeability, capacity and swelling rate by measuring the centrifuge retention capacity (CRC), saline flow conductivity (SFC), free swell rate (FSR) and / or vortex time for all Given water-absorbing composition, contains water-insoluble, water-swellable hydrogels and determination of the water-absorbing compositions whose hydrogels show the following property spectrum: CRC of at least 24 g / g, SFC of at least 80 x 10 "7 cm 3 s / g and of at least 0.15 g / gs and / or vortex time of maximum 160 s.
  • CRC centrifuge retention capacity
  • SFC saline flow conductivity
  • FSR free swell rate
  • water-absorbing compositions which contain water-insoluble, water-swellable hydrogels which have the following features:
  • Centrifuge retention capacity of at least 24 g / g
  • Saline Flow Conductivity SFC
  • FSR Free Swell Rate
  • water-absorbent refers to water and aqueous systems which can contain dissolved organic and inorganic compounds, in particular to body fluids such as urine, blood or fluids containing them.
  • the absorbent composition is suitable for use in hygiene articles, such as diapers, sanitary napkins and incontinence pads, which are intended for single use.
  • the absorbent composition can preferably have a high proportion of highly swellable hydrogels, so that their proportion in the absorbent composition is at least 30% by weight, better at least 50% by weight, preferably at least 60%, more preferably at least 70%, particularly preferably 80 % and extremely preferably at least 90%.
  • hydrogels with the following combinations of properties are used:
  • the water-swellable hydrogels can be present in connection with a carrier material for the hydrogels. They can preferably be in the form of particles in a polymer fiber matrix or are embedded in an open-pore polymer foam, but they can also be fixed to a flat carrier material or be present as particles in chambers formed from a carrier material.
  • hydrogels can be coated with a steric or electrostatic spacer.
  • the water-absorbent compositions according to the invention can by:
  • hydrogels Connecting the hydrogels with the carrier material, preferably introducing the hydrogels into a polymer fiber matrix or an open-pore polymer foam or in chambers formed from a fiber material or fixing them to a flat carrier material
  • the water-absorbing compositions are used in particular for the production of hygiene articles or other articles which serve to absorb aqueous liquids.
  • Such hygiene articles preferably contain a water-absorbing composition as defined above between a liquid-permeable cover sheet and a liquid-impermeable back sheet. They can be in the form of diapers, sanitary napkins and incontinence products such as pads.
  • Hydrogel-forming polymers are, in particular, polymers of (co) polymerized hydrophilic monomers, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, crosslinked cellulose or starch ethers, crosslinked carboxymethyl cellulose, partially crosslinked polyalkylene oxide or natural products swellable in aqueous liquids, such as guar derivatives, alginates and carrageenans.
  • Suitable graft bases can be of natural or synthetic origin.
  • polysaccharides and oligosaccharides examples are starch, cellulose or cellulose derivatives and other polysaccharides and oligosaccharides, polyvinyl alcohol, polyalkylene oxides, in particular polyethylene oxides and polypropylene oxides, polyamines, polyamides and hydrophilic polyesters.
  • Suitable polyalkylene oxides have, for example, the formula
  • R and R independently of one another are hydrogen, alkyl, alkenyl or aryl,
  • X is hydrogen or methyl and n is an (integer) number from 1 to 10,000.
  • R 1 and R 2 are preferably hydrogen, (C ⁇ - C 4) alkyl, (C 2 - C 6) alkenyl or phenyl.
  • Preferred hydrogel-forming polymers are crosslinked polymers having acid groups which are predominantly in the form of their salts, generally alkali metal or ammonium salts. Such polymers swell particularly strongly into gels on contact with aqueous liquids.
  • Monomers bearing such acid groups are, for example, monoethylenically unsaturated C 3 to C 5 carboxylic acids or anhydrides such as acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, aconitic acid and fumaric acid.
  • monoethylenically unsaturated C 3 to C 5 carboxylic acids or anhydrides such as acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, aconitic acid and fumaric acid.
  • monoethylenically unsaturated sulfonic or phosphonic acids for example vinylsulfonic acid, allylsulfonic acid, sulfoethyl acrylate, sulfomethacrylate, sulfopropyl acrylate, sulfopropyl methacrylate, 2-hydroxy-3-acryloxypropylsulfonic acid, 2-hydroxy-3-methacrylic-oxypropylsulfonic acid,
  • Vinylphosphonic acid vinylphosphonic acid, allylphosphonic acid, styrene sulfonic acid and 2-acrylamido-2- methylpropanesulfonic.
  • the monomers can be used alone or as a mixture with one another.
  • Preferred monomers are acrylic acid, methacrylic acid, vinyl sulfonic acid, acrylamidopropanesulfonic acid or mixtures of these acids, e.g. B. mixtures of acrylic acid and methacrylic acid, mixtures of acrylic acid and acrylamidopropanesulfonic acid or mixtures of acrylic acid and vinylsulfonic acid.
  • additional monoethylenically unsaturated compounds which do not carry any acid groups but can be copolymerized with the monomers bearing acid groups.
  • monoethylenically unsaturated carboxylic acids e.g. As acrylamide, methacrylamide and N-vinylformamide, N-vinyl acetamide, N-methyl vinyl acetamide, acrylonitrile and methacrylonitrile.
  • Suitable compounds are, for example, vinyl esters of saturated C 1 -C 4 -carboxylic acids such as vinyl formate, vinyl acetate or vinyl propionate, alkyl vinyl ethers having at least 2 C atoms in the alkyl group, such as ethyl vinyl ether or butyl vinyl ether, esters of monoethylenically unsaturated C 3 -C 6 -carboxylic acids , e.g. B. esters of monohydric - to C 18 - alcohols and acrylic acid, methacrylic acid or maleic acid, half esters of maleic acid, for. B.
  • vinyl esters of saturated C 1 -C 4 -carboxylic acids such as vinyl formate, vinyl acetate or vinyl propionate
  • alkyl vinyl ethers having at least 2 C atoms in the alkyl group such as ethyl vinyl ether or butyl vinyl ether
  • N-vinyl lactams such as N-vinyl pyrrolidone or N-vinyl caprolactam
  • acrylic acid and methacrylic acid esters of alkoxylated monohydric, saturated alcohols for. B. of alcohols with 10 to 25 carbon atoms, which have been reacted with 2 to 200 moles of ethylene oxide and / or propylene oxide per mole of alcohol
  • Other suitable monomers are styrene and alkyl-substituted styrenes such as ethylstyrene or tert-butylstyrene.
  • Crosslinked polymers from monoethylenically unsaturated monomers bearing acid groups which are optionally converted into their alkali metal or ammonium salts before or after the polymerization, and from 0 to 40% by weight, based on them, are preferred Total weight, no monoethylenically unsaturated monomers bearing acid groups.
  • Crosslinked polymers of monoethylenically unsaturated C 3 to C 12 carboxylic acids and / or their alkali metal or ammonium salts are preferred.
  • crosslinked polyacrylic acids are preferred, the acid groups of which are 25-100% in the form of alkali or ammonium salts.
  • Polyethylene glycol dimethacrylates which are each derived from polyethylene glycols having a molecular weight of from 106 to 8500, preferably 400 to 2000, derived, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, propylene glycol diacrylate propylene glycol dimethacrylate, butanediol diacrylate, butanediol dimethacrylate, hexanediol diacrylate, hexanediol dimethacrylate, allyl methacrylate, diacrylates and dimethacrylates of block copolymers of ethylene oxide and Propylene oxide, polyhydric alcohols esterified two or more times with acrylic acid or methacrylic acid, such as glycerol or pentaerythritol, triallylamine, dialkyldiallylammonium halides such as dimethyldiallyl
  • Polyethylene glycol dimethacrylates derived from addition products of 2 to 400 moles of ethylene oxide to 1 mole of a diol or polyol, vinyl ethers of addition products of 2 to 400 moles of ethylene oxide to 1 mole of a diol or polyol, ethylene glycol diacrylate, ethylene glycol dimethacrylate or triacrylates and trimethacrylates from addition products 20 moles of ethylene oxide with 1 mole of glycerol, pentaerythritol triallyl ether and / or divinyl urea.
  • crosslinkers are compounds which contain at least one polymerizable ethylenically unsaturated group and at least one further functional group.
  • the functional group of these crosslinkers must be able to use the functional groups, essentially the acid groups, of the monomers. Suitable functional groups are, for example, hydroxyl, amino, epoxy and aziridino groups. Can be used for.
  • N-vinylimidazoles such as N-vinylimidazole, l-vinyl-2-methylimidazole and ⁇ -vinylimidazolines
  • ⁇ -vinylimidazoline ⁇ -vinylimidazoline
  • l-vinyl-2-methylimidazoline l-vinyl-2-ethylimidazoline 2-propylimidazoline
  • Dialkylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate and diethylaminoethyl methacrylate are also suitable.
  • the basic esters are preferably used in quaternized form or as a salt.
  • Glycidyl (meth) acrylate can also be used.
  • crosslinkers are compounds which contain at least two functional groups which are able to react with the functional groups, essentially the acid groups of the monomers.
  • the functional groups suitable for this have already been mentioned above, ie hydroxyl, amino, epoxy, isocyanate, ester, amido and aziridino groups.
  • crosslinking agents are ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, glycerin, polyglycerol, triethanolamine, propylene glycol, polypropylene glycol, block copolymers of ethylene oxide and propylene oxide, ethanolamine, sorbitan fatty acid ester, ethoxylated sorbitan fatty acid panitole, 1-pentaerytol fatty acid ester, trimethylphenol fatty acid, pentaethylene fatty acid, penta-adenol fatty acid, penta-ethylenediphenol, penta-ethane-1-propanol, penta-1-ethylenediol, penta-1-ethanediol, penta-1-olefanediol, penta-1-olefanediol, penta-1-ethanediol, penta-1-ethanediol, pentta
  • crosslinkers are polyvalent metal ions, which are able to form ionic crosslinks. Examples of such crosslinkers are magnesium, calcium, barium and aluminum ions. These crosslinkers are used, for example, as hydroxides, carbonates or bicarbonates. Other suitable crosslinkers are multifunctional bases which are also able to form ionic crosslinks, for example polyamines or their quaternized salts. Examples of polyamines are ethylenediamine, diethylenetriamine, triethylenetetramine,
  • the crosslinkers are present in the reaction mixture, for example from 0.001 to 20% by weight and preferably from 0.01 to 14% by weight.
  • the polymerization is initiated as usual by an initiator. It is also possible to initiate the polymerization by the action of electron beams on the polymerizable, aqueous mixture. However, the polymerization can also be initiated in the absence of initiators of the type mentioned above by exposure to high-energy radiation in the presence of photoinitiators. All compounds which decompose into free radicals under the polymerization conditions can be used as polymerization initiators, e.g. B. peroxides, hydroperoxides, hydrogen peroxides, persulfates, azo compounds and the so-called redox catalysts. The use of water-soluble initiators is preferred. In some cases it is advantageous to use mixtures of different polymerization initiators, e.g. B.
  • Suitable organic peroxides are, for example, acetylacetone peroxide, methyl ethyl ketone peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, tert-amyl perpivalate, tert-butyl perpivalate, tert-butyl perneohexanoate, tert-butyl perisobutyrate, tert-butyl per-2-ethylhexanoate, tert-butyl-peranoate , tert-butyl permaleate, tert-butyl perbenzoate, di- (2-ethylhexyl) peroxidicarbonate, dicyclohexyl peroxidicarbonate, di- (4-tert-butylcycl
  • Particularly suitable polymerization initiators are water-soluble azo starters, e.g. B. 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis (N, N'-dimethylene) isobutyramidine dihydrochloride, 2- (carbamoylazo) isobutyronitrile, 2,2 ' -Azobis [2- (2'-imidazolin-2-yl) propane] dihydrochloride and 4,4'-azo bis- (4-cyanovaleric acid).
  • the polymerization initiators mentioned are used in conventional amounts, e.g. B. in amounts of 0.01 to 5, preferably 0.05 to 2.0 wt .-%, based on the monomers to be polymerized.
  • Redox catalysts are also suitable as initiators.
  • the redox catalysts contain at least one of the above-mentioned per compounds as the oxidizing component and as reducing component, for example, ascorbic acid, glucose, sorbose, ammonium or alkali metal bisulfite, sulfite, thiosulfate, hyposulfite, pyro-sulfite or sulfide, metal salts, such as iron ( II) ions or sodium hydroxymethyl sulfoxylate.
  • Ascorbic acid or sodium sulfite is preferably used as the reducing component of the redox catalyst.
  • photoinitiators are usually used as initiators. These can be, for example, so-called ⁇ -splitters, H-abstracting systems or also azides.
  • initiators are benzophenone derivatives such as Michler's ketone, phenanthrene derivatives, fluorene derivatives, anthraquinone derivatives, thioxanone derivatives, coumarin derivatives, benzoin ethers and their derivatives, azo compounds such as the radical formers mentioned above, substituted hexaarylbisimidazoles or acylphosphine oxides.
  • azides examples include 2- (N, N-dimethylamino) ethyl 4-azidocinnamate, 2- (N, N-dimethylamino) ethyl 4-azidonaphthyl ketone, 2- (N, N-
  • the photoinitiators are usually used in amounts of from 0.01 to 5% by weight, based on the monomers to be polymerized.
  • polymers which have been prepared by the polymerization of the abovementioned monoethylenically unsaturated acids and, if appropriate, monoethylenically unsaturated comonomers and which have a molecular weight greater than 5000, preferably greater than 50,000 are reacted with compounds which have at least two groups reactive towards acid groups. This reaction can take place at room temperature or at elevated temperatures up to 220 ° C.
  • the suitable functional groups have already been mentioned above, i.e. Hydroxyl, amino, epoxy, isocyanate, ester, amido and aziridino groups, as well as examples of such crosslinkers.
  • crosslinkers for postcrosslinking are polyvalent metal ions, which are able to form ionic crosslinks. Examples of such crosslinkers have already been listed above.
  • suitable crosslinkers are multifunctional bases, which are also able to form ionic crosslinks; here too, examples of such compounds have already been mentioned above.
  • the crosslinking agents are added to the acid-bearing polymers or salts in amounts of 0.5 to 25% by weight, preferably 1 to 15% by weight, based on the amount of the polymer used.
  • the crosslinked polymers are preferably used in neutralized form. However, the neutralization can also have been carried out only partially.
  • the degree of neutralization is preferably 25 to 100%, in particular 50 to 100%.
  • Possible neutralizing agents are: alkali metal bases or ammonia or amines.
  • Sodium hydroxide solution or potassium hydroxide solution is preferably used.
  • the neutralization can also be carried out with the aid of sodium carbonate, sodium hydrogen carbonate, potassium carbonate or potassium hydrogen carbonate or other carbonates or hydrogen carbonates or ammonia.
  • primary, secondary and tertiary amines can be used.
  • Polymerization in aqueous solution is preferred as so-called gel polymerization. 10 to 70% by weight aqueous solutions of the monomers and optionally a suitable graft base polymerized in the presence of a radical initiator using the Trommsdorff-Norrish effect.
  • the polymerization reaction can be carried out in the temperature range between 0 ° C. and 150 ° C., preferably between 10 ° C. and 100 ° C., both under normal pressure and under elevated or reduced pressure.
  • the polymerization can also be carried out in a protective gas atmosphere, preferably under nitrogen.
  • the quality properties of the polymers can be improved even further.
  • Hydrogel-forming polymers which are post-crosslinked on the surface are preferred.
  • the surface postcrosslinking can take place in a manner known per se with dried, ground and sieved polymer particles.
  • compounds which can react with the functional groups of the polymers with crosslinking are preferably applied to the surface of the hydrogel particles in the form of a water-containing solution.
  • the water-containing solution can contain water-miscible organic solvents. Suitable solvents are alcohols such as methanol, ethanol, i-propanol or acetone.
  • Suitable post-crosslinking agents are, for example
  • Di- or polyglycidyl compounds such as phosphonic acid diglycidyl ether or ethylene glycol diglycidyl ether, bischlorohydrin ether of polyalkylene glycols,
  • Polyaziridines compounds containing aziridine units based on polyethers or substituted hydrocarbons, for example bis-N-aziridinomethane,
  • Polyols such as ethylene glycol, 1,2-propanediol, 1,4-butanediol, glycerol, methyltriglycol, polyethylene glycols with an average molecular weight M w of 200-10000, di- and polyglycerol, pentaerythritol, sorbitol, the oxyethylates of these polyols and their esters with carboxylic acids or carbonic acid such as ethylene carbonate or propylene carbonate.
  • Polyols such as ethylene glycol, 1,2-propanediol, 1,4-butanediol, glycerol, methyltriglycol, polyethylene glycols with an average molecular weight M w of 200-10000, di- and polyglycerol, pentaerythritol, sorbitol, the oxyethylates of these polyols and their esters with carboxylic acids or carbonic acid such as ethylene carbon
  • Carbonic acid derivatives such as urea, thiourea, guanidine, dicyandiamide, 2-oxazolidinone and its derivatives, bisoxazoline, polyoxazolines, di- and polyisocyanates,
  • Di- and poly-N-methylol compounds such as methylenebis (N-methylol-methacrylamide) or melamine-formaldehyde resins,
  • acidic catalysts such as p-toluenesulfonic acid, phosphoric acid, boric acid or ammonium dihydrogen phosphate can be added.
  • Particularly suitable post-crosslinking agents are di- or polyglycidyl compounds such as ethylene glycol diglycidyl ether, the reaction products of polyamidoamines with epichlorohydrin and 2-oxazolidinone.
  • the crosslinker solution is preferably applied by spraying on a solution of the crosslinker in conventional reaction mixers or mixing and drying systems such as Patterson-Kelly mixers, DRAIS turbulence mixers, Lödige mixers, screw mixers, plate mixers, fluidized bed mixers and Schugi mix.
  • a temperature treatment step can follow, preferably in a downstream dryer, at a temperature between 80 and 230 ° C, preferably 80-190 ° C, and particularly preferably between 100 and 160 ° C, over a period of 5 minutes to 6 hours, preferably 10 minutes to 2 hours and particularly preferably 10 minutes to 1 hour, it being possible for both cleavage products and solvent fractions to be removed.
  • the hydrogel-forming polymer is then coated with a steric or electrostatic spacer.
  • Inert powders such as, for example, silicates with a band, chain or leaf structure (montmorillonite, kaolinite, talc), zeolites, activated carbons or polysilicic acids, can act as steric spacers.
  • Other inorganic inert spacers are, for example, magnesium carbonate, calcium carbonate, barium sulfate, aluminum oxide, titanium dioxide and iron (II) oxide.
  • polyalkyl methacrylates or thermoplastics such as polyvinyl chloride can function as inert organic-based spacers.
  • Polysilicic acids are preferably used which, depending on the type of production, differentiate between precipitated silica and pyrogenic silicas. Both variants are commercially available under the names AEROSIL ® (pyrogenic silicas) or Silica FK, Sipernat ® , Wessalon ® (precipitated silicas). The use of precipitated silicas is particularly preferred.
  • the coating of the hydrogel-forming polymers with inert spacer material can be carried out by applying the inert spacers in an aqueous or water-miscible medium or else by applying the inert spacers in powder form to powdered hydrogel-forming polymer.
  • the aqueous or water-miscible media are preferably applied by spraying onto dry polymer powder.
  • pure powder / powder mixtures are produced from powdery inert spacer material and hydrogel-forming polymer.
  • the inert spacer material is used in a proportion of 0.05 to 5% by weight, preferably 0.1 to 1.5% by weight, particularly preferably 0.3 to 1% by weight, based on the total weight of the coated hydrogel, applied to the surface of the hydrogel-forming polymer.
  • Cationic components can be used as electrostatic spacers.
  • Electrostatic spacers are also generated by applying a cross-linked, cationic shell, either by reagents that can network with themselves, such as addition products of epichlorohydrin to polyamidoamines, or by applying cationic polymers that can react with an added crosslinker, e.g. B. polyamines or polyimines in combination with polyepoxides, multifunctional esters, multifunctional acids or multifunctional (meth) acrylates. All multifunctional amines with primary or secondary amino groups such as: polyethyleneimine, polyallylamine, polylysine, preferably polyvinylamine can be used.
  • polyamines are ethylene diamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine and polyethyleneimines, and polyamines with molecular weights of up to 4,000,000 each.
  • Electrostatic spacers can also be applied by adding solutions of di- or polyvalent metal salt solutions.
  • divalent or polyvalent metal cations are Mg 2+ , Ca 2+ , Al 3+ , Sc 3+ , Ti 4+ , Mn 2+ , Fe 2 + / 3 + , Co 2+ , Ni 2+ , Cu + 2+ , Zn 2+ , Y 3+ , Zr 4+ , Ag + , La 3+ , Ce 4+ , Hf 4+ , and Au + / 3 +
  • preferred metal cations are Mg + , Ca 2+ , Al 3+ , Ti 4+ , Zr 4+ and La 3+
  • particularly preferred metal cations are Al 3+ , Ti 4+ and Zr 4+ .
  • the metal cations can be used either alone or in a mixture with one another. Of the metal cations mentioned, all metal salts are suitable which have sufficient solubility in the solvent to be used. Metal salts with weakly complexing anions such as chloride, nitrate and sulfate are particularly suitable. Water, alcohols, DMF, DMSO and mixtures of these components can be used as solvents for the metal salts. Water and water / alcohol mixtures such as water / methanol or water / 1,2-propanediol are particularly preferred.
  • the electrostatic spacers can be applied by application in an aqueous or water-miscible medium.
  • aqueous or water-miscible medium is the preferred production variant when adding metal salts.
  • Cationic polymers are made by applying an aqueous solution or in a water-miscible solvent, optionally also as a dispersion, or by applying in powder form to powdered hydrogel-forming polymer applied.
  • the aqueous or water-miscible media are preferably applied by spraying onto dry polymer powder. The polymer powder can then optionally be dried.
  • the cationic spacers are used in a proportion of 0.05 to 5% by weight, preferably 0.1 to 1.5% by weight, particularly preferably 0.1 to 1% by weight, based on the total weight of the coated hydrogel, applied to the surface of the hydrogel-forming polymer.
  • the highly swellable (water swellable) hydrogels can form the water-absorbing composition together with structure formers (carrier materials).
  • This can e.g. B. be a fiber matrix, which consists of a cellulose fiber mixture (airlaid web, wet laid web) or synthetic polymer fibers (meltblown web, spunbonded web), or else consists of a mixed fiber structure made of cellulose fibers and synthetic fibers.
  • open-pore foams or the like can be used for the installation of highly swellable hydrogels.
  • such a composition can result from the fusion of two individual layers, one or better a plurality of chambers being formed which contain the highly swellable hydrogels.
  • at least one of the two layers should be permeable to water.
  • the second layer can be either water permeable or water impermeable.
  • Tissues or other fabrics, closed or open-cell foams, perforated films, elastomers or fabrics made of fiber material can be used as layer material.
  • the absorbent composition consists of a composition of layers, the layer material should have a pore structure whose pore dimensions are small enough to retain the highly swellable hydrogel particles.
  • the above examples for the composition of the absorbent composition also include laminates of at least two layers, between which the highly swellable hydrogels are installed and fixed.
  • the absorbent composition can consist of a carrier material, such as. B. consist of a polymer film on which the highly swellable hydrogel particles are fixed. The fixation can be done on one or both sides.
  • the carrier material can be water-permeable or water-impermeable.
  • the highly swellable hydrogels are used in a weight fraction of 30 to 100% by weight, more preferably 50 to 100% by weight, preferably 60 to 100% by weight, more preferably 70 to 100% by weight. , in particular preferably from 80 to 100% by weight and extremely preferably from 90 to 100% by weight based on the total weight of the composition.
  • the absorbent composition results from a mixture of fiber materials and highly swellable hydrogels.
  • the highly swellable hydrogels are incorporated in this fiber mixture in a weight fraction of preferably at least 30% by weight, better at least 50% by weight, preferably at least 60% by weight, based on the total weight of the absorbent composition.
  • the structure of the present absorbent composition according to the invention can be based on a variety of fiber materials which are used as fiber networks or matrices. Included in the present invention are both fibers of natural origin (modified or unmodified) and synthetic fibers.
  • cellulosic fibers include those commonly used in absorption products such as fleece pulp and cotton-type pulp.
  • the materials softwood or hardwood
  • manufacturing processes such as chemical pulp, semi-chemical pulp, chemothermal mechanical pulp (CTMP) and bleaching processes are not particularly limited.
  • CMP chemothermal mechanical pulp
  • natural cellulose fibers such as cotton, flax, silk, wool, jute, ethyl cellulose and cellulose acetate are used.
  • Suitable synthetic fibers are made from polyvinyl chloride, polyvinyl fluoride, polytetrafluoroethylene, polyvinylidene chloride, polyacrylics such as ORLON ®, polyvinyl acetate, polyethylvinyl acetate, polyvinyl alcohol soluble or insoluble.
  • thermoplastic polyolefin fibers such as polyethylene fibers (PULPEX ® ), polypropylene fibers and polyethylene-polypropylene two-component fibers, polyester fibers, such as polyethylene terephthalate fibers (DACRON ® or KODEL ® ), copolyesters, polyvinyl acetate, polyethyl vinyl acetate, polyvinyl polyamide, copolyamides, polyvinyl chloride , Polystyrene and copolymers of the abovementioned polymers, and also two-component fibers made from polyethylene terephthalate-polyethylene-isophthalate copolymer,
  • Polyacrylonitrile fibers Polyacrylonitrile fibers. Polyolefin fibers, polyester fibers and their are preferred.
  • Two-component fibers are also preferred are those adhering to heat Bicomponent sheath-core and side-by-side polyolefin fibers because of their excellent shape retention after liquid absorption.
  • thermoplastic fibers are preferably used in combination with thermoplastic fibers. During heat treatment, the latter partially migrate into the matrix of the existing fiber material and thus represent connection points and renewed stiffening elements when cooling.
  • thermoplastic fibers means an expansion of the existing pore dimensions after the heat treatment has taken place. In this way it is possible to continuously increase the proportion of thermoplastic fibers to the cover sheet by continuously metering in thermoplastic fibers during the formation of the absorption layer, which results in an equally continuous increase in pore sizes.
  • Thermoplastic fibers can be formed from a large number of thermoplastic polymers which have a melting point of less than 190 ° C., preferably between 75 ° C. and 175 ° C. At these temperatures, no damage to the cellulose fibers is yet to be expected.
  • the lengths and diameters of the synthetic fibers described above are not particularly limited, and in general, any fiber with a length of 1 to 200 mm and a diameter of 0.1 to 100 denier (grams per 9,000 meters) can be preferably used.
  • Preferred thermoplastic fibers have a length of 3 to 50 mm, particularly preferred a length of 6 to 12 mm.
  • the preferred diameter of the thermoplastic fiber is between 1.4 and 10 decitex, particularly preferably between 1.7 and 3.3 decitex (grams per 10,000 meters).
  • the shape is not particularly limited, and examples include fabric-like, narrow cylinder-like, cut / split yarn-like, staple fiber-like and continuous fiber-like.
  • the fibers in the absorbent composition of the invention can be hydrophilic, hydrophobic, or a combination of both.
  • a fiber is said to be hydrophilic if the contact angle between the liquid and the fiber (or its surface) is less than 90 ° or if the liquid tends to spread spontaneously on the same surface. As a rule, both processes are coexistent.
  • a fiber is said to be hydrophobic if a contact angle of greater than 90 ° is formed and no spreading is observed. Hydrophilic fiber material is preferably used.
  • fiber material that is weakly hydrophilic on the body side and most hydrophilic in the region around the highly swellable hydrogels.
  • the use of layers of different hydrophilicity creates a gradient that channels the impinging liquid to the hydrogel, where the absorption ultimately takes place.
  • Suitable hydrophilic fibers for use in the absorbent composition according to the invention are, for example, cellulose fibers, modified cellulose fibers, rayon, polyester fibers such as, for. B. polyethylene terephthalate (DACRON ® ), and hydrophilic nylon (HYDROFIL 1 ).
  • Suitable hydrophilic fibers can also be obtained by hydrophilizing hydrophobic fibers, such as treating thermoplastic fibers obtained from polyolefins (such as polyethylene or polypropylene, polyamides, polystyrenes, polyurethanes, etc.) with surfactants or silica.
  • polyolefins such as polyethylene or polypropylene, polyamides, polystyrenes, polyurethanes, etc.
  • surfactants or silica are preferred for reasons of cost and availability.
  • the highly swellable hydrogel particles are embedded in the fiber material described. This can be done in a variety of ways, e.g. B. builds up an absorption layer in the form of a matrix with the hydrogel material and the fibers, or by embedding highly swellable hydrogels in layers of fiber mixture, where they are ultimately fixed, whether by adhesive or lamination of the layers.
  • the liquid-absorbing and -distributing fiber matrix can consist of synthetic fiber or cellulose fiber or a mixture of synthetic fiber and cellulose fiber, whereby the mixing ratio of (100 to 0) synthetic fiber: (0 to 100) cellulose fiber can vary.
  • the cellulose fibers used can additionally be chemically stiffened to increase the dimensional stability of the hygiene article.
  • the chemical stiffening of cellulose fibers can be achieved in different ways.
  • fiber stiffening can be achieved by adding suitable coatings to the fiber material.
  • suitable coatings include for example polyamide-epichlorohydrin coatings (Kymene ® 557H, Hercoles, Inc. Wilmington, Delaware, USA), polyacrylamide coatings (described in US 3,556,932 or as a product of Parez ® 631 NC trademark, American Cyanamid Co., Stamford, CT, USA), melamine-formaldehyde coatings and polyethyleneimine coatings.
  • the chemical stiffening of cellulose fibers can also be done by chemical reaction. So z. B. the addition of suitable crosslinking substances bring about a crosslinking that takes place within the fiber.
  • Suitable crosslinking substances are typical substances that are used to crosslink monomers. Included, but not limited to, are C 2 -C 8 dialdehydes, C 2 -C 8 monoaldehydes with acidic functionality, and in particular C 2 -C polycarboxylic acids. Specific substances from this series are, for example, glutaraldehyde, glyoxal, glyoxylic acid, formaldehyde and citric acid. These substances react with at least 2 hydroxyl groups within a single cellulose chain or between two adjacent cellulose chains within a single cellulose fiber. The crosslinking stiffens the fibers, which are given greater dimensional stability through this treatment. In addition to their hydrophilic character, these fibers have uniform combinations of stiffening and elasticity. This physical property makes it possible to maintain the capillary structure even with simultaneous contact with liquid and compression forces and to prevent premature collapse.
  • Chemically crosslinked cellulose fibers are known and are described in WO 91/11162, US 3,224,926, US 3,440,135, US 3,932,209, US 4,035,147, US 4,822,453, US 4,888,093, US 4,898,642 and US 5,137,537.
  • the chemical crosslinking stiffens the fiber material, which is ultimately reflected in the improved dimensional stability of the entire hygiene article.
  • the individual layers are by methods known to those skilled in the art, such as. B. fused together by heat treatment, adding hot melt adhesives, latex binders, etc.
  • Examples of processes with which an absorbent composition is obtained which consists, for example, of highly swellable hydrogels (c) embedded in a fiber material mixture of synthetic fibers (a) and cellulose fibers (b), the mixing ratio of (100 to 0) synthetic fibers : (0 to 100) cellulose fiber may vary include (1) a process in which (a), (b) and (c) are mixed simultaneously, (2) a process in which a mixture of (a) and ( b) is mixed into (c), (3) a process in which a mixture of (b) and (c) is mixed with (a), (4) a process in which a mixture of (a) and ( c) is mixed into (b), (5) a process in which (b) and (c) are mixed and (a) is metered in continuously, (6) a process in which (a) and (c) are mixed and (b) is metered in continuously, and (7) a process in which (b) and (c) are mixed separately into (a).
  • methods (1) and (5) are preferred.
  • the correspondingly produced absorbent composition can optionally be subjected to a heat treatment, so that an absorption layer with excellent dimensional stability in the moist state results.
  • the heat treatment process is not particularly limited. Examples include heat treatment by supplying hot air or infrared radiation.
  • the temperature during the heat treatment is in the range from 60 ° C. to 230 ° C., preferably between 100 ° C. and 200 ° C., particularly preferably between 100 ° C. and 180 ° C.
  • the duration of the heat treatment depends on the type of synthetic fiber, its quantity and the manufacturing speed of the hygiene article. In general, the duration of the heat treatment is between 0.5 seconds to 3 minutes, preferably 1 second to 1 minute.
  • the absorbent composition is generally provided, for example, with a liquid pervious top layer and a liquid impervious bottom layer. Leg cuffs and adhesive tapes are also attached, thus completing the hygiene article.
  • the materials and types of the permeable top layer and impermeable bottom layer, as well as the leg ends and adhesive tapes are known to the person skilled in the art and are not particularly restricted.
  • This method determines the free swellability of the hydrogel in the tea bag.
  • 0.2000 ⁇ 0.0050 g of dried hydrogel (comfraction 106 - 850 ⁇ m) are weighed into a 60 x 85 mm tea bag, which is then sealed.
  • the tea bag is placed in an excess of 0.9% by weight saline solution (at least 0.83 1 saline solution / lg polymer powder) for 30 minutes.
  • the tea bag is then centrifuged at 250 g for 3 minutes. The amount of liquid is determined by weighing the centrifuged tea bag.
  • Free Swell Rate (FSR) Free Swell Rate
  • the examination is carried out on so-called laboratory pads.
  • 11.2 g of cellulose fluff and 23.7 g of hydrogel are swirled homogeneously in an air chamber and placed on a 12 x 26 cm mold by applying a slight negative pressure.
  • This composition is then wrapped in tissue paper and pressed twice at 15 bar at a pressure of 200 bar.
  • a laboratory pad manufactured in this way is attached to a horizontal surface. The center of the pad is determined and marked.
  • the task of synthetic Urine replacement is done using a plastic plate with a ring in the middle (inner diameter of the ring 6.0 cm, height 4.0 cm). The plate is loaded with additional weights so that the total load on the pad is 13.6 g / cm 2 .
  • the plastic plate is placed on the pad so that the center of the pad is also the center of the feed ring. 100 ml of 0.9% by weight sodium chloride solution are applied three times. The saline solution is measured in a measuring cylinder and applied to the pad in one shot through the ring in the plate. Simultaneously with the task, the time is measured which is necessary for the solution to penetrate completely into the pad. The measured time is noted as Acquisition Time 1. The pad is then loaded with a plate for 20 minutes, the load being kept at 13.6 g / cm 2 .
  • Samples C, F, I and J are comparative samples which do not meet the selection criteria according to the invention and therefore cannot meet the absorbent compositions according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

In einer wasserabsorbierende Zusammensetzung, enthaltend 30 bis 100 Gew.-%, bezogen auf die wasserabsorbierende Zusammensetzung, nicht wasserlösliche wasserquellfähige Hydrogele, weisen die Hydrogele folgende Merkmale auf: -Zentrifugenretentionskapazität (CRC) von midestens 24 g/g, -Saline Flow Conductivity (SFC) von midestens 80 x 10<-7> cm<3>s/g und -Free Swell Rate (FSR) von mindestens 0,15 g/g und/oder Vortex Time von maximal 160s

Description

Absorbierende Zusammensetzungen
Die Erfindung betrifft wasserabsorbierende Zusammensetzungen mit erhöhter Permeabilität, Kapazität und Anquellgeschwindigkeit, diese enthaltende Hygieneartikel und Verfahren zur Verbesserung des Eigenschaftsprofils derartiger Hygieneartikel.
Durch den Einsatz hydrophiler hochquellfähiger Hydrogele in Hygieneartikeln gelang es, das Volumen der Hygieneartikel bei gleichbleibender Wasseraufnahmefähigkeit deutlich zu vermindern. Die Hydrogele wurden dabei vornehmlich anhand ihrer Wasseraufnahmefähigkeit ausgewählt.
Der aktuelle Trend im Windelaufbau geht dahin, noch dünnere Konstruktionen mit reduziertem Cellulosefaseranteil und erhöhtem Hydrogelanteil herzustellen. Der Vorteil dünnerer Konstruktionen zeigt sich nicht nur in einem verbesserten Tragekomfort, sondern auch in reduzierten Kosten bei Verpackung und Lagerhaltung. Mit dem Trend zu immer dünner werdenden Windelkonstruktionen hat sich das Anforderungsprofϊl an die wasserquellbaren hydrophilen Polymere deutlich verändert. Von entscheidender Bedeutung ist jetzt die Fähigkeit des Hydrogels zur Flüssigkeitsweiterleitung und - Verteilung. Aufgrund der höheren Beladung des Hygieneartikels (Polymer pro Flächeneinheit) darf das Polymer im gequollenen Zustand keine Sperrschicht für nachfolgende Flüssigkeit bilden (Gel-Blocking). Weist das Produkt gute Transporteigenschaften auf, so kann eine optimale Ausnutzung des gesamten Hygieneartikels gewährleistet werden.
Generell wird der Effekt des Gel-Blockings in aller Regel damit umgangen, daß man von vornherein zusätzliche Akquisitionsschichten im Hygieneartikel vorsieht, die die auftreffende Flüssigkeit als eine Art Zwischenpuffer aufnehmen und innerhalb der Absorptionsschicht verteilen, um sie dann an die Hydrogele abzuleiten. So wird in WO 91/11162 ein Hygieneartikel beschrieben, der eine zusätzliche Flüssigkeitsverteilungsschicht aus chemisch vernetzten Cellulosefasern aufweist.
Durch Einbau einer zusätzlichen Akquisitionsschicht wird die Flüssigkeit vom Ort des Auftreffens abgeleitet, zwischengepuffert und anschließend durch das Hydrogel-Material in der Geschwindigkeit aufgenommen, die durch lange Optimierungsarbeiten eingestellt wurde. Man verfolgte dabei ausschließlich den Weg, vor allem im Hinblick auf Absorptionswerte unter Druckbelastung (AUL), bzw. in neuesten Untersuchungen über eine ganze Bandbreite unterschiedlicher Druckbelastungen optimale Absorptions werte (PAI) zu generieren und den Effekt des Gel-Blockings, der vorrangig bei großen Einsatzmengen hochquellfahiger Hydrogel-Partikel zu beobachten ist, als gegeben hinzunehmen und ihn über den Einbau zusätzlicher Akquisitionsschichten im Hygieneartikel zu kompensieren.
Eine verbesserte Permeabilität der Absorptionsschicht wird gemäß WO 95/26209 erreicht, wenn die hochquellfähigen Hydrogele eine Saline Flow Conductivity (SFC) von mindestens 30 x 10"7 cm3 s/g aufweisen. Die SFC mißt die Fähigkeit der gebildeten Hydrogelschicht zur Flüssigkeitsweiterleitung unter einem gegebenen Druck. Des weiteren müssen die hochquellfahigen Hydrogele zur Erreichung obiger Zielsetzung Absorptionswerte unter Druck (Performance under Pressure, PUP) von mindestens 23 g/g aufweisen. Die PUP- Werte werden als 60-Minuten- Absorptions werte für synthetischen Urin unter einem Gewicht von 0.7 psi (5 kPa) ermittelt. Schließlich darf der Gehalt an extrahierbaren Anteilen nicht höher sein als 15%, bezogen auf den Gesamtpolymergehalt.
Nach wie vor zeigen jedoch Hygieneartikel mit dünnen und mit hochquellfahigen Hydrogelen hochbeladenen absorbierenden Zusammensetzungen in der Praxis erhöhte Leckage-Raten. Es wird nach wie vor gefordert, absorbierende Zusammensetzungen zur Verfügung zu stellen, die bei Einsatz in Hygieneartikeln über gute Transporteigenschaften, schnelle Flüssigkeitsaufnahme bei gleichzeitig hohem Endabsorptionsvermögen verfügen und die Nachteile des Standes der Technik nicht aufweisen.
Aufgabe der vorliegenden Erfindung ist es, absorbierende Zusammensetzungen zur Verfügung zu stellen, die über eine ausgezeichnete Permeabilität, eine hohe Absorptionskapazität sowie eine hohe Anquellgeschwindigkeit verfügen, so daß der Effekt des Gel-Blockings vermieden werden kann. Dieser Umstand erlaubt eine höhere Beladung mit hochquellfähigen Hydrogelen, was wiederum die Herstellung dünnerer Hygieneartikel mit deutlichen Vorteilen hinsichtlich Tragekomfort und Logistik ermöglicht.
Die Aufgabe wird erfindungsgemäß gelöst durch eine wasserabsorbierende Zusammensetzung, enthaltend 30 bis 100 Gew.-%, bezogen auf die wasserabsorbierende Zusammensetzung, nicht wasserlösliche wasserquellfähige Hydrogele, wobei die Hydrogele folgende Merkmale aufweisen: Zentrifugenretentionskapazitat (CRC) von mindestens 24 g/g, Saline Flow Conductivity (SFC) von mindestens 80 x 10"7 cm3 s/g und Free Swell Rate (FSR) von mindestens 0,15 g/g s und/oder Vortex Time von maximal 160 s.
Zudem wird die Aufgabe erfindungsgemäß gelöst durch ein Verfahren zur Verbesserung des Leistungsprofils von wasserabsorbierenden Zusammensetzungen durch Erhöhung der Permeabilität, Kapazität und Anquellgeschwindigkeit der wasserabsorbierenden Zusammensetzungen durch Einsatz von nicht wasserlöslichen, wasserquellfahigen Hydrogelen, die folgendes Eigenschaftsspektrum zeigen: Zentrifugenretentionskapazitat (CRC) von mindestens 24 g/g, Saline Flow Conductivity (SFC) von mindestens 80 x 10"7 cm s/g und Free Swell Rate (FSR) von mindestens 0,15 g/g s und/oder Vortex Time von maximal 160 s, in den wasserabsorbierenden Zusammensetzungen.
Zudem wird die Aufgabe erfindungsgemäß gelöst durch ein Verfahren zur Bestimmung von wasserabsorbierenden Zusammensetzungen mit hoher Permeabilität, Kapazität und Anquellgeschwindigkeit durch Messung der Zentrifugenretentionskapazitat (CRC), Saline Flow Conductivity (SFC), Free Swell Rate (FSR) und/oder Vortex Time für in einer gegebenen wasserabsorbierenden Zusammensetzung enthaltene nicht wasserlösliche, wasserquellfahige Hydrogele und Bestimmung der wasserabsorbierenden Zusammensetzungen, deren Hydrogele folgendes Eigenschaftsspektrum zeigen: CRC von mindestens 24 g/g, SFC von mindestens 80 x 10"7 cm3 s/g und von mindestens 0,15 g/g s und/oder Vortex Time von maximal 160 s.
Weiterhin wird die Aufgabe erfindungsgemäß gelöst durch Verwendung von wasserabsorbierenden Zusammensetzungen, die nicht wasserlösliche, wasserquellfahige Hydrogele enthalten, welche folgende Merkmale aufweisen:
Zentrifugenretentionskapazitat (CRC) von mindestens 24 g/g, Saline Flow Conductivity (SFC) von mindestens 80 x 10"7 cm3 s/g und Free Swell Rate (FSR) von mindestens 0,15 g/g s und/oder Vortex Time von maximal 160 s, in Hygieneartikeln oder anderen Artikeln, die zur Absorption wässriger Flüssigkeiten dienen, zur Erhöhung der Permeabilität, Kapazität und Anquellgeschwmdigkeit.
Es wurde gefunden, daß bei Einsatz von hochquellfähigen Hydrogelen mit einem speziellen Merkmalsspektrum aus Absorptionskapazität, Absorptionsrate und Permeabilität die Herstellung von absorbierenden Zusammensetzungen mit hohem Hydrogel-Gehalt ermöglicht wird, deren hochquellfahige Polymerpartikel sich durch hohe Absorptionskapazität und gute Flüssigkeitsverteilung auszeichnen. Bei Einsatz von hochquellfähigen Hydrogelen mit der erfindungsgemäßen Eigenschaftskombination kann eine absorbierende Zusammensetzung mit verbesserter Permeabilität und hoher Kapazität generiert werden. Durch den so ermöglichten erhöhten Anteil an hochquellfähigen Hydrogelen mit hoher Kapazität weist die absorbierende Zusammensetzung enorme Absorptionsleistungen auf, so daß auch das Problem der Leckage umgangen wird. Gleichzeitig wird die hohe Absorptionskapazität voll ausgeschöpft.
Der Begriff "wasserabsorbierend" bezieht sich auf Wasser und wäßrige Systeme, die organische und anorganische Verbindungen gelöst enthalten können, insbesondere auf Körperflüssigkeiten wie Urin, Blut oder diese enthaltende Flüssigkeiten.
Die absorbierende Zusammensetzung eignet sich für den Einsatz in Hygieneartikeln, wie Windeln, Damenbinden und Inkontinenzeinlagen, die für den einmaligen Gebrauch bestimmt sind.
Die absorbierende Zusammensetzung kann vorzugsweise einen hohen Anteil an hochquellfähigen Hydrogelen aufweisen, so daß deren Anteil in der absorbierenden Zusammensetzung mindestens 30 Gew.-%, besser mindestens 50 Gew.-%, bevorzugt mindestens 60%, mehr bevorzugt mindestens 70%, insbesondere bevorzugt 80% und außerordentlich bevorzugt mindestens 90% beträgt.
Erfindungsgemäß gelangen Hydrogele mit folgenden Eigenschaftskombinationen zum Einsatz:
CRC > 24 g/g, bevorzugt > 26 g/g, mehr bevorzugt > 28 g/g, noch mehr bevorzugt > 30 g/g, insbesondere bevorzugt CRC > 32 g/g und am meisten bevorzugt > 35 g/g und
SFC > 80 x 10"7 cm3 s/g, bevorzugt > 100 x 10"7 cm3 s/g, mehr bevorzugt > 120 x 10"7 cm3 s/g, noch mehr bevorzugt > 150 x 10"7 cm3 s/g, insbesondere bevorzugt > 200 x 10"7 cm3 s/g, am meisten bevorzugt > 300 x 10"7 cm3 s/g und - Free Swell Rate > 0,15 g/gs, bevorzugt > 0,20 g/gs, mehr bevorzugt > 0,30 g/gs, noch mehr bevorzugt > 0,50 g/gs, insbesondere bevorzugt > 0,70 g/gs, am meisten bevorzugt > 1,00 g/gs und/oder Vortex Time > 160 s, bevorzugt Vortex Time > 120 s, mehr bevorzugt Vortex Time > 90 s, insbesondere bevorzugt Vortex Time > 60 s, am meisten bevorzugt Vortex Time > 30 s.
Die wasserquellfähigen Hydrogele können in Verbindung mit einem Trägermaterial für die Hydrogele vorliegen. Sie können vorzugsweise als Partikel in einer Polymerfasermatrix oder einem offenporigen Polymerschaum eingebettet vorliegen, sie können jedoch auch an einem flächigen Trägermaterial fixiert sein oder als Partikel in aus einem Trägermaterial gebildeten Kammern vorliegen.
Zudem können die Hydrogele mit einem sterischen oder elektrostatischen Abstandshalter beschichtet sein.
Die erfindungsgemäßen wasserabsorbierenden Zusammensetzungen können durch
- Herstellen der wasserquellfahigen Hydrogele,
- gegebenenfalls Beschichten der Hydrogele mit einem sterischen oder elektrostatischen Abstandhalter und
- Verbinden der Hydrogele mit dem Trägermaterial, vorzugsweise Einbringen der Hydrogele in eine Polymerfasermatrix oder einen offenporigen Polymerschaum oder in aus einem Fasermaterial gebildeten Kammern oder Fixieren an einem flächigen Trägermaterial
hergestellt werden.
Die wasserabsorbierenden Zusammensetzungen werden insbesondere zur Herstellung von Hygieneartikeln oder anderen Artikeln, die zur Absorption wässriger Flüssigkeiten dienen, eingesetzt. Derartige Hygieneartikel enthalten vorzugsweise eine wie vorstehend definierte wasserabsorbierende Zusammensetzung zwischen einem flüssigkeitsdurchlässigen Deckblatt und einem flüssigkeitsundurchlässigen Rückblatt. Sie können in Form von Windeln, Damenbinden und Inkontinenzprodukten wie Einlagen vorliegen.
Der Aufbau der wasserquellfähigen Hydrogele und ihr Einsatz wird nachstehend näher erläutert.
Wasserquellfahige Hydrogele
Hydrogel-formende Polymere sind insbesondere Polymere aus (co)polymerisierten hydrophilen Monomeren, Pfropf(co)polymere von einem oder mehreren hydrophilen Monomeren auf eine geeignete Pfropfgrundlage, vernetzte Cellulose- oder Stärkeether, vernetzte Carboxymethylcellulose, teilweise vernetztes Polyalkylenoxid oder in wäßrigen Flüssigkeiten quellbare Naturprodukte, wie beispielsweise Guarderivate, Alginate und Carrageenane. Geeignete Pfropfgrundlagen können natürlichen oder synthetischen Ursprungs sein. Beispiele sind Stärke, Cellulose oder Cellulosederivate sowie andere Polysaccharide und Oligosaccharide, Polyvinylalkohol, Polyalkylenoxide, insbesondere Polyethylenoxide und Polypropylenoxide, Polyamine, Polyamide sowie hydrophile Polyester. Geeignete Polyalkylenoxide haben beispielsweise die Formel
X
R1 ~ O ~(CH_~" CH_ O) n ~R2
R und R unabhängig voneinander Wasserstoff, Alkyl, Alkenyl oder Aryl,
X Wasserstoff oder Methyl und n eine (ganze) Zahl von 1 bis 10000 bedeuten.
R1 und R2 bedeuten bevorzugt Wasserstoff, (C\ - C4)-Alkyl, (C2 - C6)-Alkenyl oder Phenyl.
Bevorzugt sind als Hydrogel-formende Polymere vernetzte Polymere mit Säuregruppen, die überwiegend in Form ihrer Salze, in der Regel Alkali- oder Ammoniumsalze, vorliegen. Derartige Polymere quellen bei Kontakt mit wässrigen Flüssigkeiten besonders stark zu Gelen auf.
Bevorzugt sind Polymere, die durch vernetzende Polymerisation oder Copolymerisation von Säuregruppen Tragenden monoethylenisch ungesättigten Monomeren oder deren Salzen erhalten werden. Ferner ist es möglich, diese Monomere ohne Vernetzer zu (co)polymerisieren und nachträglich zu vernetzen.
Solche Säuregruppen tragenden Monomere sind beispielsweise monoethylenisch ungesättigte C3- bis C25-Carbonsäuren oder Anhydride wie Acrylsäure, Methacrylsäure, Ethacrylsäure, α-Chloracrylsäure, Crotonsäure, Maleinsäure, Maleinsäureanhydrid, Itaconsäure, Citraconsäure, Mesaconsäure, Glutaconsäure, Aconitsäure und Fumarsäure. Weiterhin kommen monoethylenisch ungesättigte Sulfon- oder Phosphonsäuren in Betracht, beispielsweise Vinylsulfonsäure, Allylsulfonsäure, Sulfoethylacrylat, Sulfomethacrylat, Sulfopropylacrylat, Sulfopropylmethacrylat, 2-Hydroxy-3- acryloxypropylsulfonsäure, 2-Hydroxy-3-methacryl-oxypropylsulfonsäure,
Vinylphosphonsäure, Allylphosphonsäure, Styrolsulfonsäure und 2-Acrylamido-2- methylpropansulfonsäure. Die Monomeren können allein oder in Mischung untereinander eingesetzt werden.
Bevorzugt eingesetzte Monomere sind Acrylsäure, Methacrylsäure, Vinylsulfonsäure, Acrylamidopropansulfonsäure oder Mischungen dieser Säuren, z. B. Mischungen aus Acrylsäure und Methacrylsäure, Mischungen aus Acrylsäure und Acrylamidopropansulfonsäure oder Mischungen aus Acrylsäure und Vinylsulfonsäure.
Zur Optimierung von Eigenschaften kann es sinnvoll sein, zusätzliche monoethylenisch ungesättigte Verbindungen einzusetzen, die keine Säuregruppen tragen, aber mit den säuregruppentragenden Monomeren copolymerisierbar sind. Hierzu gehören beispielsweise die Amide und Nitrile von monoethylenisch ungesättigten Carbonsäuren, z. B. Acrylamid, Methacrylamid und N-Vinylformamid, N-Vinylacetamid, N- Methylvinylacetamid, Acrylnitril und Methacrylnitril. Weitere geeignete Verbindungen sind beispielsweise Vinylester von gesättigten Cj- bis C4-Carbonsäuren wie Vinylformiat, Vinylacetat oder Vinylpropionat, Alkylvinylether mit mindestens 2 C-Atomen in der Alkylgruppe, wie Ethylvinylether oder Butylvinylether, Ester von monoethylenisch ungesättigten C3- bis C6-Carbonsäuren, z. B. Ester aus einwertigen - bis C18- Alkoholen und Acrylsäure, Methacrylsäure oder Maleinsäure, Halbester von Maleinsäure, z. B. Maleinsäuremonomethylester, N-Vinyllactame wie N-Vinylpyrrolidon oder N- Vinylcaprolactam, Acrylsäure- und Methacrylsäureester von alkoxylierten einwertigen, gesättigten Alkoholen, z. B. von Alkoholen mit 10 bis 25 C- Atome, die mit 2 bis 200 Mol Ethylenoxid und/oder Propylenoxid pro Mol Alkohol umgesetzt worden sind, sowie Monoacrylsäureester und Monomethacrylsäureester von Polyethylenglykol oder Polypropylenglykol, wobei die Molmassen (Mn) der Polyalkylenglykole beispielsweise bis zu 2000 betragen können. Weiterhin geeignete Monomere sind Styrol und alkylsubstituierte Styrole wie Ethylstyrol oder tert.-Butylstyrol.
Diese keine Säuregruppen tragenden Monomere können auch in Mischung mit anderen Monomeren eingesetzt werden, z. B. Mischungen aus Vinylacetat und 2- Hydroxyethylacrylat in beliebigem Verhältnis. Diese keine Säuregruppen tragenden Monomere werden der Reaktionsmischung in Mengen zwischen 0 und 50 Gew.-%, vorzugsweise kleiner 20 Gew.-% zugesetzt.
Bevorzugt werden vernetzte Polymere aus Säuregruppen tragenden monoethylenisch ungesättigten Monomeren, die gegebenenfalls vor oder nach der Polymerisation in ihre Alkali- oder Ammoniumsalze überführt werden, und aus 0 - 40 Gew.-%, bezogen auf ihr Gesamtgewicht, keine Säuregruppen tragenden monoethylenisch ungesättigten Monomeren.
Bevorzugt werden vernetzte Polymere aus monoethylenisch ungesättigten C3- bis C12- Carbonsäuren und/oder deren Alkali- oder Ammoniumsalzen. Insbesondere werden vernetzte Polyacrylsäuren bevorzugt, deren Säuregruppen zu 25 - 100 % als Alkali- oder Ammoniumsalze vorliegen.
Als Vernetzer können Verbindungen fungieren, die mindestens zwei ethylenisch ungesättigte Doppelbindungen aufweisen. Beispiele für Verbindungen dieses Typs sind N,NC-Methylenbisacrylamid, Polyethylenglykoldiacrylate und
Polyethylenglykoldimethacrylate, die sich jeweils von Polyethylenglykolen eines Molekulargewichts von 106 bis 8500, vorzugsweise 400 bis 2000, ableiten, Trimethylolpropantriacrylat, Trimethylolpropantrimethacrylat, Ethylenglykoldiacrylat, Ethylenglykoldimethacrylat, Propylenglykoldiacrylat Propylenglykoldimethacrylat, Butandioldiacrylat, Butandioldimethacrylat, Hexandioldiacrylat, Hexandioldimethacrylat, Allylmethacrylat, Diacrylate und Dimethacrylate von Blockcopolymerisaten aus Ethylenoxid und Propylenoxid, zweifach bzw. mehrfach mit Acrylsäure oder Methacrylsäure veresterte mehrwertige Alkohole, wie Glycerin oder Pentaerythrit, Triallylamin, Dialkyldiallylammoniumhalogenide wie Dimethyldiallylammoniumchlorid und Diethyldiallylammoniumchlorid. Tetraallylethylendiamin, Divinylbenzol, Diallylphthalat, Polyethylenglykoldivinylether von Polyethylenglykolen eines Molekulargewichtes von 106 bis 4000, Trimethylolpropandiallylether, Butandioldivinylether, Penta- erythrittriallylether, Umsetzungsprodukte von 1 Mol Ethylenglykoldiglycidylether oder Polyethylenglykoldiglycidylether mit 2 Mol Pentaeiythritoltriallylether oder AUylalkohol, und/oder Divinylethylenharnstoff. Vorzugsweise setzt man wasserlösliche Vernetzer ein, z. B. N,N'-Methylenbisacrylamid, Polyethylenglykoldiacrylate und
Polyethylenglykoldimethacrylate, die sich von Additionsprodukten von 2 bis 400 Mol Ethylenoxid an 1 Mol eines Diols oder Polyols ableiten, Vinylether von Additionsprodukten von 2 bis 400 Mol Ethylenoxid an 1 Mol eines Diols oder Polyols, Ethylenglykoldiacrylat, Ethylenglykoldimethacrylat oder Triacrylate und Trimethacrylate von Additionsprodukten von 6 bis 20 Mol Ethylenoxid an 1 Mol Glycerin, Pentaerythrittriallylether und/oder Divinylharnstoff.
Als Vernetzer kommen außerdem Verbindungen in Betracht, die mindestens eine polymerisierbare ethylenisch ungesättigte Gruppe und mindestens eine weitere funktionelle Gruppe enthalten. Die funktioneile Gruppe dieser Vernetzer muß in der Lage sein, mit den funktioneilen Gruppen, im wesentlichen den Säuregruppen, der Monomeren zu reagieren. Geeignete iunktionelle Gruppen sind beispielsweise Hydroxyl-, Amino-, Epoxi- und Aziridinogruppen. Verwendung finden können z. B. Hydroxyalkylester der oben genannten monoethylenisch ungesättigten Carbonsäuren, z. B. 2-Hydroxyethylacrylat, Hydroxypropylacrylat, Hydroxybutylacrylat, Hydroxyethylmethacrylat,
Hydroxypropylmethacrylat und Hydroxybutylmethacrylat, Allylpiperidiniumbromid, N- Vinylimidazole wie N-Vinylimidazol, l-Vinyl-2-methylimidazol und Ν-Vinylimidazoline wie Ν-Vinylimidazolin, l-Vinyl-2-methylimidazolin, l-Vinyl-2-ethylimidazolin oder 1- Ninyl-2-propylimidazolin, die in Form der freien Basen, in quaternisierter Form oder als Salz bei der Polymerisation eingesetzt werden können. Außerdem eignen sich Dialkylaminoethylacrylat, Dimethylaminoethylmethacrylat, Diethylaminoethylacrylat und Diethylaminoethylmethacrylat. Die basischen Ester werden vorzugsweise in quaternisierter Form oder als Salz eingesetzt. Weiterhin kann z. B. auch Glycidyl(meth)acrylat eingesetzt werden.
Weiterhin kommen als Nernetzer Verbindungen in Betracht, die mindestens zwei funktionelle Gruppen enthalten, die in der Lage sind, mit den funktionellen Gruppen, im wesentlichen den Säuregruppen der Monomeren zu reagieren. Die hierfür geeigneten funktionellen Gruppen wurden bereits oben genannt, d. h. Hydroxyl-, Amino-, Epoxi-, Isocyanat-, Ester-, Amido- und Aziridinogruppen. Beispiele für solche Vernetzer sind Ethylenglykol, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Polyethylenglykol, Glycerin, Polyglycerin, Triethanolamin, Propylenglykol, Polypropylenglykol, Blockcopolymerisate aus Ethylenoxid und Propylenoxid, Ethanolamin, Sorbitanfettsäureester, ethoxylierte Sorbitanfettsäureester, Trimethylolpropan, Pentaerythrit, 1,3-Butandiol, 1,4-Butandiol, Polyvinylalkohol, Sorbit, Stärke, Polyglycidylether wie Ethylenglykoldiglycidylether, Polyethylenglykol-diglycidylether, Glycerindiglycidylether, Glycerinpolyglycidylether, Diglycerinpolyglycidylether, Polyglycerinpolyglycidylether, Sorbitpolyglycidylether, Pentaerythritpolyglycidylether, Propylenglykoldiglycidylether und Polypropylenglykoldiglycidylether, Polyaziridinverbindungen wie 2,2-Bishydroxymethylbutanol-tris[3-(l-aziridinyl)- propionat], 1 ,6-Hexamethylendiethylenharnstoff, Diphenylmetharι-bis-4,4' -Ν,Ν' -di- ethylenha nstoff, Halogenepoxyverbindungen wie Epichlorhydrin und α- Methylepifluorhydrin, Polyisocyanate wie 2,4-Toluylendiisocyanat und Hexa- methylendiisocyanat, Alkylencarbonate wie l,3-Dioxolan-2-on und 4-Methyl-l,3- dioxolan-2-on, weiterhin Bisoxazoline und Oxazolidone, Polyamidoamine sowie deren Umsetzungsprodukte mit Epichlorhydrin, ferner polyquaternäre Amine wie Kondensationsprodukte von Dimethylamin mit Epichlorhydrin, Homo- und Copolymere von Diallyldimemylammoniumchlorid sowie Homo- und Copolymerisate von Dimethylaminoethyl(meth)acrylat, die gegebenenfalls mit beispielsweise Methylchlorid quaterniert sind.
Weitere geeignete Vernetzer sind polyvalente Metallionen, die in der Lage sind, ionische Vernetzungen auszubilden. Beispiele für solche Vernetzer sind Magnesium-, Calcium-, Barium- und Aluminiumionen. Diese Vernetzer werden beispielsweise als Hydroxide, Carbonate oder Hydrogencarbonate eingesetzt. Weitere geeignete Vernetzer sind multifunktionelle Basen, die ebenfalls in der Lage sind, ionische Vernetzungen auszubilden, beispielsweise Polyamine oder deren quaternierte Salze. Beispiele für Polyamine sind Ethylendiamin, Diethylentriamin, Triethylentetramin,
Tetraethylenpentamin, Pentaethylenhexamin und Polyethylenimine sowie Polyamine mit Molmassen von jeweils bis zu 4000000.
Die Vernetzer sind in der Reaktionsmischung beispielsweise von 0,001 bis 20 und vorzugsweise von 0,01 bis 14 Gew.-% vorhanden.
Die Polymerisation wird wie allgemein üblich durch einen Initiator ausgelöst. Auch eine Initiierung der Polymerisation durch Einwirkung von Elektronenstrahlen auf die polymerisierbare, wässrige Mischung ist möglich. Die Polymerisation kann allerdings auch in Abwesenheit von Initiatoren der obengenannten Art durch Einwirkung energiereicher Strahlung in Gegenwart von Photoinitiatoren ausgelöst werden. Als Polymerisationsinitiatoren können sämtliche unter den Polymerisationsbedingungen in Radikale zerfallende Verbindungen eingesetzt werden, z. B. Peroxide, Hydroperoxide, Wasser- stoffperoxide, Persulfate, Azoverbindungen und die sogenannten Redoxkatalysatoren. Bevorzugt ist der Einsatz von wasserlöslichen Initiatoren. In manchen Fällen ist es vorteilhaft, Mischungen verschiedener Polymerisationsinitiatoren zu verwenden, z. B. Mischungen aus Wasserstoffperoxid und Natrium- oder Kaliumperoxodisulfat. Mischungen aus Wasserstoffperoxid und Natriumperoxodisulfat können in jedem beliebigen Verhältnis verwendet werden. Geeignete organische Peroxide sind beispielsweise Acetylacetonperoxid, Methylethylketonperoxid, tert.-Butylhydroperoxid, Cumolhydroperoxid, tert- Amylperpivalat, tert.-Butylperpivalat, tert.-Butylperneohexanoat, tert.-Butylperisobutyrat, tert.-Butyl-per-2-ethylhexanoat, tert.-Butylperisononanoat, tert.-Butylpermaleat, tert- Butylperbenzoat, Di-(2-ethylhexyl)peroxidicarbonat, Dicyclohexylperoxidicarbonat, Di-(4- tert.-butylcyclohexyl)peroxidicarbonat, Dimyristilperoxidicarbonat, Diacetylperoxi- dicarbonat, Allylperester, Cumylperoxineodecanoat, tert.-Butylper-3,5,5- trimethylhexanoat, Acetylcyclohexylsulfonylperoxid, Dilaurylperoxid, Dibenzoylperoxid und tert.-Amylperneodekanoat. Besonders geeignete Polymerisationsinitiatoren sind wasserlösliche Azostarter, z. B. 2,2'-Azo-bis-(2-amidinopropan)dihydrochlorid, 2,2'- Azobis-(N,N'-dimethylen)isobutyramidin-dihydrochlorid, 2-(Carbamoylazo)isobutyro- nitril, 2,2'-Azobis[2-(2'-imidazolin-2-yl)propan]dihydrochlorid und 4,4'-Azo bis-(4- cyanovaleriansäure). Die genannten Polymerisationsinitiatoren werden in üblichen Mengen eingesetzt, z. B. in Mengen von 0,01 bis 5, vorzugsweise 0,05 bis 2,0 Gew.-%, bezogen auf die zu polymerisierenden Monomeren.
Als Initiatoren kommen außerdem Redoxkatalysatoren in Betracht. Die Redoxkatalysatoren enthalten als oxidierende Komponente mindestens eine der oben angegebenen Perverbindungen und als reduzierende Komponente beispielsweise Ascorbinsäure, Glukose, Sorbose, Ammonium- oder Alkalimetallhydrogensulfit, -sulfit, - thiosulfat, -hyposulfit, -pyro-sulfit oder -sulfid, Metallsalze, wie Eisen(II)-ionen oder Natriumhydroxymethylsulfoxylat. Vorzugsweise verwendet man als reduzierende Komponente des Redoxkatalysators Ascorbinsäure oder Natriumsulfit. Bezogen auf die bei der Polymerisation eingesetzte Menge an Monomeren verwendet man beispielsweise 3 x 10"6 bis 1 Mol-% der reduzierenden Komponente des Redoxkatalysatorsystems und 0,001 bis 5,0 Mol-% der oxidierenden Komponente des Redoxkatalysators.
Wenn man die Polymerisation durch Einwirkung energiereicher Strahlung auslöst, verwendet man üblicherweise als Initiator sogenam te Photoinitiatoren. Hierbei kann es sich beispielsweise um sogenannte α-Spalter, H-abstrahierende Systeme oder auch um Azide handeln. Beispiele für solche Initiatoren sind Benzophenon-Derivate wie Michlers- Keton, Phenanthren-Derivate, Fluoren-Derivate, Anthrachinon-Derivate, Thioxanton- Derivate, Cumarin-Derivate, Benzoinether und deren Derivate, Azoverbindungen wie die oben genannten Radikalbildner, substituierte Hexaarylbisimidazole oder Acylphosphinoxide. Beispiele für Azide sind: 2-(N,N-Dimethylamino)-ethyl-4- azidocinnamat, 2-(N,N-Dimethyl-amino)-ethyl-4-azidonaphthylketon, 2-(N,N-
Dimethylamino)-ethyl-4-azidobenzoat, 5-Azido- 1 -naphthyl-2' -(N,N- dimethylamino)ethylsulfon, N-(4-Sulfonylazidophenyl)maleinimid, N-Acetyl-4- sulfonylazidoanilin, 4-Sulfonylazidoanilin, 4-Azidoanilin, 4-Azidophenacylbromid, p- Azidobenzoesäure, 2,6-Bis(p-azidobenzyliden)cyclohexanon und 2,6-Bis-(p-azido- benzyliden)-4-methylcyclohexanon. Die Photoinitiatoren werden, falls sie eingesetzt werden, üblicherweise in Mengen von 0,01 bis 5 Gew.-% bezogen auf die zu polymerisierenden Monomeren angewendet. Bei der nachträglichen Vernetzung werden Polymere, die durch die Polymerisation der oben genannten monoethylenisch ungesättigten Säuren und gegebenfalls monoethylenisch ungesättigten Comonomere hergestellt wurden und die ein Molekulargewicht größer 5000, bevorzugt größer 50000 aufweisen, mit Verbindungen umgesetzt, die mindestens zwei gegenüber Säuregruppen reaktive Gruppen aufweisen. Diese Umsetzung kann bei Raumtemperatur oder aber bei erhöhten Temperaturen bis zu 220 °C erfolgen.
Die geeigneten funktionellen Gruppen wurden bereits oben genannt, d.h. Hydroxyl-, Amino-, Epoxi-, Isocyanat-, Ester-, Amido- und Aziridinogruppen, ebenso Beispiele für solche Vernetzer.
Weitere geeignete Vernetzer zur Nachvernetzung sind polyvalente Metallionen, die in der Lage sind, ionische Vernetzungen auszubilden. Beispiele für solche Vernetzer sind oben bereits aufgeführt worden. Weitere geeignete Vernetzer sind multifunktionelle Basen, die ebenfalls in der Lage sind, ionische Vernetzungen auszubilden; auch hier sind Beispiele solcher Verbindungen bereits oben genannt.
Die Vernetzer werden den Säuregruppe tragenden Polymeren oder Salzen in Mengen von 0,5 bis 25 Gew.-%, bevorzugt von 1 bis 15 Gew.-%, bezogen auf die Menge des eingesetzten Polymers, zugesetzt.
Die vernetzten Polymere werden vorzugsweise neutralisiert eingesetzt. Die Neutralisation kann jedoch auch nur teilweise erfolgt sein. Der Neutralisationsgrad beträgt bevorzugt 25 bis 100 %, insbesondere 50 bis 100 %. Als Neutralisationsmittel kommen in Frage: Alkalimetallbasen oder Ammoniak bzw. Amine. Vorzugsweise wird Natronlauge oder Kalilauge verwendet. Die Neutralisation kann jedoch auch mit Hilfe von Natriumcarbonat, Natriumhydrogencarbonat, Kaliumcarbonat oder Kaliumhydrogencarbonat oder anderen Carbonaten oder Hydrogencarbonaten oder Ammoniak vorgenommen werden. Darüber hinaus sind primäre, sekundäre und tertiäre Amine einsetzbar.
Als technische Verfahren -zur Herstellung dieser Produkte können alle Verfahren Anwendung finden, die üblicherweise bei der Herstellung von Superabsorbern eingesetzt werden, wie sie z. B. im Kapitel 3 in "Modern Superabsorbent Polymer Technology", F.L. Buchholz and A.T. Graham, Wiley-VCH, 1998, erläutert sind.
Bevorzugt ist die Polymerisation in wäßriger Lösung als sogenannte Gelpolymerisation. Dabei werden 10 bis 70 Gew.-%ige wäßrige Lösungen der Monomere und gegebenfalls einer geeigneten Pfropfgrundlage in Gegenwart eines Radikalinitiators unter Ausnutzung des Trommsdorff-Norrish-Effektes polymerisiert.
Die Polymerisationsreaktion kann im Temperaturbereich zwischen 0 °C und 150 °C, vorzugsweise zwischen 10 °C und 100 °C, sowohl bei Normaldruck als auch unter erhöhtem oder erniedrigtem Druck durchgeführt werden. Wie üblich kann die Polymerisation auch in einer Schutzgasatmosphäre, vorzugsweise unter Stickstoff, ausgeführt werden.
Durch mehrstündiges Nachheizen der Polymerisatgele, z.B. im Temperaturbereich 50 bis 130 °C, vorzugsweise 70 bis 100 °C, können die Qualitätseigenschaften der Polymerisate noch verbessert werden.
Bevorzugt werden Hydrogel formende Polymere, die oberflächennachvernetzt sind. Die Oberflächennachvernetzung kann in an sich bekannter Weise mit getrockneten, gemahlenen und abgesiebten Polymerpartikeln geschehen.
Hierzu werden Verbindungen, die mit den funktionellen Gruppen der Polymere unter Vernetzung reagieren können, vorzugsweise in Form einer wasserhaltigen Lösung auf die Oberfläche der Hydrogel-Partikel aufgebracht. Die wasserhaltige Lösung kann wassermischbare organische Lösungsmittel enthalten. Geeignete Lösungsmittel sind Alkohole wie Methanol, Ethanol, i-Propanol oder Aceton.
Geeignete Nachvernetzungsmittel sind beispielsweise
Di- oder Polyglycidylverbindungen wie Phosphonsäurediglycidylether oder Ethylenglykoldiglycidylether, Bischlorhydrinether von Polyalkylenglykolen,
Alkoxysilylverbindungen,
Polyaziridine, Aziridin-Einheiten enthaltende Verbindungen auf Basis von Polyethern oder substituierten Kohlenwasserstoffen, beispielsweise Bis-N- aziridinomethan,
- Polyamine oder Polyamidoamine sowie deren Umsetzungsprodukte mit
Epichlorhydrin, Polyole wie Ethylenglykol, 1,2-Propandiol, 1,4-Butandiol, Glycerin, Methyltriglykol, Polyethylenglykole mit einem mittleren Molekulargewicht Mw von 200 - 10000, Di- und Polyglycerin, Pentaerythrit, Sorbit, die Oxethylate dieser Polyole sowie deren Ester mit Carbonsäuren oder der Kohlensäure wie Ethylencarbonat oder Propylencarbonat.
Kohlensäurederivate wie Harnstoff, Thioharnstoff, Guanidin, Dicyandiamid, 2- Oxazolidinon und dessen Derivate, Bisoxazolin, Polyoxazoline, Di- und Polyisocyanate,
Di- und Poly-N-methylolverbindungen wie beispielsweise Methylenbis(N- methylol-methacrylamid) oder Melamin-Formaldehyd-Harze,
Verbindungen mit zwei oder mehr blockierten Isocyanat-Gruppen wie beispielsweise Trimethylhexamethylendiisocyanat blockiert mit 2,2,3,6-
Tetramethy l-piperidinon-4.
Bei Bedarf können saure Katalysatoren wie beispielsweise p-Toluolsulfonsäure, Phosphorsäure, Borsäure oder Ammoniumdihydrogenphosphat zugesetzt werden.
Besonders geeignete Nachvernetzungsmittel sind Di- oder Polyglycidylverbindungen wie Ethylenglykoldiglycidylether, die Umsetzungsprodukte von Polyamidoaminen mit Epichlorhydrin und 2-Oxazolidinon.
Das Aufbringen der Vernetzer-Lösung erfolgt bevorzugt durch Aufsprühen einer Lösung des Vernetzers in herkömmlichen Reaktionsmischern oder Misch- und Trocknungsanlagen wie beispielsweise Patterson-Kelly-Mischer, DRAIS-Turbulenzmischer, Lödige-Mischer, Schneckenmischer, Tellermischer, Wirbelschichtmischer und Schugi-Mix. Nach Aufsprühen der Vernetzer-Lösung kann ein Temperatui-behandlungsschritt nachfolgen, bevorzugt in einem nachgeschalteten Trockner, bei einer Temperatur zwischen 80 und 230 °C, bevorzugt 80 - 190 °C, und besonders bevorzugt zwischen 100 und 160 °C, über einen Zeitraum von 5 Minuten bis 6 Stunden, bevorzugt 10 Minuten bis 2 Stunden und besonders bevorzugt 10 Minuten bis 1 Stunde, wobei sowohl Spaltprodukte als auch Lösungsmittelanteile entfernt werden können. Die Trocknung kann aber auch im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen eines vorgewärmten Trägergases. In einer besonders bevorzugten Ausfuhrung der Erfindung wird das Hydrogel formende Polymer anschließend mit einem sterischen oder elektrostatischen Abstandshalter gecoated. Als sterische Abstandshalter können inerte Pulver, wie beispielsweise Silikate mit Band-, Ketten- oder Blattstruktur (Montmorillonit, Kaolinit, Talk), Zeolithe, Aktivkohlen oder Polykieselsäuren fungieren. Weitere anorganische inerte Abstandshalter sind beispielsweise Magnesiumcarbonat, Calciumcarbonat, Bariumsulfat, Aluminiumoxid, Titandioxid und Eisen(II)-oxid. Als inerte Abstandshalter auf organischer Basis können beispielsweise Polyalkylmethacrylate oder Thermoplaste wie Polyvinylchlorid fungieren. Bevorzugt gelangen Polykieselsäuren zum Einsatz, die je nach Herstellungsart zwischen Fällungskieselsäure und pyrogenen Kieselsäuren unterschieden werden. Beide Varianten sind unter dem Namen AEROSIL® (pyrogene Kieselsäuren) bzw. Silica FK, Sipernat®, Wessalon® (Fällungskieselsäure) kommerziell erhältlich. Besonders bevorzugt ist der Einsatz von Fällungskieselsäuren. Das Coating der Hydrogel formenden Polymere mit inertem Abstandshaltermaterial kann durch Aufbringen der inerten Abstandshalter in einem wäßrigen oder wassermischbarem Medium oder aber durch Aufbringen der inerten Abstandshalter in Pulverform auf pulverförmiges Hydrogel formendes Polymer erfolgen. Die Applikation der wäßrigen bzw. wassermischbaren Medien erfolgt bevorzugt durch Aufsprühen auf trockenes Polymerpulver. In einer besonders bevorzugten Herstellungsvariante werden reine Pulver / Pulver-Mischungen aus pulverförmigem inerten Abstandshaltermaterial und Hydrogel-formendes Polymer hergestellt. Das inerte Abstandshaltermaterial wird zu einem Anteil von 0,05 bis 5 Gew.-%, bevorzugt von 0,1 bis 1,5 Gew.-%, besonders bevorzugt von 0,3 bis 1 Gew.-%, bezogen auf das Gesamtgewicht des gecoateten Hydrogels, auf die Oberfläche des Hydrogel-formenden Polymers aufgebracht.
Als elektrostatische Abstandshalter können kationische Komponenten eingesetzt werden. Generell ist es möglich, zum Zweck der elektrostatischen Abstoßung kationische Polymere zuzusetzen. Dies gelingt beispielsweise mit Polyalkylenpolyaminen, kationischen Derivaten von Polyacrylamiden, Polyethyleniminen, polyquartären Aminen, wie z. B. Kondensationsprodukten aus Hexamethylendiamin, Dimethylamin und Epichlorhydrin, Kondensationsprodukten aus Dimethylamin und Epichlorhydrin, Copolymerisaten aus Hydroxyethylcellulose und Diallyldimethylammoniumchlorid, Copolymerisaten aus Acrylamid und ß-Methaciylyloxyethyltrimethylammoniumchlorid, Hydroxycellulose umgesetzt mit Epichlorhydrin, dann quaternisiert mit Trimethylamin, Homopolymerisaten von Diallyldimethylammoniumchlorid oder Additionsprodukten von Epichlorhydrin an Amidoamine. Polyquartäre Amine können des weiteren auch durch Umsetzung von Dimethylsulfat mit Polymeren, wie Polyethyleniminen, Copolymeren von Vinylpyrrolidon und Dimethylaminoethylmethacrylat oder Copolymeren von Ethylmethacrylat und Diethylaminoethylmethacrylat synthetisiert werden. Die polyquartären Amine sind in einem breiten Molekulargewichtsbereich verfügbar.
Elektrostatische Abstandshalter werden auch generiert durch Aufbringen einer vernetzten, kationischen Hülle, entweder durch Reagenzien, die mit sich selbst ein Netzwerk bilden können wie Additionsprodukte von Epichlorhydrin an Polyamidoamine, oder durch den Auftrag von kationischen Polymeren, die mit einem zugesetzten Vernetzer reagieren können, z. B. Polyamine oder Polyimine in Kombination mit Polyepoxiden, multifunktionellen Estern, multifunktionellen Säuren oder multifünktionellen (Meth)acrylaten. Zum Einsatz gelangen können alle multifunktionellen Amine mit primären oder sekundären Amino-Gruppen wie z.B.: Polyethylenimin, Polyallylamin, Polylysin, bevorzugt Polyvinylamin. Weitere Beispiele für Polyamine sind Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetraethylenpentamin, Pentaethylenhexamin und Polyethylenimine sowie Polyamine mit Molmassen von jeweils bis zu 4000000.
Elektrostatische Abstandshalter können auch durch Zusatz von Lösungen zwei- oder mehrwertiger Metallsalz-Lösungen aufgebracht werden. Beispiele für zwei- oder mehrwertige Metall-Kationen sind Mg2+, Ca2+, Al3+, Sc3+, Ti4+, Mn2+, Fe2+/3+, Co2+, Ni2+, Cu+ 2+, Zn2+, Y3+, Zr4+, Ag+, La3+, Ce4+, Hf 4+, und Au+/3+, bevorzugte Metall-Kationen sind Mg +, Ca2+, Al3+, Ti4+, Zr4+ und La3+, und besonders bevorzugte Metall-Kationen sind Al3+, Ti4+und Zr4+. Die Metall-Kationen können sowohl allein als auch im Gemisch untereinander eingesetzt werden. Von den genannten Metall-Kationen sind alle Metallsalze geeignet, die eine ausreichende Löslichkeit in dem zu verwendenden Lösungsmittel besitzen. Besonders geeignet sind Metallsalze mit schwach komplexierenden Anionen wie zum Beispiel Chlorid, Nitrat und Sulfat. Als Lösungsmittel für die Metallsalze können Wasser, Alkohole, DMF, DMSO sowie Mischungen dieser Komponenten eingesetzt werden. Besonders bevorzugt sind Wasser und Wasser/Alkohol-Mischungen wie Wasser/Methanol oder Wasser/1, 2-Propandiol.
Im Herstellungsverfahren können die elektrostatischen Abstandshalter wie im Falle der inerten Abstandshalter durch Aufbringen in einem wäßrigen oder wassermischbarem Medium appliziert werden. Dies ist die bevorzugte Herstellungsvariante beim Zusatz von Metallsalzen. Kationische Polymere werden durch Aufbringen einer wässrigen Lösung oder in einem wassermischbaren Lösungsmittel, gegebenenfalls auch als Dispersion, oder aber durch Aufbringen in Pulverform auf pulverförmiges Hydrogel-formendes Polymer appliziert. Die Applikation der wäßrigen bzw. wassermischbaren Medien erfolgt bevorzugt durch Aufsprühen auf trockenes Polymerpulver. Das Polymerpulver kann anschließend gegebenenfalls getrocknet werden. Die kationischen Abstandshalter werden zu einem Anteil von 0,05 bis 5 Gew.-%, bevorzugt von 0,1 bis 1,5 Gew.-%, besonders bevorzugt von 0,1 bis 1 Gew.-%, bezogen auf das Gesamtgewicht des gecoateten Hydrogels, auf die Oberfläche des Hydrogel-formenden Polymers aufgebracht.
Die hochquellfähigen (wasserquellfähigen) Hydrogele können zusammen mit Strukturbildnern (Trägermaterialien) die wasserabsorbierende Zusammensetzung bilden. Dies kann z. B. eine Fasermatrix sein, die aus einem Cellulosefasergemisch (airlaid web, wet laid web) oder aus synthetischen Polymerfasern (meltblown web, spunbonded web), oder aber aus einem Misch-Faserwerk aus Cellulosefasern und synthetischen Fasern besteht. Des weiteren können offenporige Schäume oder ähnliches zum Einbau hochquellfähiger Hydrogele dienen.
Alternativ kann eine derartige Zusammensetzung durch Fusion zweier Einzelschichten entstehen, wobei eine oder besser eine Vielzahl an Kammern gebildet wird, die die hochquellfähigen Hydrogele enthalten. In diesem Fall sollte mindestens eine der beiden Schichten wasserdurchlässig sein. Die zweite Schicht kann entweder wasserdurchlässig oder wasserundurchlässig sein. Als Schichtenmaterial können Tissues oder sonstiges Gewebe, geschlossene oder of enporige Schäume, perforierte Filme, Elastomere oder Gewebe aus Fasermaterial zum Einsatz gelangen. Wenn die absorbierende Zusammensetzung aus einer Komposition von Schichten besteht, sollte das Schichtenmaterial eine Porenstruktur aufweisen, deren Porenabmessungen klein genug sind, um die hochquellfähigen Hydrogelpartikel zurückzuhalten. Obige Beispiele zur Komposition der absorbierenden Zusammensetzung schließen auch Laminate aus mindestens zwei Schichten mit ein, zwischen die die hochquellfahigen Hydrogele eingebaut und fixiert werden.
Des weiteren kann die absorbierende Zusammensetzung aus einem Trägermaterial, wie z. B. einem Polymerfilm bestehen, auf dem die hochquellfähigen Hydrogelpartikel fixiert werden. Die Fixierung kann sowohl ein- als auch beidseitig vorgenommen werden. Das Trägermaterial kann wasserdurchlässig oder wasserundurchlässig sein.
In obigen absorbierenden Zusammensetzungen werden die hochquellfähigen Hydrogele mit einem Gewichtsanteil von 30 bis 100 Gew.-%, besser von 50 bis 100 Gew.-%, bevorzugt von 60 bis 100 Gew.-%, mehr bevorzugt von 70 bis 100 Gew.-%, insbesondere bevorzugt von 80 bis 100 Gew.-% und außerordentlich bevorzugt von 90 bis 100 Gew.-% basierend auf dem Gesamtgewicht der Zusammensetzung, eingebaut.
Stellt obige Komposition der absorbierenden Zusammensetzung eine Fasermatrix dar, so resultiert die absorbierende Zusammensetzung aus einer Mischung von Fasermaterialien und hochquellfähigen Hydrogelen. In diesem Fasergemisch werden die hochquellfähigen Hydrogele mit einem Gewichtsanteil von vorzugsweise mindestens 30 Gew.-%, besser mindestens 50 Gew.-%, bevorzugt mindestens 60 Gew.-% basierend auf dem Gesamtgewicht der absorbierenden Zusammensetzung eingebaut.
Dem Aufbau der vorliegenden erfindungsgemäßen absorbierenden Zusammensetzung können vielfältige Fasermaterialien zugrundeliegen, die als Fasernetzwerk oder Matrices zum Einsatz gelangen. Mit eingeschlossen von der vorliegenden Erfindung sind sowohl Fasern natürlichen Ursprungs (modifiziert oder unmodifiziert), als auch Synthesefasern.
Beispiele für Cellulosefasern schließen jene ein, die üblicherweise bei Abso tionsprodukten verwendet werden, wie Flauschzellstoff und Zellstoff vom Baumwolltyp. Die Materialien (Nadel- oder Laubhölzer), Herstellungsverfahren, wie chemischer Zellstoff, halbchemischer Zellstoff, chemothermischer mechanischer Zellstoff (CTMP) und Bleichverfahren sind nicht besonders eingeschränkt. So finden beispielsweise natürliche Cellulosefasern wie Baumwolle, Flachs, Seide, Wolle, Jute, Ethylcellulose und Celluloseacetat Anwendung.
Geeignete synthetische Fasern werden hergestellt aus Polyvinylchlorid, Polyvinylfluorid, Polytetrafluorethylen, Polyvinylidenchlorid, Polyacrylverbindungen wie ORLON®, Polyvinylacetat, Polyethylvinylacetat, löslicher oder unlöslicher Polyvinylalkohol. Beispiele für synthetische Fasern schließen thermoplastische Polyolefmfasern, wie Polyethylenfasern (PULPEX®), Polypropylenfasern und Polyethylen-Polypropylen- Zweikomponentenfasern, Polyesterfasern, wie Polyethylenterephthalatfasern (DACRON® oder KODEL®), Copolyester, Polyvinylacetat, Polyethylvinylacetat, Polyvinylchlorid, Polyvinylidenchlorid, Polyacryle, Polyamide, Copolyamide, Polystyrol und Copolymere der vorstehend genannten Polymere, sowie Zweikomponentenfasern aus Polyethylenterephthalat-Polyethylen-Isophthalat-Copolymer,
Polyethylvinylacetat/Polypropylen, Polyethylen/Polyester, Polypropylen/Polyester, Copolyester/Polyester, Polyamidfasern (Nylon), Polyurethanfasern, Polystyrolfasern und
Polyacrylnitrilfasern ein. Bevorzugt sind Polyolefmfasern, Polyesterfasern und deren
Zweikomponentenfasern. Weiterhin bevorzugt sind in der Wärme haftende Zweikomponentenfasern aus Polyolefin vom Hülle-Kern-Typ und Seite-an-Seite-Typ wegen ihrer ausgezeichneten Formbeständigkeit nach der Flüssigkeitsabsorption.
Die genannten synthetischen Fasern werden bevorzugt in Kombination mit thermoplastischen Fasern eingesetzt. Bei der Hitzebehandlung migrieren letztere teilweise in die Matrix des vorhandenen Fasermaterials und stellen so beim Abkühlen Verbindungsstellen und erneute Versteifungselemente dar. Zusätzlich bedeutet der Zusatz thermoplastischer Fasern eine Erweiterung der vorliegenden Porenabmessungen nach erfolgter Hitzebehandlung. Auf diese Weise ist es möglich, durch kontinuierliches Zudosieren von thermoplastischen Fasern während der Bildung der Absorptionsschicht den Anteil thermoplastischer Fasern zum Deckblatt bin kontinuierlich zu steigern, wodurch ein ebenso kontinuierlicher Anstieg der Porengrößen resultiert. Thermoplastische Fasern können aus einer Vielzahl thermoplastischer Polymere gebildet werden, die einen Schmelzpunkt von weniger als 190 °C, bevorzugt zwischen 75 °C und 175 °C aufweisen. Bei diesen Temperaturen ist noch keine Schädigung der Cellulosefasern zu erwarten.
Längen und Durchmesser der vorstehend beschriebenen Synthesefasern sind nicht besonders eingeschränkt, und im allgemeinen kann jede beliebige Faser mit einer Länge von 1 bis 200 mm und einem Durchmesser von 0.1 bis 100 Denier (Gramm pro 9 000 Meter) bevorzugt verwendet werden. Bevorzugte thermoplastische Fasem weisen eine Länge von 3 bis 50 mm, besonders bevorzugte eine Länge von 6 bis 12 mm auf. Der bevorzugte Durchmesser der thermoplastischen Faser liegt zwischen 1,4 und 10 Decitex, besonders bevorzugt zwischen 1,7 und 3,3 Decitex (Gramm pro 10 000 Meter). Die Form ist nicht besonders eingeschränkt und Beispiele schließen gewebeartige, schmale zylinderartige, geschnitten-/spaltgarnartige, stapelfaserartige und endlosfaserartige ein.
Die Fasern in der erfindungsgemäßen absorbierenden Zusammensetzung können hydrophil, hydrophob oder eine Kombination aus beiden sein. Gemäß der Definition von Robert F. Gould in der Publikation "Kontaktwinkel, Benetzbarkeit und Adhäsion", American Chemical Society (1964) wird eine Faser als hydrophil bezeichnet, wenn der Kontaktwinkel zwischen der Flüssigkeit und der Faser (bzw. ihrer Oberfläche) kleiner aus 90° ist, oder wenn die Flüssigkeit zum spontanen Spreiten auf derselben Oberfläche tendiert. Beide Vorgänge sind in aller Regel coexistent. Umgekehrt wird eine Faser als hydrophob bezeichnet, wenn ein Kontaktwinkel von größer als 90° ausgebildet wird und kein Spreiten beobachtet wird. Bevorzugt wird hydrophiles Fasermaterial eingesetzt. Besonders bevorzugt gelangt Fasermaterial zum Einsatz, das zur Körperseite hin schwach hydrophil und in der Region um die hochquellfahigen Hydrogele am stärksten hydrophil ist. Im Herstellungsprozeß wird durch den Einsatz von Schichten unterschiedlicher Hydrophilie ein Gradient erzeugt, der die auftreffende Flüssigkeit zum Hydrogel kanalisiert, wo letztendlich die Absorption erfolgt.
Geeignete hydrophile Fasern für den Einsatz in der erfindungsgemäßen absorbierenden Zusammensetzung sind beispielsweise Cellulosefasern, modifizierte Cellulosefasern, Rayon, Polyesterfasern wie z. B. Polyethylenterephthalat (DACRON®), und hydrophiles Nylon (HYDROFIL1 ). Geeignete hydrophile Fasern können auch erhalten werden durch Hydrophilierung hydrophober Fasern, wie z.B. die Behandlung thermoplastischer Fasern, erhalten aus Polyolefinen (wie z. B. Polyethylen oder Polypropylen, Polyamide, Polystyrole, Polyurethane usw.) mit Tensiden oder Silica. Aus Kostengründen und aus Gründen der Verfügbarkeit werden jedoch Cellulosefasern bevorzugt.
Die hochquellfähigen Hydrogelpartikel werden in das beschriebene Fasermaterial eingebettet. Dies kann auf vielfältige Weise geschehen, indem man z. B. mit dem Hydrogelmaterial und den Fasern zusammen eine Absorptionsschicht in Form einer Matrix aufbaut, oder durch Einlagerung hochquellfähiger Hydrogele in Schichten aus Fasergemisch, wo sie letztendlich fixiert werden, sei es durch Haftmittel oder Laminierung der Schichten.
Die flüssigkeitsaufnehmende und -verteilende Fasermatrix kann dabei aus synthetischer Faser oder Cellulosefaser oder einem Gemisch aus synthetischer Faser und Cellulosefaser bestehen, wobei das Mischungsverhältnis von (100 bis 0) synthetische Faser : (0 bis 100) Cellulosefaser variieren kann. Die eingesetzten Cellulosefasern können zur Erhöhung der Formbeständigkeit des Hygieneartikels zusätzlich chemisch versteift sein.
Die chemische Versteifung von Cellulosefasern kann auf unterschiedlichen Wegen erreicht werden. Zum einen kann eine Faserversteifung erreicht werden durch Zusatz geeigneter Überzüge / Coatings zum Fasermaterial. Derartige Zusätze schließen beispielsweise Polyamid-Epichlorhydrin-Überzüge (Kymene® 557 H, Hercoles, Inc. Wilmington Delaware, USA), Polyacrylamid- Überzüge (beschrieben in US 3,556,932 oder als Handelsprodukt der Marke Parez® 631 NC, American Cyanamid Co., Stamford, CT, USA), Melamin-Formaldehyd-Überzüge und Polyethylenimin-Überzüge mit ein. Die chemische Versteifung von Cellulosefasern kann auch durch chemische Reaktion erfolgen. So kann z. B. die Zugabe von geeigneten Vernetzersubstanzen eine Vernetzung bewirken, die innerhalb der Faser stattfindet. Geeignete Vernetzersubstanzen sind typische Substanzen, die zur Vernetzung von Monomeren eingesetzt werden. Mit eingeschlossen, jedoch nicht limitiert darauf, sind C2-C8 Dialdehyde, C2-C8 Monoaldehyde mit saurer Funktionalität, und insbesondere C2-C Polycarbonsäuren. Spezifische Substanzen aus dieser Reihe sind beispielsweise Glutaraldehyd, Glyoxal, Glyoxylsäure, Formaldehyd und Citronensäure. Diese Substanzen reagieren mit mindestens 2 Hydroxyl-Gruppen innerhalb einer einzelnen Cellulosekette oder zwischen zwei benachbarten Celluloseketten innerhalb einer einzelnen Cellulosefaser. Durch die Vernetzung erfolgt eine Verteifung der Fasern, die durch diese Behandlung eine größere Formbeständigkeit verliehen bekommen. Zusätzlich zu ihrem hydrophilen Charakter weisen diese Fasern einheitliche Kombinationen aus Versteifung und Elastizität auf. Diese physikalische Eigenschaft ermöglicht es, die kapillare Struktur auch bei gleichzeitigem Kontakt mit Flüssigkeit und Kompressionskräften beizubehalten und ein vorzeitiges Kollabieren zu verhindern.
Chemisch vernetzte Cellulosefaseren sind bekannt und in WO 91/11162, US 3,224,926, US 3,440,135, US 3,932,209, US 4,035,147, US 4,822,453, US 4,888,093, US 4,898,642 und US 5,137,537 beschrieben. Die chemische Vernetzung bewirkt eine Versteifung des Fasermaterials, was sich letztendlich in einer verbesserten Formbeständigkeit des gesamten Hygieneartikels widerspiegelt. Die einzelnen Schichten werden durch dem Fachmann bekannte Methoden, wie z. B. Verschmelzen durch Wärmebehandlung, Zugabe von Schmelzklebern, Latexbindern usw. miteinander verbunden.
Beispiele für Verfahren, mit denen man eine absorbierende Zusammensetzng erhält, die beispielsweise aus in ein Fasermaterial-Gemisch aus synthetischen Fasern (a) und Cellulosefasern (b) eingebetteten hochquellfahigen Hydrogelen (c) besteht, wobei das Mischungsverhältnis von (100 bis 0) synthetische Faser : (0 bis 100) Cellulosefaser variieren kann, schließen (1) ein Verfahren, bei dem (a), (b) und (c) gleichzeitig gemischt werden, (2) ein Verfahren, bei dem ein Gemisch aus (a) und (b) in (c) eingemischt wird, (3) ein Verfahren, bei dem ein Gemisch aus (b) und (c) mit (a) gemischt wird, (4) ein Verfahren, bei dem ein Gemisch aus (a) und (c) in (b) eingemischt wird, (5) ein Verfahren, bei dem (b) und (c) gemischt werden und (a) kontinuierlich zudosiert wird, (6) ein Verfahren, bei dem (a) und (c) gemischt werden und (b) kontinuierlich zudosiert wird, und (7) ein Verfahren, bei dem (b) und (c) getrennt in (a) eingemischt weden, ein. Von diesen Beispielen sind die Verfahren (1) und (5) bevorzugt. Die Vorrichtung, die in diesem Verfahren verwendet wird, ist nicht besonders eingeschränkt und es kann eine übliche, dem Fachmann bekannte Vorrichtung verwendet werden.
Die entsprechend erzeugte absorbierende Zusammensetzung kann optional einer Hitzebehandlung unterworfen werden, so daß eine Absorptionsschicht mit hervorragender Formbeständigkeit im feuchten Zustand resultiert. Das Verfahren zur Hitzebehandlung ist nicht besonders eingeschränkt. Beispiele schließen Hitzebehandlung durch Zufuhr heißer Luft oder Infrarotbestrahlung mit ein. Die Temperatur bei der Hitzebehandlung liegt im Bereich 60 °C bis 230 °C, bevorzugt zwischen 100 °C und 200 °C, besonders bevorzugt zwischen 100 °C und 180 °C.
Die Dauer der Hitzebehandlung hängt ab von der Art der synthetischen Faser, deren Menge und der Herstellungsgeschwindigkeit des Hygieneartikels. Generell beträgt die Dauer der Hitzebehandlung zwischen 0.5 Sekunde bis 3 Minuten, bevorzugt 1 Sekunde bis 1 Minute.
Die absorbierende Zusammensetzung wird im allgemeinen beispielsweise mit einer für Flüssigkeit durchlässigen Deckschicht und einer für Flüssigkeit undurchlässigen Unterschicht versehen. Weiterhin werden Beinabschlüsse und Klebebänder angebracht und so der Hygieneartikel fertiggestellt. Die Materialien und Arten der durchlässigen Deckschicht und undurchlässigen Unterschicht, sowie der Beinabschlüsse und Klebebänder sind dem Fachmann bekannt und nicht besonders eingeschränkt.
Beschreibung der Testmethoden
Zentrifugenretentionskapazitat (CRC Centrifuge Retention Capacity)
Bei dieser Methode wird die freie Quellbarkeit des Hydrogels im Teebeutel bestimmt. Zur Bestimmung der CRC werden 0.2000 ± 0.0050 g getrocknetes Hydrogel (Komfraktion 106 — 850 μm) in einem 60 x 85 mm großen Teebeutel eingewogen, der anschließend verschweißt wird. Der Teebeutel wird für 30 Minuten in einen Überschuß von 0.9 Gew.%igen Kochsalzlösung gegeben (mindestens 0,83 1 Kochsalz-Lösung / l g Polymerpulver). Anschließend wird der Teebeutel 3 Minuten lang bei 250 g zentrifugiert. Die Bestimmung der Flüssigkeitsmenge geschieht durch Auswägen des zentrifugierten Teebeutels. Free Swell Rate (FSR)
Zur Bestimmung der Free Swell Rate werden 1,00 g (WH) Hydrogel gleichmäßig auf dem Boden einer Plastikschale mit einem runden Boden von ca. 6 cm ausgebreitet. Die Plastikschale hat eine Höhe von ca. 2,5 cm und besitzt eine quadratische Öffnung von ca. 7,5 cm x 7,5 cm. Mit Hilfe eines Trichters werden nun 20 g (WTJ) einer synthetischen Harnersatzlösung, herstellbar durch Auflösen von 2,0 g KC1, 2,0 g Na2SO , 0,85 g NH4H2PO4, 0,15 g (NH4)2HPO4, 0,19 g CaCl2 und 0,23 g MgCl2 in 1 Liter destilliertem Wasser, in das Zentrum der Plastikschale zugegeben. Sobald die Flüssigkeit Kontakt mit dem Hydrogel hat, wird die Zeitmessung begonnen und erst dann gestoppt, wenn das Hydrogel die gesamte Flüssigkeit vollständig aufgenommen hat, d. h. bis keine freie Flüssigkeit mehr zu erkennen ist. Diese Zeit wird als _A notiert. Die Free Swell Rate berechnet sich dann gemäß
FSR = Wu / (WH x tA).
Saline Flow Conductivity (SFC)
Die Testmethode zur Bestimmung der SFC ist beschrieben in WO 95/26209.
Vortex-Test
In ein 100 ml-Becherglas werden 50 ml 0,9 Gew.-%ige NaCl-Lösung vorgelegt und unter Rühren bei 600 Upm werden mittels eines Magnetrührers 2,00 g Hydrogel schnell so zugegeben, daß ein Klumpen vermieden wird. Es wird die Zeit in Sekunden gemessen, bis der durch das Rühren entstehende Wirbel (engl. = vortex) der Flüssigkeit geschlossen und eine glatte Oberfläche entstanden ist.
Acquisition Time / Rewet unter Druck
Die Untersuchung wird an sogenannten Labor-Pads durchgeführt. Zur Herstellung dieser Labor-Pads werden 11,2 g Cellulose-Fluff und 23,7 g Hydrogel in einer Luft-Kammer homogen verwirbelt und durch Anlegen eines leichten Unterdruckes auf eine Form der Größe 12 x 26 cm abgelegt. Diese Zusammensetzung wird dann in Tissue-Papier eingeschlagen und bei einem Druck von 200 bar 2 mal 15 Sekunden lang verpreßt. Ein auf diese Weise hergestellter Labor-Pad wird auf einer waagerechten Unterlage befestigt. Die Mitte des Pads wird bestimmt und markiert. Die Aufgabe von synthetischer Harnersatzlösung erfolgt durch eine Kunststoffplatte mit einem Ring in der Mitte (Innendurchmesser des Ringes 6,0 cm, Höhe 4,0 cm). Die Platte wird belastet mit zusätzlichen Gewichten, so daß die Gesamtbelastung des Pads 13,6 g/cm2 beträgt. Die Kunststof-platte wird auf dem Pad so plaziert, daß der Mittelpunkt des Pads gleichzeitig die Mitte des Aufgaberinges darstellt. Es werden dreimal 100 ml 0,9 Gew.-%ige Kochsalz- Lösung aufgegeben. Die Kochsalz-Lösung wird in einem Meßzylinder abgemessen und durch den Ring in der Platte in einem Schuß auf den Pad aufgegeben. Gleichzeitig mit der Aufgabe wird die Zeit gemessen, die zum kompletten Eindringen der Lösung in den Pad notwendig ist. Die gemessene Zeit wird als Acquisition Time 1 notiert. Danach wird der Pad mit einer Platte für 20 Min belastet, wobei die Belastung weiterhin bei 13,6 g/cm2 gehalten wird. Nach dieser Zeit wird die Platte entfernt, auf den Mittelpunkt werden 10 g ±0,5 g vom Filterpapier (Schleicher & Schuell, 1450 CV) gelegt und mit einem Gewicht (Fläche 10 x 10 cm, Gewicht 3,5 kg) für 15 s belastet. Nach dieser Zeit wird das Gewicht entfernt, und das Filterpapier wird zurückgewogen. Der Gewichtsunterschied wird als Rewet 1 notiert. Danach wird die Kunststoffplatte mit Aufgabering erneut auf den Pad gelegt und die zweite Aufgabe der Flüssigkeit erfolgt. Die gemessene Zeit wird als Acquisition Time 2 notiert. Die Prozedur wird wiederholt wie beschrieben, aber für die Rewet Untersuchung werden 45g±0,5g Filterpapier verwendet. Der Rewet 2 wird notiert. Bei der Bestimmung von Acquisition Time 3 wird auf die gleiche Weise verfahren. Bei der Bestimmung von Rewet 3 werden 50g ±0,5 g Filterpapier gebraucht.
Die nachfolgenden Beispiele sollen die Erfindung näher erläutern.
Beispiele
Zur Untersuchung gelangten hochquellfahige Hydrogele, die in den folgenden Tabellen mit den Buchstaben A bis K bezeichnet wurden.
Bei de Proben C, F, I und J handelt es sich um Vergleichsmuster, die nicht den erfindungsgemäßen Auswahlkriterien entsprechen und somit nicht den erfindungsgemäßen absorbierenden Zusammensetzungen genügen können.
Sehr deutlich ist zu erkennen, daß diese Produkte bei den Austestungen der Acquisition Time und des Rewet vor allem bei der dritten Aufgabe der Harnersatzlösung (Acquisition Time 3, Rewet 3) enorm von den Produkten abweichen, die nach den erfindungsgemäßen Auswahlkriterien entsprechen. Beispiele:
Untersuchte Hydrogele:
Ergebnisse des Acquisition time/Rewet-Test:

Claims

Patentansprüche
1. Wasserabsorbierende Zusammensetzung, enthaltend 30 bis 100 Gew.-%, bezogen auf die wasserabsorbierende Zusammensetzung, nicht wasserlösliche wasserquellfähige Hydrogele, dadurch gekennzeichnet, daß die Hydrogele folgende
Merkmale aufweisen:
- Zentrifugenretentionskapazitat (CRC) von mindestens 24 g/g,
- Saline Flow Conductivity (SFC) von mindestens 80 x 10"7 cm3 s/g und - Free Swell Rate (FSR) von mindestens 0,15 g/g s und/oder Vortex Time von maximal 160 s.
2. Wasserabsorbierende Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß die wasserquellfähigen Hydrogele in Verbindung mit einem Trägermaterial für die Hydrogele vorliegen.
3. Wasserabsorbierende Zusammensetzung nach Anspruch 2, dadurch gekennzeichnet, daß die wasserquellfähigen Hydrogele als Partikel in einer Polymerfasermatrix oder einem offenporigen Polymerschaum eingebettet vorliegen, an einem flächigen Trägermaterial fixiert sind oder als Partikel in aus einem Trägermaterial gebildeten Kammern vorliegen.
4. Wasserabsorbierende Zusammensetzung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Hydrogele mit einem sterischen oder elektrostatischen Abstandhalter beschichtet sind.
5. Verfahren zur Herstellung von wasserabsorbierenden Zusammensetzungen nach einem der Ansprüche 2 bis 4 durch
- Herstellen der wasserquellfahigen Hydrogele,
- gegebenenfalls Beschichten der Hydrogele mit einem sterischen oder elektrostatischen Abstandhalter,
- Verbinden der Hydrogele mit dem Trägermaterial, vorzugsweise Einbringen der Hydrogele in eine Polymerfasermatrix oder einen offenporigen Polymerschaum oder in aus einem Trägermaterial gebildete Kammern oder Fixieren an einem flächigen Trägermaterial.
6. Verwendung von wasserabsorbierenden Zusammensetzungen nach einem der Ansprüche 1 bis 4 zur Herstellung von Hygieneartikeln oder anderen Artikeln, die zur Absorption wässriger Flüssigkeiten dienen.
7. Hygieneartikel, enthaltend eine wasserabsorbierende Zusammensetzung nach einem der Ansprüche 1 bis 4 zwischen einem flüssigkeitsdurchlässigen Deckblatt und einem flüssigkeitsundurchlässigen Rückblatt.
8. Hygieneartikel nach Anspruch 7 in Form von Windeln, Damenbinden oder Inkontinenzprodukten.
9. Verfahren zur Verbesserung des Leistungsprofils von wasserabsorbierenden Zusammensetzungen durch Erhöhung der Permeabilität, Kapazität und Anquellgeschwindigkeit der wasserabsorbierenden Zusammensetzungen durch Einsatz von nicht wasserlöslichen wasserquellfähigen Hydrogelen, die folgendes
Eigenschaftsspektrum zeigen:
- Zentrifugenretentionskapazitat (CRC) von mindestens 24 g/g,
- Saline Flow Conductivity (SFC) von mindestens 80 x 10" cm s/g und - Free Swell Rate (FSR) von mindestens 0,15 g/g s und/oder Vortex Time von maximal 160 s,
in den wasserabsorbierenden Zusammensetzungen.
10. Verfahren zur Bestimmung von wasserabsorbierenden Zusammensetzungen mit hoher Permeabilität, Kapazität und Anquellgeschwindigkeit durch Messung der Zentrifugenretentionskapazitat (CRC), Saline Flow Conductivity (SFC), Free Swell Rate (FSR) und/oder Vortex Time für in einer gegebenen wasserabsorbierenden Zusammensetzung enthaltene nicht wasserlösliche, wasserquellfähige Hydrogele und Bestimmung der wasserabsorbierenden Zusammensetzungen, deren Hydrogele folgendes Eigenschaftsspektrum zeigen:
- CRC von mindestens 24 g/g,
- SFC von mindestens 80 x 10"7 cm3 s/g und - FSR von mindestens 0,15 g/g s und/oder Vortex Time von maximal 160 s.
1. Verwendung von wasserabsorbierenden Zusammensetzungen, die nicht wasserlösliche, wasserquellfähige Hydrogele enthalten, welche folgende Merkmale aufweisen:
- Zentrifugenretentionskapazitat (CRC) von mindestens 24 g/g,
- Saline Flow Conductivity (SFC) von mindestens 80 x 10"7 cm3 s/g und
- Free Swell Rate (FSR) von mindestens 0,15 g/g s und/oder Vortex Time von mal 160 s,
in Hygieneartikeln oder anderen Artikeln, die zur Absorption wässriger
Flüssigkeiten dienen, zur Erhöhung der Permeabilität, Kapazität und Anquellgeschwindigkeit.
EP01272659A 2000-12-29 2001-12-20 Aborbierende zusammensetzungen Ceased EP1347790A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10065252 2000-12-29
DE10065252 2000-12-29
PCT/EP2001/015150 WO2002053198A1 (de) 2000-12-29 2001-12-20 Aborbierende zusammensetzungen

Publications (1)

Publication Number Publication Date
EP1347790A1 true EP1347790A1 (de) 2003-10-01

Family

ID=7669160

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01272659A Ceased EP1347790A1 (de) 2000-12-29 2001-12-20 Aborbierende zusammensetzungen

Country Status (4)

Country Link
US (2) US6849665B2 (de)
EP (1) EP1347790A1 (de)
JP (1) JP4315680B2 (de)
WO (1) WO2002053198A1 (de)

Families Citing this family (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19909653A1 (de) * 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung
US6835325B1 (en) * 1999-10-21 2004-12-28 Daiso Co., Ltd. Crosslinking agent based on polyallyl ether compound
WO2002059214A1 (fr) * 2001-01-26 2002-08-01 Nippon Shokubai Co., Ltd. Agent d'absorption d'eau et procede de production correspondant, et article absorbant l'eau
DE60236752D1 (de) * 2001-11-21 2010-07-29 Basf Se Vernetzte polyaminbeschichtung auf superabsorbierenden hydrogelen
US6939914B2 (en) 2002-11-08 2005-09-06 Kimberly-Clark Worldwide, Inc. High stiffness absorbent polymers having improved absorbency rates and method for making the same
US20030139715A1 (en) * 2001-12-14 2003-07-24 Richard Norris Dodge Absorbent materials having high stiffness and fast absorbency rates
ATE319485T1 (de) * 2002-08-23 2006-03-15 Supersaugfähige polymere und verfahren zu ihrer herstellung
AU2003250155A1 (en) * 2002-08-23 2004-03-11 Basf Aktiengesellschaft Superabsorbent polymers and method of manufacturing the same
WO2004037900A1 (de) * 2002-10-25 2004-05-06 Stockhausen Gmbh Zweistufiges mischverfahren zur herstellung eines absorbierenden polymers
US7193006B2 (en) 2002-12-06 2007-03-20 Nippon Shokubai Co., Ltd. Process for continuous production of water-absorbent resin product
EP1594557B1 (de) * 2003-02-10 2019-05-01 Nippon Shokubai Co., Ltd. Wasserabsorbierende harzzusammensetzung und ihr herstellungsverfahren
CN100346843C (zh) * 2003-02-10 2007-11-07 株式会社日本触媒 吸水剂
WO2004069404A1 (en) 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
US7169843B2 (en) 2003-04-25 2007-01-30 Stockhausen, Inc. Superabsorbent polymer with high permeability
TWI302541B (en) * 2003-05-09 2008-11-01 Nippon Catalytic Chem Ind Water-absorbent resin and its production process
RU2333229C2 (ru) * 2003-06-24 2008-09-10 Ниппон Шокубаи Ко., Лтд. Водопоглощающая композиция на основе смол, способ ее изготовления (варианты), поглотитель и поглощающее изделие на ее основе
US7270881B2 (en) 2003-08-06 2007-09-18 The Procter & Gamble Company Coated water-swellable material
WO2005014064A1 (en) 2003-08-06 2005-02-17 Basf Aktiengesselschaft Water-swellable material comprising coated water-swellable polymers
US7445812B2 (en) * 2003-08-06 2008-11-04 The Procter & Gamble Company Process for making water-swellable material comprising coated water-swellable polymers
JP4860470B2 (ja) * 2003-08-06 2012-01-25 ザ プロクター アンド ギャンブル カンパニー 表面処理された吸収性ゲル化材料を製造するための方法
ATE501741T1 (de) 2003-08-06 2011-04-15 Procter & Gamble Saugfähiger artikel mit einem beschichteten in wasser quellbaren material
JP4640923B2 (ja) * 2003-09-05 2011-03-02 株式会社日本触媒 粒子状吸水性樹脂組成物の製造方法
KR100819613B1 (ko) * 2003-09-19 2008-04-07 가부시키가이샤 닛폰 쇼쿠바이 수분 흡수제와 그 제조방법
DE602004020159D1 (de) * 2003-09-19 2009-05-07 Nippon Catalytic Chem Ind Wasserabsorbierendes Harz mit behandelten Oberflächen und Verfahren zu seiner Herstellung
EP1518567B1 (de) 2003-09-25 2017-06-28 The Procter & Gamble Company Absorbierende artikel mit flüssigkeitsaufnahmezone und darin beschichteten superabsorbierenden partikeln
ATE391518T1 (de) * 2003-09-25 2008-04-15 Procter & Gamble Absorbierende artikel enthaltend superabsorbierende polymerpartikeln, mit einer nicht-kovalent gebundenen beschichtung
TW200530127A (en) * 2003-10-31 2005-09-16 Basf Ag Hydrogel capable of absorbing blood and/or body fluids
MXPA06004345A (es) * 2003-11-07 2006-06-27 Nippon Catalytic Chem Ind Composicion de resina absorbente de agua en particulas y su proceso de produccion.
EP1541568A1 (de) * 2003-12-09 2005-06-15 Deutsches Wollforschungsinstitut an der Rheinisch-Westfälischen Technischen Hochschule Aachen e.V. Reaktive cyclische Carbonate und Harnstoffe zur Modifizierung von Biomolekülen, Polymeren und Oberflächen
CN100434159C (zh) 2003-12-12 2008-11-19 株式会社日本触媒 吸水剂及其生产方法和用途
US20050142965A1 (en) * 2003-12-29 2005-06-30 Kimberly-Clark Worldwide, Inc. Surface charge manipulation for improved fluid intake rates of absorbent composites
DE102004009438A1 (de) 2004-02-24 2005-09-15 Basf Ag Verfahren zur Oberflächennachvernetzung wasserabsorbierender Polymere
US20050211624A1 (en) * 2004-03-23 2005-09-29 Vane Leland M Hydrophilic cross-linked polymeric membranes and sorbents
WO2005092955A1 (en) 2004-03-29 2005-10-06 Nippon Shokubai Co., Ltd. Particulate water absorbing agent with irregularly pulverized shape
EP1588723B1 (de) * 2004-03-29 2009-06-03 The Procter & Gamble Company Absorbierendes Element für absorbierende Artikel enthaltend Hydrogel-formende, quellbare Polymere mit hoher Permeabilität
WO2005097313A1 (en) * 2004-03-31 2005-10-20 Nippon Shokubai Co., Ltd. An aqueous-liquid-absorbing agent and its production process
DE602005016905D1 (de) * 2004-03-31 2009-11-12 Procter & Gamble Windel mit verbesserter körperpassung
US20050235336A1 (en) * 2004-04-15 2005-10-20 Kenneth Ma Data storage system and method that supports personal video recorder functionality
US7994384B2 (en) * 2004-04-28 2011-08-09 Kimberly-Clark Worldwide, Inc. Absorbent composition having multiple surface treatments
WO2005108472A1 (en) * 2004-05-07 2005-11-17 Nippon Shokubai Co., Ltd. Water absorbing agent and production method thereof
US20050288182A1 (en) * 2004-06-18 2005-12-29 Kazushi Torii Water absorbent resin composition and production method thereof
DE102004038015A1 (de) * 2004-08-04 2006-03-16 Basf Ag Verfahren zur Nachvernetzung wasserabsorbierender Polymere mit zyklischen Carba-maten und/oder zyklischen Harnstoffen
EP1796831B1 (de) * 2004-08-06 2020-01-15 Nippon Shokubai Co.,Ltd. Verfahren zur herstellung eines teilchenförmigen wasserabsorbierenden mittels, entsprechendes teilchenförmiges wasserabsorbierendes mittel und absorbierender artikel
KR100876827B1 (ko) 2004-09-24 2009-01-07 니폰 쇼쿠바이 컴파니 리미티드 흡수성 수지를 주성분으로 포함하는 입자상의 흡수제
US7544260B2 (en) * 2004-10-20 2009-06-09 Mark Banister Micro thruster, micro thruster array and polymer gas generator
US20060142480A1 (en) * 2004-12-29 2006-06-29 Mengkui Luo Method of making carboxyalkyl cellulose polymer network
TW200700095A (en) * 2005-02-01 2007-01-01 Basf Ag Polyamine-coated superabsorbent polymers
US20060173432A1 (en) * 2005-02-01 2006-08-03 Laumer Jason M Absorbent articles comprising polyamine-coated superabsorbent polymers
US20060173431A1 (en) * 2005-02-01 2006-08-03 Laumer Jason M Absorbent articles comprising polyamine-coated superabsorbent polymers
US20060173433A1 (en) * 2005-02-01 2006-08-03 Laumer Jason M Absorbent articles comprising polyamine-coated superabsorbent polymers
EP1843797B1 (de) 2005-02-04 2014-01-22 The Procter and Gamble Company Absorptionsstruktur mit verbessertem wasserabsorbierendem material
WO2006082240A1 (en) * 2005-02-04 2006-08-10 Basf Aktiengesellschaft Water swellable material
WO2006082239A2 (en) * 2005-02-04 2006-08-10 Basf Aktiengesellschaft Water-absorbing material having a coating of elastic film-forming polymers
EP1846047B1 (de) * 2005-02-04 2010-07-14 Basf Se Verfahren zur herstellung eines wasserabsorbierenden materials mit einem überzug aus elastischen filmbildenden polymeren
CN103550813B (zh) * 2005-02-04 2019-10-08 宝洁公司 具有改进的水可溶胀材料的吸收结构
WO2006097389A2 (en) * 2005-02-04 2006-09-21 Basf Aktiengesellschaft A process for producing a water-absorbing material having a coating of elastic filmforming polymers
TWI353360B (en) 2005-04-07 2011-12-01 Nippon Catalytic Chem Ind Production process of polyacrylic acid (salt) wate
DE102005018922A1 (de) * 2005-04-22 2006-10-26 Stockhausen Gmbh Mit Polykationen oberflächenbehandeltes wasserabsorbierendes Polymergebilde
EP1736508A1 (de) * 2005-06-22 2006-12-27 Basf Aktiengesellschaft Hydrogel-bildende Polymere mit erhöhter Durchlässigkeit und hohem Absorptionsvermögen
WO2006134085A1 (en) * 2005-06-14 2006-12-21 Basf Aktiengesellschaft Hydrogel-forming polymers with increased permeability and high absorption capacity
US7851669B2 (en) * 2005-07-26 2010-12-14 The Procter & Gamble Company Flexible absorbent article with improved body fit
WO2007014234A1 (en) * 2005-07-26 2007-02-01 The Procter & Gamble Company Flexible absorbent article with improved body fit
CN101291995B (zh) * 2005-09-30 2012-11-07 株式会社日本触媒 吸水性树脂作为主要组分的吸水剂和该吸水剂的生产方法
TW200720347A (en) * 2005-09-30 2007-06-01 Nippon Catalytic Chem Ind Water-absorbent agent composition and method for manufacturing the same
CN101321785B (zh) * 2005-12-05 2011-11-16 巴斯夫欧洲公司 制备具有高吸收容量和高渗透性的吸水性聚合物的方法
TWI394789B (zh) 2005-12-22 2013-05-01 Nippon Catalytic Chem Ind 吸水性樹脂組成物及其製造方法、吸收性物品
EP1837348B9 (de) 2006-03-24 2020-01-08 Nippon Shokubai Co.,Ltd. Wasserabsorbierendes Harz und Verfahren zu seiner Herstellung
US8198209B2 (en) * 2006-03-27 2012-06-12 Nippon Shokubai Co., Ltd. Water absorbing agent, water absorbent core using the agent, and manufacturing method for water absorbing agent
JP2009543902A (ja) * 2006-07-10 2009-12-10 メディパックス インコーポレイテッド 超弾性エポキシヒドロゲル
US8198505B2 (en) * 2006-07-12 2012-06-12 The Procter & Gamble Company Disposable absorbent articles comprising non-biopersistent inorganic vitreous microfibers
ATE467645T1 (de) 2006-07-19 2010-05-15 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung
US9115235B2 (en) * 2006-08-31 2015-08-25 Nippon Shokubai Co., Ltd. Water absorbing agent and production method thereof
WO2008108343A1 (ja) * 2007-03-05 2008-09-12 Nippon Shokubai Co., Ltd. 吸水剤及びその製造方法
US8236884B2 (en) 2007-03-23 2012-08-07 Evonik Stockhausen, Llc High permeability superabsorbent polymer compositions
US7935860B2 (en) * 2007-03-23 2011-05-03 Kimberly-Clark Worldwide, Inc. Absorbent articles comprising high permeability superabsorbent polymer compositions
US8845924B2 (en) * 2007-09-28 2014-09-30 Nippon Shokubai Co., Ltd. Water absorbing agent and production method thereof
EP2190572B1 (de) * 2007-09-28 2014-10-22 Nippon Shokubai Co., Ltd. Wasserabsorptionsmittel und herstellungsverfahren dafür
JP2011505520A (ja) 2007-12-03 2011-02-24 メディパックス インコーポレイテッド 流体計量供給装置
US8318306B2 (en) * 2008-01-30 2012-11-27 Evonik Stockhausen, Llc Superabsorbent polymer compositions having a triggering composition
EP2250222B1 (de) * 2008-03-07 2015-12-23 Nippon Shokubai Co., Ltd. Wasserabsorptionsmittel und herstellungsverfahren dafür
US9096732B2 (en) 2008-03-28 2015-08-04 Nippon Shokubai Co., Ltd. Conveyance method for water-absorbing resin powder substance
WO2009130915A1 (ja) 2008-04-25 2009-10-29 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂およびその製造方法
CN102124039B (zh) 2008-09-16 2013-04-24 株式会社日本触媒 吸水性树脂的制造方法和通液性提高方法
CN105237672A (zh) * 2008-11-21 2016-01-13 巴斯夫欧洲公司 一种通过单体溶液液滴的聚合而制备渗透性吸水聚合物颗粒的方法
US8648161B2 (en) 2009-02-06 2014-02-11 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) -based water-absorbent resin and a method for producing it
US20120157302A1 (en) 2009-08-28 2012-06-21 Basf Se Process For Producing Triclosan-Coated Superabsorbents
WO2011032011A1 (en) 2009-09-10 2011-03-17 Medipacs, Inc. Low profile actuator and improved method of caregiver controlled administration of therapeutics
JP5718816B2 (ja) 2009-09-16 2015-05-13 株式会社日本触媒 吸水性樹脂粉末の製造方法
JP5801203B2 (ja) 2009-09-29 2015-10-28 株式会社日本触媒 粒子状吸水剤及びその製造方法
JP5587348B2 (ja) 2010-01-20 2014-09-10 株式会社日本触媒 吸水性樹脂の製造方法
US9500186B2 (en) 2010-02-01 2016-11-22 Medipacs, Inc. High surface area polymer actuator with gas mitigating components
US9624322B2 (en) 2010-03-17 2017-04-18 Nippon Shukubai Co., Ltd. Method of producing water absorbent resin
CN104212105B (zh) * 2010-04-07 2017-08-01 株式会社日本触媒 聚丙烯酸(盐)系吸水性树脂粉末的制造方法、聚丙烯酸(盐)系吸水性树脂粉末
WO2012043821A1 (ja) 2010-09-30 2012-04-05 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2012045705A1 (de) 2010-10-06 2012-04-12 Basf Se Verfahren zur herstellung thermisch oberflächennachvernetzter wasserabsorbierender polymerpartikel
KR20120088246A (ko) * 2011-01-31 2012-08-08 주식회사 도루코 친수성 스펀지를 포함하는 습식 면도기
WO2012107432A1 (de) 2011-02-07 2012-08-16 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher anquellgeschwindigkeit
JP5599513B2 (ja) 2011-06-29 2014-10-01 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末及びその製造方法
WO2013073682A1 (ja) 2011-11-16 2013-05-23 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
DE102011086522A1 (de) * 2011-11-17 2013-05-23 Evonik Degussa Gmbh Superabsorbierende Polymere für hochgefüllte oder faserfreie Hygieneartikel
US8420567B1 (en) 2011-12-30 2013-04-16 Evonik Stockhausen, Llc Process for superabsorbent polymer and crosslinker composition
WO2013120722A1 (de) 2012-02-15 2013-08-22 Basf Se Wasserabsorbierende polymerpartikel mit hoher quellgeschwindigkeit und hoher permeabilität
US9738769B2 (en) 2012-02-15 2017-08-22 Basf Se Water-absorbing polymer particles with high free swell rate and high permeability
EP2847249A4 (de) 2012-03-14 2016-12-28 Medipacs Inc Intelligente polymermaterialien mit überschüssigen reaktiven molekülen
EP2854883B1 (de) * 2012-05-17 2019-06-12 Cartiheal (2009) Ltd Biomatrixhydrogele und verfahren zur verwendung davon
JP6272844B2 (ja) 2012-07-03 2018-01-31 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 改良した特性を有する吸水性ポリマー粒子を製造するための方法
US9644058B2 (en) 2012-08-01 2017-05-09 Nippon Shokubai Co. Ltd. Process for producing polyacrylic acid (salt)-based water absorbent resin
WO2014034897A1 (ja) 2012-08-30 2014-03-06 株式会社日本触媒 粒子状吸水剤及びその製造方法
JP5883948B2 (ja) 2012-11-27 2016-03-15 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
US9302248B2 (en) 2013-04-10 2016-04-05 Evonik Corporation Particulate superabsorbent polymer composition having improved stability
US9375507B2 (en) 2013-04-10 2016-06-28 Evonik Corporation Particulate superabsorbent polymer composition having improved stability
WO2014178588A1 (ko) * 2013-04-30 2014-11-06 주식회사 엘지화학 고흡수성 수지
KR101680830B1 (ko) 2013-12-06 2016-11-29 주식회사 엘지화학 고흡수성 수지 및 이의 제조방법
KR101700907B1 (ko) 2013-12-10 2017-01-31 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR102301326B1 (ko) * 2013-12-20 2021-09-14 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수제 및 그의 제조 방법
EP2930191B1 (de) * 2014-04-07 2020-09-16 Evonik Corporation Hochsaugfähiges Polymer mit schneller Absorption
BR102015007414B8 (pt) * 2014-04-07 2022-08-23 Evonik Corp Polímero superabsorvente apresentando rápida absorção, seu processo de fabricação, e artigo absorvente
WO2015169913A1 (de) * 2014-05-08 2015-11-12 Basf Se Wasserabsorbierende polymerpartikel
JP2016028116A (ja) * 2014-07-11 2016-02-25 住友精化株式会社 吸水性樹脂及び吸収性物品
JP6737571B2 (ja) * 2014-07-11 2020-08-12 住友精化株式会社 吸水性樹脂及び吸収性物品
JP6441374B2 (ja) * 2014-09-29 2018-12-19 株式会社日本触媒 吸水性樹脂粉末及び吸水性樹脂粉末の弾性率の測定方法
CN104356256B (zh) * 2014-11-25 2016-06-08 中广核达胜加速器技术有限公司 一种电子束辐照喷淋法合成高性能吸水树脂的方法
CN104327209A (zh) * 2014-11-25 2015-02-04 江苏达胜加速器制造有限公司 一种卫生材料用高吸水树脂的制备方法
JP6532894B2 (ja) 2015-01-07 2019-06-19 株式会社日本触媒 吸水剤及びその製造方法、並びに評価方法及び測定方法
EP3356485B1 (de) * 2015-09-30 2020-08-05 3M Innovative Properties Company An polymersubstrate gebundene hydrogelzusammensetzungen
KR102075737B1 (ko) 2016-03-11 2020-02-10 주식회사 엘지화학 고흡수성 수지의 제조 방법, 및 고흡수성 수지
WO2018136445A1 (en) 2017-01-17 2018-07-26 Hibbs Marketing Services LLC Waste absorbing formulation with communication capabilities and toilet systems for use thereof
TWI625355B (zh) 2017-03-31 2018-06-01 臺灣塑膠工業股份有限公司 吸水性樹脂及其製造方法
TWI642713B (zh) 2017-03-31 2018-12-01 臺灣塑膠工業股份有限公司 吸水性樹脂及其製造方法
US11857122B2 (en) 2020-07-07 2024-01-02 Coversan, Llc Modular portable toilet with rotary agitator
TWI761904B (zh) 2020-08-10 2022-04-21 臺灣塑膠工業股份有限公司 吸水性樹脂及其製造方法
TWI805461B (zh) 2022-08-04 2023-06-11 臺灣塑膠工業股份有限公司 吸水性樹脂與其製作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601542A (en) 1993-02-24 1997-02-11 Kimberly-Clark Corporation Absorbent composite
US5669894A (en) 1994-03-29 1997-09-23 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
WO1998047454A1 (en) 1997-04-18 1998-10-29 The Procter & Gamble Company Absorbent members for body fluids using hydrogel-forming absorbent polymer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2370380A (en) * 1939-03-28 1945-02-27 Conmar Prod Corp Machine and method for making slide fasteners
KR100193696B1 (ko) 1990-01-23 1999-06-15 데이비드 엠 모이어 열-결합된 강화 섬유층 및 초흡수성 물질층을 함유한 흡수 구조물
TW320647B (de) * 1993-02-24 1997-11-21
DE19540951A1 (de) * 1995-11-03 1997-05-07 Basf Ag Wasserabsorbierende, schaumförmige, vernetzte Polymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung
US5667635A (en) * 1996-09-18 1997-09-16 Kimberly-Clark Worldwide, Inc. Flushable premoistened personal wipe
US6222091B1 (en) * 1997-11-19 2001-04-24 Basf Aktiengesellschaft Multicomponent superabsorbent gel particles
ES2176951T3 (es) * 1998-01-28 2002-12-01 Procter & Gamble Polimeros absorbentes antimicrobianos que forman hidrogel.
DE19909653A1 (de) * 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung
US6387495B1 (en) * 1999-04-16 2002-05-14 Kimberly-Clark Worldwide, Inc. Superabsorbent-containing composites
WO2000063295A1 (de) * 1999-04-20 2000-10-26 Basf Aktiengesellschaft Hydrogel-formende polymermischung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601542A (en) 1993-02-24 1997-02-11 Kimberly-Clark Corporation Absorbent composite
US5669894A (en) 1994-03-29 1997-09-23 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
WO1998047454A1 (en) 1997-04-18 1998-10-29 The Procter & Gamble Company Absorbent members for body fluids using hydrogel-forming absorbent polymer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BUCHHOLZ F L; GRAHAM A T: "MODERN SUPERABSORBENT POLYMER TECHNOLOGY", 1998, WILEY-VCH, pages: 197 - 201, XP002999930
See also references of WO02053198A1

Also Published As

Publication number Publication date
US20020165288A1 (en) 2002-11-07
JP2004522491A (ja) 2004-07-29
WO2002053198A1 (de) 2002-07-11
US6849665B2 (en) 2005-02-01
JP4315680B2 (ja) 2009-08-19
US20020128618A1 (en) 2002-09-12

Similar Documents

Publication Publication Date Title
EP1347790A1 (de) Aborbierende zusammensetzungen
EP1434606B1 (de) Polymerenmischung von hydrogelen unterschiedlichen ph-wertes
EP1232191B1 (de) Mechanisch stabile hydrogel-formende polymere
EP1485432B1 (de) Polymergemische mit verbesserter geruchskontrolle
EP1425320B1 (de) Saure hochquellfähige hydrogele
DE60304216T2 (de) Supersaugfähige polymere und verfahren zu ihrer herstellung
EP1537177B1 (de) Wasserabsorbierendes mittel und verfahren zu seiner herstellung
EP1363682A1 (de) Hydrogele mit sterischen oder elektrostatischen abstandhaltern beschichtet
US20050013992A1 (en) Crosslinked polyamine coating on superabsorbent hydrogels
EP1427452A1 (de) Super-absorbierende hydrogele bestimmter teilchengroessenverteilung
EP1335756B1 (de) Hochquellbare absorptionsmittel mit einer verminderten tendenz zum verbacken
WO2000046260A1 (de) Vernetzte, hydrophile, hochquellfähige hydrogele, verfahren zu ihrer herstellung und ihre verwendung
DE102005018922A1 (de) Mit Polykationen oberflächenbehandeltes wasserabsorbierendes Polymergebilde
WO2000063295A1 (de) Hydrogel-formende polymermischung
DE69730084T2 (de) Verfahren zur herstellung eines polymeren hydrophilen harzes
EP1458423B1 (de) Tocopherol-haltige superabsorber
DE19931720A1 (de) Hydrogel-formende Polymermischung
WO2003104543A1 (de) Verfahren zum binden von teilchenförmigen, wasserabsorbierenden, säuregruppen enthaltenden polymeren an ein trägermaterial
DE10202839A1 (de) Hydrogele bestimmter Teilchengrössenverteilung
WO2006106108A1 (de) Quellverzögerter superabsorbierender schaum, verfahren zu seiner herstellung und seine verwendung
WO2002058841A2 (de) Wasserabsorbierendes mittel, verfahren zu seiner herstellung und seine verwendung
EP2528630B1 (de) Geruchsinhibierende wasserabsorbierende verbundstoffe
WO2001040335A1 (de) HYDROPHILE HYDROGEL-FORMENDE POLYMERE MIT 1,4-α-D-GLYKOSIDISCHEN BINDUNGEN
DE19917919A1 (de) Hydrogel-formende Polymermischung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

R17P Request for examination filed (corrected)

Effective date: 20030729

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17Q First examination report despatched

Effective date: 20070618

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20081210