CN104294236A - 在内表面上具有惰性气相涂层的金属部件 - Google Patents
在内表面上具有惰性气相涂层的金属部件 Download PDFInfo
- Publication number
- CN104294236A CN104294236A CN201410275925.7A CN201410275925A CN104294236A CN 104294236 A CN104294236 A CN 104294236A CN 201410275925 A CN201410275925 A CN 201410275925A CN 104294236 A CN104294236 A CN 104294236A
- Authority
- CN
- China
- Prior art keywords
- metal
- coating
- supercoat
- millimeters
- metal parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/24—Deposition of silicon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/10—Selective adsorption, e.g. chromatography characterised by constructional or operational features
- B01D15/22—Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the construction of the column
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
- C23C16/045—Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
- C23C16/325—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/403—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/405—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45555—Atomic layer deposition [ALD] applied in non-semiconductor technology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/50—Conditioning of the sorbent material or stationary liquid
- G01N30/56—Packing methods or coating methods
- G01N2030/567—Packing methods or coating methods coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明提供了具有均匀涂覆的内表面的金属液相色谱部件及用于实现其的方法。本发明解决了在用于其中样品与金属离子或表面相互作用的LC分析的流动路径中的金属部件腐蚀或干扰的问题。本发明还缓解了涂覆具有很好地粘附至金属表面的惰性连续涂层的很长的金属管和非常小的金属通道的困难。金属流动路径通过该涂层而呈现惰性,从而与生物分析分离兼容,例如通过使用气相沉积过程来涂覆具有连续覆盖流动路径中所有金属表面的涂层的内表面。
Description
技术领域
本发明总体涉及涂覆的金属部件及相关方法。更具体地说,本发明涉及具有均匀涂覆的内表面的金属液相色谱部件及用于实现其的方法。
背景技术
液相色谱(LC)是用于分离化合物的混合物的色谱技术,目的在于识别、量化或纯化混合物的各个组分。这种分离基于样品与流动相和固定相的相互作用而发生。具有多种可在分离混合物时采用的固定/流动相组合。液-固柱色谱(其是最流行的色谱技术)特征在于液体流动相,其慢慢地过滤下来通过固体固定相,带来具有其的分离组分。
LC使用许多金属部件用于输送液体。示例包括泵部件、自动进样器针头和分离柱。由LC所分析的许多样品与金属没有相互作用,但一些样品特别是在生物分析应用中的样品对浸渍过的金属离子是敏感的和/或容易与引起与分析过程干扰的金属表面或分离部件中的杂质相互作用。
常规的解决方案一直是使用惰性材料比如聚醚醚酮(PEEK)用于这些应用的流动路径。除了昂贵之外,PEEK难以形成LC部件的许多所需的形状和尺寸,并且不易于采用所希望的任何形式。此外,PEEK机械上没有金属强壮,因此无法承受用于超高压LC(UHPLC)的压力(通常高于约400bar)。其他现有的方法包括将生物相容的聚合物内管插入到金属外管内,并且将金属管涂覆有液相的有机层。(美国专利号5482628、5651885、5736036;美国专利申请号20050255579、20110259089。)另一种方法是使用插入到由金属或塑料制成的夹套中的玻璃管,其已将应用限制至LC部件。(美国专利号4968421)
传统的方法和现有的替代设计已经表现出这样的缺点,即不能良好地粘附至受保护的金属表面、不能够沿着小管长度均匀地涂覆、以及不能够涂覆小通道(例如,5-10微米直径)。
因此,仍然存在未满足的具有连续且均匀涂覆的内表面的金属液相色谱部件及用于实现其的高效方法的需要。
发明内容
本发明部分地基于用于具有长的、狭窄的和/或收缩的内表面的金属部件的受控且均匀的涂层的独特方法。本发明有效地解决了在用于其中样品与金属离子或表面相互作用的LC分析的流动路径中的金属部件腐蚀或干扰的问题。本发明还缓解了涂覆具有很好地粘附至金属表面的惰性连续涂层的很长的金属管和非常小的金属通道的困难。金属流动路径通过该涂层而呈现惰性,从而与生物分析分离兼容,例如通过使用气相沉积过程来涂覆具有连续覆盖流动路径中所有金属表面的涂层的内表面。
在一方面,本发明总体涉及一种金属部件,其具有含有连续覆盖有具有基本均匀厚度的保护涂层的内表面的管腔、通道或空腔。所述保护涂层通过气相过程形成,包括:提供在所述气相中的一种或多种分子前体;将所述管腔、通道或空腔的内表面暴露至在所述气相中的一种或多种分子前体;允许所述一种或多种分子前体在所暴露的内表面或其附近反应、分解或以其他方式变化并且随后在其上沉积;以及采用惰性气体冲洗或创建真空,从而除去未反应的一种或多种分子前体和反应副产物,如果有的话。
在另一方面,本发明总体涉及一种用于涂覆具有管腔、通道或空腔的金属物体的内表面的方法。所述方法包括通过气相过程形成具有基本均匀厚度的连续保护涂层。
在另一方面,本发明总体涉及一种具有涂覆有根据本文所公开的方法的保护涂层的内表面的金属物体。
附图说明
图1示出了本发明实施例的示意图。
图2示出了在不锈钢上的a-Si涂层的X-射线光电子能谱组成深度分布的示例性数据。
图3示出了与从未涂覆的不锈钢浸出的离子相比的对从涂覆有a-Si、硅氧烷以及Si/硅氧烷双层的2x3厘米不锈钢试样浸入到溶液中的离子进行对比的示例性数据。
具体实施方式
除非另有定义,本文所用的所有技术和科学术语具有的含义与本发明所属领域的普通技术人员通常所理解的相同。
如本文所用,术语“涂层”和“涂覆”是指与底层材料分开且不同的材料层。涂覆的材料表现出在涂层材料和底层材料例如支撑材料之间的可识别的边界,例如是渐变的或突变的。
如本文所用,术语“基本均匀的厚度”是指衬底上的涂层在整个涂层面积上具有的厚度大于最小厚度。如本文所用,最小厚度是指涂层具有约1nm、约5nm、约10nm、约50nm、约100nm或以上的厚度。
如本文所用,术语“流体”是指能够流动(例如,通过流动通道)的液体具有至少一个小于1毫米的横截面尺寸。为了本公开的目的,术语“流体”不包含气体。
如本文所用,术语“微流体装置”是指具有微流体反应器、微流体流动通道和/或阀的单个单元。微流体装置还可以具有其他的微流体部件,比如泵、柱、搅拌器等。
如本文所用,术语“化学气相沉积”是指用于产生薄膜或涂层的化学过程。在典型的化学气相沉积(CVD)过程中,衬底暴露于一种或多种挥发性前体,其在衬底表面上或附近反应、分解、冷凝或以其他方式变化,以产生所需的沉积物。通常,还产生挥发性副产物,其由气流或真空通过反应室被去除。待沉积的材料可以采取多种形式,包括:单晶硅、多晶硅、无定形硅以及外延硅。在典型的CVD过程中,衬底被加热至升高的温度,其在允许前体在表面上反应方面可能很重要。然而,在某些CVD过程中,沉积可以在室温下进行。例如,某些原子层沉积(ALD)过程可以在环境温度下进行。
CVD技术包括:在大气压力下的常压CVD(APCVD)-CVD过程;在低于大气压力(减少的压力倾向于减少不必要的气相反应并提高整个衬底上的膜均匀性)下的低压CVD(LPCVD)-CVD过程;在非常低的压力例如低于10-6Pa(~10-8torr)下的超高真空CVD(UHVCVD)-CVD过程。
如本文所用,术语“分子前体”是指在气相中的分子,包括希望在涂层中的一个或多个元素。这些前体可以进行化学或物理变化,以使得所需的元素可以沉积在表面上并且掺入在涂层中。分子前体可以是无机或有机化合物。例如,无机分子前体可以包括将会导致在表面上的保护涂层的金属系材料,其中所述保护涂层选自Si系、Ti系、Zr系或Al系无机化合物(例如氧化物、氮化物或氮氧化物)。例如,无机前体分子还可以包括用于产生氧化物的H2O或用于产生氮化物的NH3。例如,有机分子前体可以包括可能导致Si系聚合物材料作为在表面上的保护涂层的聚合物材料。该分子前体还可以包括有机金属材料例如三甲基铝,以提供用于包括进入涂层中的金属(在该示例中是铝)的方法。对于前体来说还存在许多其它的可能性,并且在文献中是显而易见的,并且尚待开发的前体也可以落入本发明的范围之内。
如本文所用,术语“原子层沉积”或“ALD”是指一种类型的热CVD,其中通过使用顺序的自限性的表面反应来实现薄膜沉积的逐层控制。与两个前体沉积相关联的两个半反应在时间上分开,并且采用惰性气体清洗反应器或其被抽空,以确保前体的物理分离。每个半反应都是自限性的,导致在复杂形貌与高长宽比的结构上的高度适形且可控的沉积。
本发明提供了用于实现具有长的、狭窄的和/或收缩的内表面的金属部件的连续且均匀的内部涂层的独特方法。具有小金属通道的非常长的金属管可以涂覆有连续且均匀的涂层,比如惰性或保护涂层。这些部件可以是电流部件,比如用于分离柱、针头自动进样器、泵或微流体部件的金属管及配件。本发明提供的金属部件不腐蚀或干扰LC分析,并且可以有效地用在用于LC系统的流动路径中。
用于LC系统流动路径的金属LC部件的气相涂层(例如CVD)与利用非金属部件或非涂覆金属部件的以前技术相比具有若干个优点。涂覆的金属是惰性的,并且不会干扰LC分析,却又足够强壮以承受超过1000bar的压力,使得其与在UHPLC分析中所需的条件兼容。部件的制造是在金属中完成的,而不是衬底比如PEEK系材料,所以更多种的部件可用于制造,包括金属微流体部件和多孔烧结金属玻璃料。气相涂层优选的是液相涂层,因为其更好地能够涂覆长窄的通道(例如直径小于10微米)并且提供强粘合性给金属。
LC部件可以根据需要由各种金属制成(例如,不锈钢、钛或其它金属或者合金)。尽管无定形Si在保护暴露于气体或真空的金属表面方面是有效的(美国专利号6444326、6511760、7070833),但是无定形Si经受液体中高pH值的攻击。因此,无定形Si对于提供在需要高pH值的LC应用中的惰性并不是理想的。如本文所公开,用于惰性涂层的沉积的热CVD现已成功地扩展至在高低pH值溶液、高盐溶液以及大量的各种溶剂中稳定的材料。此外,该涂层抵抗生物分子粘附至涂层表面。根据所公开的发明的涂覆方法能够采用连续且很好地粘附至金属柱的涂层来涂覆具有小内径的金属LC部件的长柱。
在一方面,本发明总体涉及一种金属部件,其具有含有连续覆盖有具有基本均匀厚度的保护涂层的内表面的管腔、通道或空腔。所述保护涂层通过气相过程形成,包括:提供在所述气相中的一种或多种分子前体;将所述管腔、通道或空腔的内表面暴露至在所述气相中的一种或多种分子前体;允许所述一种或多种分子前体在所暴露的内表面或其附近反应、分解或以其他方式变化并且随后在其上沉积;以及采用惰性气体冲洗或创建真空,从而除去未反应的一种或多种分子前体和反应副产物,如果有的话。
在某些实施例中,所述气相过程还包括:根据需要重复上述步骤中的一个或多个,以达到期望的膜厚度和/或组成。
在另一方面,本发明总体涉及一种用于涂覆具有管腔、通道或空腔的金属物体的内表面的方法。所述方法包括通过气相过程形成具有基本均匀厚度的连续保护涂层。
在某些优选的实施例中,所述气相过程包括化学气相沉积过程。
在某些优选的实施例中,所述气相过程包括原子层沉积过程。
在某些实施例中,所述管腔、通道或空腔的特征在于小于约10毫米的至少一个尺寸和长于约20毫米的一个尺寸。在某些实施例中,所述金属部件是色谱柱,其特征在于小于约10毫米(例如,小于约5毫米、3毫米、1毫米、500微米、300微米、100微米、50微米、30微米、10微米、5微米)的内径和大于约20毫米(例如,大于约30毫米、50毫米、100毫米、500毫米、1000毫米、5000毫米)的长度。
在某些实施例中,所述保护涂层具有在约10纳米至约5微米(例如,约10纳米至约500纳米、约10纳米至约300纳米、约10纳米至约200纳米、约10纳米至约100纳米、约10纳米至约80纳米、约10纳米至约50纳米、约20纳米至约800纳米、约50纳米至约800纳米、约100纳米至约800纳米、约200纳米至约800纳米、约300纳米至约800纳米、约100纳米至约500纳米、约100纳米至约300纳米、约200纳米至约500纳米)的范围内的基本均匀的厚度。
在某些实施例中,所述金属部件是其中的微流体装置或部件,其具有小于约1毫米(例如,小于约500微米、300微米、100微米、50微米、30微米、10微米、5微米)的至少一个内部尺寸。
在某些实施例中,所述金属部件是多孔金属玻璃料,比如用于将是在液相色谱柱中的固体固定相的硅石颗粒的种类。该涂层覆盖将与液体流动相接触的表面,并且包括玻璃料的内表面和/或外表面。
所述保护涂层可以是任何合适的材料,例如选自Si系、Ti系、Zr系或Al系无机化合物(例如氧化物、氮化物或氧氮化物)的材料。在某些实施例中,对于用在LC应用中的金属部件来说,所述保护涂层包括选自SiO2、SiC、Si3N4、SiOxCySiOxNy、SiCxHy、Al2O3、TiO2、ZrO2、Y2O3以及它们的混合物的材料。
该涂层还可以是多层的(2、3、4或更多层,每个都包括不同的保护材料)。例如,初始涂层可以是用于很好地粘附至金属的Si涂层,接着是用于化学惰性的SiC涂层。图1是柱100的横截面的示意图,具有金属管110、通道120、以及在内表面上的两个涂覆层130和140。
所述金属部件可以由任何合适的材料制成,例如不锈钢、钛或钛合金。
在另一方面,本发明总体涉及一种具有涂覆有根据本文所公开的方法的保护涂层的内表面的金属物体。
示例
四种生物惰性涂层形成在不锈钢和钛合金部件上并且被测试。
例1无定形Si涂层
第一涂层(无定形Si涂层)沉积在不锈钢试样、玻璃料和HPLC柱上以及在钛试样上。沉积是在使用SiH4气体作为分子前体的密闭反应器中通过热化学气相沉积进行的。用于沉积的温度在350℃与450℃之间,在反应器中的SiH4的分压在干燥的氮气中在50-1000毫巴之间。两种沉积被相继进行,以实现在试样上550纳米以及在HPLC柱的内部中100纳米的涂层厚度。通过使用光谱反射率来测量试样上的涂层厚度,并且由X-射线光电子能谱验证。相比于在具有已知的a-Si厚度的平坦表面上的相对强度,在柱内部上的涂层厚度由来自能量色散X-射线能谱的Fe K系列和Si K系列线的相对强度估计。以单独运行所沉积的在钛试样上的涂层的厚度为200纳米。
通过将部件浸泡在0.1%甲酸中达一定的天数并且经使用电感耦合等离子体-质谱测量释放到溶液中的金属离子来评价用于提供生物惰性的涂层的有效性。与类似的未涂覆部件相比,涂覆的不锈钢试样及涂覆的不锈钢玻璃料都提供大于10倍的金属离子浓度的降低。
图2示出了在不锈钢上的a-Si涂层的X-射线光电子能谱组成深度分布。
例2聚合硅氧烷涂层
第二涂层(聚合硅氧烷涂层)在350℃与450℃之间的温度下通过使用化学气相沉积而得以沉积。100纳米至300纳米的涂层厚度被实现在不锈钢试样、不锈钢玻璃料上以及在HPLC柱的内表面上。所有部件表现出大于10倍的浸泡在0.1%甲酸中时释放到溶液中的金属离子浓度的降低。此外,硅氧烷涂覆的HPLC柱装有由两个硅氧烷涂覆的玻璃料保持就位的硅珠。由于在细胞色素C、已知对金属离子敏感的酶的液相色谱分离中的不锈钢玻璃料,此柱对不锈钢柱显示了优良的性能。
例3双层涂层(Si/硅氧烷)
第三涂层是双层,包括直接在不锈钢上的200纳米的a-Si,由该a-Si上的150纳米的硅氧烷涂层覆盖。此涂层通过上述化学气相沉积过程沉积在不锈钢试样上。这些试样显示了在浸泡在0.1%甲酸中之后的10倍的金属离子浓度的降低。类似的双层还沉积在HPLC柱的内表面上,并且与不锈钢柱相比显示了细胞色素C的优良的液相色谱分离。
图3示出了与从未涂覆的不锈钢浸出的离子相比的对从涂覆有a-Si、硅氧烷以及Si/硅氧烷双层的2x3厘米不锈钢试样浸入到溶液中的离子进行对比。试样在50℃下浸泡在0.1%甲酸中达四天。由电感耦合等离子体质谱测定溶液中的金属离子浓度。
例4双层涂层(Al 2 O 3 /TiO 2 )
第四涂层是Al2O3在TiO2下方的双层,其通过原子层沉积而得以沉积。此Al2O3/TiO2双层沉积在不锈钢试样及玻璃料上以及在内径为100微米和250微米的100毫米长的毛细管的内外表面上。该涂层在200℃下以100次循环的三甲基铝与水的交替暴露且后跟在200℃下以827次循环的四(二甲基氨基)钛(IV)和水的交替暴露而得以沉积。这些层的最终厚度为约7纳米的Al2O3和40纳米的TiO2。
通过引用的方式结合
在本公开中已经对其他文献比如专利、专利申请、专利出版物、期刊、书籍、论文、网站内容进行了参考及引用。所有这些文献在此通过引用将其全部内容并入本文用于所有的目的。据说是由本文所参考引用的但是与现有的定义、声明或本文中明确阐述的其他公开材料相冲突的任何材料或其任何部分只合并到没有冲突产生在所合并的材料与本公开的材料之间的程度。在发生冲突的情况下,冲突将有利于本发明作为首选的披露而得以解决。
等同物
本文所公开的代表性示例旨在帮助说明本发明,且并不旨在、也不应被解释为限制本发明的范围。实际上,对于本领域技术人员来说,除了本文所示及所述的那些,从本文件的全部内容(包括遵循的示例及本文所引用的对科学和专利文献的参考)中,本发明及其许多进一步的实施例的各种修改将变得显而易见。下列示例包含重要的附加信息、例证以及指导,它们可以在其各种实施例及其等同物中适于本发明的实践。
Claims (10)
1.一种金属部件,其具有含有连续覆盖有具有基本均匀厚度的保护涂层的内表面的管腔、通道或空腔,其中,所述保护涂层通过气相过程形成,包括:
提供在所述气相中的一种或多种分子前体;
将所述管腔、通道或空腔的内表面暴露至在所述气相中的一种或多种分子前体;
允许所述一种或多种分子前体在所暴露的内表面或其附近反应、分解或以其他方式变化并且随后在其上沉积;
采用惰性气体冲洗,从而除去未反应的一种或多种分子前体和反应副产物,如果有的话;以及
根据需要任选地重复上述步骤中的一个或多个,以达到期望的膜厚度和/或组成。
2.根据权利要求1所述的金属部件,其中,所述管腔、通道或空腔的特征在于小于约10毫米的至少一个尺寸和长于约20毫米的一个尺寸。
3.根据权利要求1-2中任一项所述的金属部件,其是色谱柱,特征在于小于约10毫米的内径和大于约20毫米的长度,其中,所述保护涂层具有约10纳米至约5微米的基本均匀的厚度,或者是其微流体装置或部件,具有小于约1毫米的至少一个内部尺寸。
4.根据权利要求1-3中任一项所述的金属部件,其中,所述保护涂层包含选自Si系、Ti系、Zr系或Al系无机化合物的材料。
5.根据权利要求1-4中任一项所述的金属部件,其中,所述保护涂层包括选自SiO2、SiC、Si3N4、SiOxCy(其中2x+4y=4)、SiOmNn(其中2m+3n=4)、SiCxHy(其中4x+y=4)、TiO2、ZrO2、Al2O3以及它们的混合物。
6.根据权利要求1-5中任一项所述的金属部件,其中,所述保护涂层包括其中每层都包括不同保护材料的两层或更多层,或者其中,所述金属部件由不锈钢、钛或钛合金制成。
7.一种用于涂覆具有管腔、通道或空腔的金属物体的内表面的方法,包括通过气相过程形成具有基本均匀厚度的连续保护涂层。
8.根据权利要求7所述的方法,其中,所述气相过程包括化学气相沉积或原子层沉积。
9.根据权利要求7或权利要求8所述的方法,其是色谱柱,特征在于小于约10毫米的内径和大于约20毫米的长度,或者是其微流体装置或部件,具有小于约1毫米的至少一个内部尺寸。
10.根据权利要求7-9中任一项所述的方法,其中,所述保护涂层具有约10纳米至约5微米的基本均匀的厚度。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/946,942 US20150024152A1 (en) | 2013-07-19 | 2013-07-19 | Metal components with inert vapor phase coating on internal surfaces |
US13/946,942 | 2013-07-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104294236A true CN104294236A (zh) | 2015-01-21 |
Family
ID=50976467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410275925.7A Pending CN104294236A (zh) | 2013-07-19 | 2014-06-19 | 在内表面上具有惰性气相涂层的金属部件 |
Country Status (5)
Country | Link |
---|---|
US (11) | US20150024152A1 (zh) |
EP (1) | EP2826884A1 (zh) |
JP (1) | JP6568340B2 (zh) |
CN (1) | CN104294236A (zh) |
AU (1) | AU2014203186B2 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105154853A (zh) * | 2015-09-11 | 2015-12-16 | 兰州空间技术物理研究所 | 一种在管状基底内表面沉积薄膜的方法 |
CN107043923A (zh) * | 2015-12-15 | 2017-08-15 | 西尔科特克公司 | 含氮化硅的热化学气相沉积涂层 |
CN108496072A (zh) * | 2016-04-22 | 2018-09-04 | 惠普发展公司,有限责任合伙企业 | 具有钝化膜的sers传感器设备 |
CN111771123A (zh) * | 2018-02-23 | 2020-10-13 | 西尔科特克公司 | 液相色谱技术 |
US11131020B2 (en) | 2015-09-01 | 2021-09-28 | Silcotek Corp. | Liquid chromatography system and component |
CN113507972A (zh) * | 2019-02-27 | 2021-10-15 | 沃特世科技公司 | 用于色谱效应的经涂覆的流动路径部件 |
US11618970B2 (en) | 2019-06-14 | 2023-04-04 | Silcotek Corp. | Nano-wire growth |
US12036765B2 (en) | 2017-09-13 | 2024-07-16 | Silcotek Corp | Corrosion-resistant coated article and thermal chemical vapor deposition coating process |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016114850A1 (en) | 2015-01-14 | 2016-07-21 | Agilent Technologies, Inc. | Components with an atomic layer deposition coating and methods of producing the same |
US20160046408A1 (en) * | 2015-10-27 | 2016-02-18 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Internally coated vessel for housing a metal halide |
EP4325219A3 (en) * | 2016-11-11 | 2024-05-08 | Cytiva Sweden AB | Chromatography column |
US10487403B2 (en) * | 2016-12-13 | 2019-11-26 | Silcotek Corp | Fluoro-containing thermal chemical vapor deposition process and article |
US11529569B2 (en) * | 2017-05-16 | 2022-12-20 | Daicel Corporation | Column tube for chromatography, and column for chromatography employing same |
US11709155B2 (en) | 2017-09-18 | 2023-07-25 | Waters Technologies Corporation | Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes |
US20210164094A1 (en) * | 2017-09-18 | 2021-06-03 | Waters Technologies Corporation | Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes |
US11709156B2 (en) | 2017-09-18 | 2023-07-25 | Waters Technologies Corporation | Use of vapor deposition coated flow paths for improved analytical analysis |
US20210223217A1 (en) * | 2017-09-18 | 2021-07-22 | Waters Technologies Corporation | Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes |
EP3828537A4 (en) | 2018-07-23 | 2022-04-27 | GL Sciences Incorporated | COLUMN MATERIAL AND SEPARATION COLUMN, AND ASSOCIATED METHOD OF MANUFACTURING |
CN114945824A (zh) | 2020-01-17 | 2022-08-26 | 沃特世科技公司 | 提高lc/ms分析灵敏度的方法 |
US11918936B2 (en) * | 2020-01-17 | 2024-03-05 | Waters Technologies Corporation | Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding |
US11740211B2 (en) | 2020-01-31 | 2023-08-29 | Waters Technologies Corporation | LC/MS adduct mitigation by vapor deposition coated surfaces |
JP7534254B2 (ja) | 2021-03-26 | 2024-08-14 | 京セラ株式会社 | クロマトグラフィー管およびその製造方法ならびに高速液体クロマトグラフ |
EP4376999A1 (en) | 2021-07-30 | 2024-06-05 | Restek Corporation | Silica-passivated article and method for forming |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1082623A (zh) * | 1991-06-03 | 1994-02-23 | 乔治·克劳德工艺研究开发有限公司 | 钝化金属表面提高气态氢化物稳定性的方法 |
CN1321752C (zh) * | 2000-01-28 | 2007-06-20 | Sk株式会社 | 在烃裂解反应器的反应管内壁形成涂层的方法 |
CN101750449A (zh) * | 2008-12-18 | 2010-06-23 | 中国科学院生态环境研究中心 | 脂蛋白毛细管涂层及其制备方法 |
Family Cites Families (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2523257C2 (de) * | 1975-05-26 | 1982-10-28 | Siemens AG, 1000 Berlin und 8000 München | Verfahren zur Beschichtung von Innenflächen bei rohrförmigen Hohlkörpern mit Tantal durch chemische Dampfphasenabscheidung |
DE2829568C2 (de) * | 1978-07-05 | 1982-12-02 | Fa. Hermann C. Starck Berlin, 1000 Berlin | Verfahren zur Abscheidung von gleichmäßigen, festhaftenden Schichten hochschmelzender Metalle auf induktiv erhitzten Metallrohr-Innenflächen durch Gasphasenreduktion sowie Vorrichtung zur Durchführung des Verfahrens |
JPS57161648A (en) * | 1981-03-31 | 1982-10-05 | Shimadzu Corp | Column of chromatography |
EP0068343B1 (de) | 1981-06-19 | 1986-10-01 | Ceskoslovenska akademie ved | Säule für Flüssigchromatographie |
US4376641A (en) | 1981-12-14 | 1983-03-15 | The Dow Chemical Company | Coated capillary chromatographic column |
TW203633B (zh) | 1991-06-03 | 1993-04-11 | L Air Liquide Sa Pour L Expl Des Proce | |
EP0624795B1 (en) | 1993-05-14 | 1999-04-07 | Upchurch Scientific, Inc. | Column for liquid chromatography |
US5651885A (en) | 1994-04-15 | 1997-07-29 | Schick; Hans G. | Column for liquid chromatography |
US5482628A (en) | 1994-04-15 | 1996-01-09 | Upchurch Scientific, Inc. | Column for liquid chromatography |
US5871158A (en) * | 1997-01-27 | 1999-02-16 | The University Of Utah Research Foundation | Methods for preparing devices having metallic hollow microchannels on planar substrate surfaces |
TW520440B (en) * | 1997-03-28 | 2003-02-11 | Shiseido Co Ltd | A liquid chromatography apparatus and a packing material for the chromatographic column |
FI104383B (fi) * | 1997-12-09 | 2000-01-14 | Fortum Oil & Gas Oy | Menetelmä laitteistojen sisäpintojen päällystämiseksi |
EP1043755B1 (en) | 1997-12-24 | 2004-08-04 | Hamamatsu Photonics K.K. | Deuterium gas discharge tube |
US6511760B1 (en) | 1998-02-27 | 2003-01-28 | Restek Corporation | Method of passivating a gas vessel or component of a gas transfer system using a silicon overlay coating |
JP2000173548A (ja) | 1998-12-09 | 2000-06-23 | Hamamatsu Photonics Kk | ガス放電管 |
US6444326B1 (en) | 1999-03-05 | 2002-09-03 | Restek Corporation | Surface modification of solid supports through the thermal decomposition and functionalization of silanes |
US6225211B1 (en) | 1999-04-29 | 2001-05-01 | Industrial Technology Research Institute | Method for making stacked and borderless via structures on semiconductor substrates for integrated circuits |
US20020123606A1 (en) * | 1999-08-26 | 2002-09-05 | Kurian Joseph Varapadavil | Poly(trimethylene terephthalate) with low level of DI(1,3-propylene glycol) |
US6225221B1 (en) | 2000-02-10 | 2001-05-01 | Chartered Semiconductor Manufacturing Ltd. | Method to deposit a copper seed layer for dual damascene interconnects |
DE10008906A1 (de) * | 2000-02-25 | 2001-08-30 | Bayer Ag | Testsystem auf Basis von Mikrokapillaren |
KR100730554B1 (ko) | 2000-03-06 | 2007-06-22 | 후마킬라 가부시키가이샤 | 팬 타입 해충 방제 장치 |
JP2002164190A (ja) | 2000-11-22 | 2002-06-07 | Matsushita Electric Ind Co Ltd | 陰極放電管の駆動装置及び方法 |
JP2002228668A (ja) | 2001-01-31 | 2002-08-14 | Shimadzu Corp | オートサンプラ |
JP4179809B2 (ja) | 2001-06-06 | 2008-11-12 | 千寿製薬株式会社 | L−アスコルビン酸−2−O−マレイン酸−α−トコフェロールジエステル・1−プロパノール付加体及びその製造法 |
US6729352B2 (en) | 2001-06-07 | 2004-05-04 | Nanostream, Inc. | Microfluidic synthesis devices and methods |
US6880576B2 (en) | 2001-06-07 | 2005-04-19 | Nanostream, Inc. | Microfluidic devices for methods development |
AUPS001602A0 (en) * | 2002-01-17 | 2002-02-07 | Sge International Pty Ltd | Chromatography column |
JP2004037266A (ja) * | 2002-07-03 | 2004-02-05 | Chromato Science Kk | 分析用カラムとその製造方法 |
US6783673B2 (en) * | 2002-08-23 | 2004-08-31 | Biotage, Inc. | Composite chromatography column |
JP4358492B2 (ja) * | 2002-09-25 | 2009-11-04 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | 熱化学気相成長法によるシリコン窒化物膜またはシリコンオキシ窒化物膜の製造方法 |
US20040066703A1 (en) | 2002-10-03 | 2004-04-08 | Protasis Corporation | Fluid-handling apparatus and methods |
US7070833B2 (en) | 2003-03-05 | 2006-07-04 | Restek Corporation | Method for chemical vapor deposition of silicon on to substrates for use in corrosive and vacuum environments |
US6716693B1 (en) | 2003-03-27 | 2004-04-06 | Chartered Semiconductor Manufacturing Ltd. | Method of forming a surface coating layer within an opening within a body by atomic layer deposition |
WO2005032688A1 (en) | 2003-09-30 | 2005-04-14 | Chromba, Inc. | Multicapillary column for chromatography and sample preparation |
WO2005052544A2 (en) | 2003-11-20 | 2005-06-09 | Sigma-Aldrich Co. | Polysilazane thermosetting polymers for use in chromatographic systems and applications |
US8394338B2 (en) | 2004-04-26 | 2013-03-12 | Roche Diagnostics Operations, Inc. | Process for hydrophilizing surfaces of fluidic components and systems |
US7879396B2 (en) * | 2004-06-04 | 2011-02-01 | Applied Microstructures, Inc. | High aspect ratio performance coatings for biological microfluidics |
US20060251795A1 (en) | 2005-05-05 | 2006-11-09 | Boris Kobrin | Controlled vapor deposition of biocompatible coatings for medical devices |
US20060171654A1 (en) | 2004-06-15 | 2006-08-03 | Hawkins Aaron R | Integrated planar microfluidic bioanalytical systems |
US7300684B2 (en) | 2004-07-15 | 2007-11-27 | Sub-One Technology, Inc. | Method and system for coating internal surfaces of prefabricated process piping in the field |
US7629270B2 (en) | 2004-08-27 | 2009-12-08 | Asm America, Inc. | Remote plasma activated nitridation |
US7220671B2 (en) | 2005-03-31 | 2007-05-22 | Intel Corporation | Organometallic precursors for the chemical phase deposition of metal films in interconnect applications |
US7473637B2 (en) * | 2005-07-20 | 2009-01-06 | Micron Technology, Inc. | ALD formed titanium nitride films |
US20070148326A1 (en) | 2005-12-28 | 2007-06-28 | Hastings Mitchell R | Syringe |
CN102699516B (zh) | 2007-02-28 | 2015-03-18 | 沃特世科技公司 | 具有扩散结合的钛构件的液相色谱装置 |
KR20100019414A (ko) | 2007-03-06 | 2010-02-18 | 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. | 원자층 증착을 위한 기술 |
US7733552B2 (en) | 2007-03-21 | 2010-06-08 | Qualcomm Mems Technologies, Inc | MEMS cavity-coating layers and methods |
WO2010009311A1 (en) | 2008-07-18 | 2010-01-21 | Waters Technologies Corporation | Devices having an inert surface and methods of making same |
JP5647126B2 (ja) * | 2008-09-22 | 2014-12-24 | ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company | 光分解化学的気相堆積法および/または熱化学的気相堆積法を使用して容器の内部を被覆するシステム、装置および方法 |
US9151734B2 (en) | 2009-03-05 | 2015-10-06 | Idex Health & Science Llc | Connection assembly for ultra high pressure liquid chromatography |
DE102009002129A1 (de) * | 2009-04-02 | 2010-10-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Hartstoffbeschichtete Körper und Verfahren zur Herstellung hartstoffbeschichteter Körper |
US7985188B2 (en) * | 2009-05-13 | 2011-07-26 | Cv Holdings Llc | Vessel, coating, inspection and processing apparatus |
GB2471271A (en) * | 2009-06-19 | 2010-12-29 | Univ Dublin City | Method of coating the channels of a microfluidic device |
WO2011011207A2 (en) | 2009-07-24 | 2011-01-27 | Boston Scientific Scimed, Inc. | Medical devices having an inorganic coating layer formed by atomic layer deposition |
US8178443B2 (en) | 2009-12-04 | 2012-05-15 | Novellus Systems, Inc. | Hardmask materials |
JP5656010B2 (ja) * | 2009-12-04 | 2015-01-21 | ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated | ハードマスク膜を形成する方法およびハードマスク膜を成膜する装置 |
WO2011119922A1 (en) | 2010-03-26 | 2011-09-29 | Waters Technologies Corporation | Chromatography apparatus having diffusion-bonded and surface-modified components |
CN103118852B (zh) | 2010-07-16 | 2016-12-21 | Sio2医药产品公司 | 注射模制工艺及用其生产的产品 |
US8569070B2 (en) | 2010-07-16 | 2013-10-29 | Idex Health & Science Llc | Connection assembly for ultra high pressure liquid chromatography |
US8329038B2 (en) * | 2010-11-16 | 2012-12-11 | Nobull Innovation Llc | Methods and apparatus for making a chromatography column |
US9272095B2 (en) * | 2011-04-01 | 2016-03-01 | Sio2 Medical Products, Inc. | Vessels, contact surfaces, and coating and inspection apparatus and methods |
US20140273525A1 (en) | 2013-03-13 | 2014-09-18 | Intermolecular, Inc. | Atomic Layer Deposition of Reduced-Leakage Post-Transition Metal Oxide Films |
JP6218921B2 (ja) | 2013-04-10 | 2017-10-25 | ピコサン オーワイPicosun Oy | Aldコーティングによるターゲットポンプ内部の保護 |
US10767259B2 (en) | 2013-07-19 | 2020-09-08 | Agilent Technologies, Inc. | Components with an atomic layer deposition coating and methods of producing the same |
-
2013
- 2013-07-19 US US13/946,942 patent/US20150024152A1/en not_active Abandoned
-
2014
- 2014-06-04 JP JP2014115869A patent/JP6568340B2/ja active Active
- 2014-06-12 AU AU2014203186A patent/AU2014203186B2/en active Active
- 2014-06-13 EP EP14172278.5A patent/EP2826884A1/en not_active Withdrawn
- 2014-06-19 CN CN201410275925.7A patent/CN104294236A/zh active Pending
-
2019
- 2019-06-27 US US16/455,354 patent/US10895009B2/en active Active
-
2021
- 2021-01-13 US US17/125,371 patent/US20210189554A1/en active Pending
-
2023
- 2023-03-22 US US18/125,052 patent/US20230220542A1/en active Pending
-
2024
- 2024-04-29 US US18/649,035 patent/US20240279794A1/en active Pending
- 2024-04-29 US US18/649,004 patent/US20240279793A1/en active Pending
- 2024-04-29 US US18/649,231 patent/US20240279797A1/en active Pending
- 2024-04-29 US US18/649,171 patent/US20240279795A1/en active Pending
- 2024-04-29 US US18/649,199 patent/US20240279796A1/en active Pending
- 2024-04-29 US US18/649,268 patent/US20240279798A1/en active Pending
- 2024-04-29 US US18/649,302 patent/US20240279799A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1082623A (zh) * | 1991-06-03 | 1994-02-23 | 乔治·克劳德工艺研究开发有限公司 | 钝化金属表面提高气态氢化物稳定性的方法 |
CN1321752C (zh) * | 2000-01-28 | 2007-06-20 | Sk株式会社 | 在烃裂解反应器的反应管内壁形成涂层的方法 |
CN101750449A (zh) * | 2008-12-18 | 2010-06-23 | 中国科学院生态环境研究中心 | 脂蛋白毛细管涂层及其制备方法 |
Non-Patent Citations (1)
Title |
---|
李烃等: "十八烷基改性纳米二氧化硅涂层毛细管柱在毛细管电色谱中的应用", 《分析科学学报》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11131020B2 (en) | 2015-09-01 | 2021-09-28 | Silcotek Corp. | Liquid chromatography system and component |
US12037685B2 (en) | 2015-09-01 | 2024-07-16 | Silcotek Corp | Liquid chromatography system and component |
CN105154853A (zh) * | 2015-09-11 | 2015-12-16 | 兰州空间技术物理研究所 | 一种在管状基底内表面沉积薄膜的方法 |
CN107043923A (zh) * | 2015-12-15 | 2017-08-15 | 西尔科特克公司 | 含氮化硅的热化学气相沉积涂层 |
CN108496072A (zh) * | 2016-04-22 | 2018-09-04 | 惠普发展公司,有限责任合伙企业 | 具有钝化膜的sers传感器设备 |
US10871449B2 (en) | 2016-04-22 | 2020-12-22 | Hewlett-Packard Development Company, L.P. | SERS sensor apparatus with passivation film |
US12036765B2 (en) | 2017-09-13 | 2024-07-16 | Silcotek Corp | Corrosion-resistant coated article and thermal chemical vapor deposition coating process |
CN111771123A (zh) * | 2018-02-23 | 2020-10-13 | 西尔科特克公司 | 液相色谱技术 |
CN113507972A (zh) * | 2019-02-27 | 2021-10-15 | 沃特世科技公司 | 用于色谱效应的经涂覆的流动路径部件 |
CN113507972B (zh) * | 2019-02-27 | 2023-10-20 | 沃特世科技公司 | 用于色谱效应的经涂覆的流动路径部件 |
US11618970B2 (en) | 2019-06-14 | 2023-04-04 | Silcotek Corp. | Nano-wire growth |
Also Published As
Publication number | Publication date |
---|---|
US20240279795A1 (en) | 2024-08-22 |
US20240279796A1 (en) | 2024-08-22 |
JP2015021965A (ja) | 2015-02-02 |
US20190390329A1 (en) | 2019-12-26 |
US20210189554A1 (en) | 2021-06-24 |
AU2014203186B2 (en) | 2017-12-21 |
US20240279798A1 (en) | 2024-08-22 |
US10895009B2 (en) | 2021-01-19 |
EP2826884A1 (en) | 2015-01-21 |
US20230220542A1 (en) | 2023-07-13 |
US20240279797A1 (en) | 2024-08-22 |
JP6568340B2 (ja) | 2019-08-28 |
US20240279793A1 (en) | 2024-08-22 |
AU2014203186A1 (en) | 2015-02-05 |
US20150024152A1 (en) | 2015-01-22 |
US20240279794A1 (en) | 2024-08-22 |
US20240279799A1 (en) | 2024-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104294236A (zh) | 在内表面上具有惰性气相涂层的金属部件 | |
US10767259B2 (en) | Components with an atomic layer deposition coating and methods of producing the same | |
CN107109644B (zh) | 具有原子层沉积涂层的部件及其制备方法 | |
US8293193B2 (en) | Microfluidic component with a channel filled with nanotubes and method for its production | |
US20200215457A1 (en) | Use of vapor deposition coated flow paths for improved analytical analysis | |
Beal et al. | A rapid, inexpensive surface treatment for enhanced functionality of polydimethylsiloxane microfluidic channels | |
US20230393104A1 (en) | Use of vapor deposition coated flow paths for improved analytical analysis | |
Patel et al. | Flow-through atmospheric pressure-atomic layer deposition reactor for thin-film deposition in capillary columns | |
US20150343326A1 (en) | Thin layer chromatography plates | |
US20210164094A1 (en) | Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes | |
US9643120B2 (en) | Gas chromatography column comprising a porous stationary phase in keeping therewith | |
US20240287673A1 (en) | Metal components with inert vapor phase coating on internal surfaces | |
US20210223148A1 (en) | Methods to increase sensitivity of lc/ms analysis | |
Moeini et al. | Controlling the surface silanol density in capillary columns and planar silicon via the self-limiting, gas-phase deposition of tris (dimethylamino) methylsilane, and quantification of surface silanols after silanization by low energy ion scattering | |
Kamei et al. | Rational Strategy for Space-Confined Atomic Layer Deposition | |
WO2023009395A1 (en) | Silica-passivated article and method for forming | |
Moeini | Exploring Surface Silanization and Characterization of Thin Films: From Surface Passivation to Microstructural Characterization of Porous Silicon/Silica, and Exploratory Data Analysis of X-Ray Photoelectron Spectroscopy Images | |
Kanyal | Fabrication, Characterization, Optimization and Application Development of Novel Thin-layer Chromatography Plates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150121 |
|
RJ01 | Rejection of invention patent application after publication |