CN104294233A - 经表面处理的形状记忆材料及其制造方法 - Google Patents

经表面处理的形状记忆材料及其制造方法 Download PDF

Info

Publication number
CN104294233A
CN104294233A CN201410366096.3A CN201410366096A CN104294233A CN 104294233 A CN104294233 A CN 104294233A CN 201410366096 A CN201410366096 A CN 201410366096A CN 104294233 A CN104294233 A CN 104294233A
Authority
CN
China
Prior art keywords
alloy
deposition
oxygen
plasma
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410366096.3A
Other languages
English (en)
Inventor
张文智
杨伟国
吕维加
潘伟业
朱剑豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
City University of Hong Kong CityU
Versitech Ltd
Original Assignee
City University of Hong Kong CityU
Versitech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by City University of Hong Kong CityU, Versitech Ltd filed Critical City University of Hong Kong CityU
Publication of CN104294233A publication Critical patent/CN104294233A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/16Materials with shape-memory or superelastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials For Medical Uses (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Chemically Coating (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本申请涉及经表面处理的形状记忆材料及其制造方法。本发明提供一种例如由NiTi合金制造表面处理过的形状记忆材料的方法,该方法使用等离子浸没离子注入和沉积法以及相关的基于离子束和等离子的技术来改变那些主要用于生物医学应用的材料的表面特性。所述表面用氮、氧和碳处理,但在注入其他成分例如硅后变成生物惰性。

Description

经表面处理的形状记忆材料及其制造方法
本申请是申请日为2006年1月11日,申请号为200680002225.4,国际申请号为PCT/CN2006/000038,发明名称为“经表面处理的形状记忆材料及其制造方法”的发明专利申请的分案申请。
本申请要求在2005年1月13日递交的美国临时申请第60/643,744号的优先权,该临时申请的内容通过引用合并到此文中。
背景技术
形状记忆材料例如镍钛(NiTi)合金由于其具有其他普通整形外科用材料如不锈钢和钛合金所不具备的独特的形状记忆效应(SME)和超弹性(SE),所以是整形外科中外科植入物的有前景的材料。相比较于不锈钢和钛合金,它们的机械性能也更接近于骨皮质的机械性能。这些材料显示出比用于骨外伤固定的CoCrMo合金更高的耐磨性。也有人研究了这些材料的其他几种良好的性质,且也有报导过其良好的生物相容性。但是,也指出了一些负面效应。例如,Berger-Gorbet等人已发现,相比较于不锈钢和钛合金,NiTi合金不利于骨生成过程和骨连接素合成活动1。Jia等人在他们的研究中发现NiTi合金引起的细胞死亡率是很高的2
人们认为这些问题是由这些材料的低耐腐蚀性引起的,该低耐腐蚀性可导致它们的细胞毒性增加。很有可能是一些从基底释放出的有毒成分而非细胞凋亡导致了细胞死亡3。Shih等人报导称,从NiTi得到的上清液和腐蚀性产物可导致平滑肌细胞的死亡4(特别是当释放出的镍的量高于9ppm时)。一些其他研究也报导称,从该合金沥滤的镍离子5,6在对镍过敏的患者体内引起过敏反应7-10。然而这些材料的微结构和表面形态学的均一性可改变NiTi合金的抗腐性能,无疑地,所述材料在其被广泛地临床应用前,特别是在认为有腐蚀存在处作为具有联结作用的整形外科植入物使用前,必须增强所述材料的耐腐蚀性和抗磨损性。
碳化钛和氮化钛具有极好的机械性能和化学性质,例如,良好的耐磨性,对许多化学物质的惰性以及突出的硬度[11-16]。已知二氧化钛能与活组织良好地相容[17-20]。他们对于许多化学反应也是惰性的。在表面涂层工业中,这些成分通过各种方法[21-25]被应用于改善基底的机械性能和腐蚀性能已有一段时间了。
发明概述
本发明提供改变镍钛合金部分表面组成以增加其生物相容性的方法,包括通过等离子浸没离子注入法或沉积法,或离子束浸没法或注入法,在镍钛合金部分的表面注入氮、氧或碳。所述表面也可通过等离子浸没离子注入和沉积或相关的基于离子束和等离子的技术来改变,例如等离子增强的气相沉积法(PECVD)、物理气相沉积法(VPD)和化学气相沉积法(CVD)。
本发明还提供由前述材料制造的整形外科植入物、血管植入物和食管植入物。
附图简述
图1是从氮、乙炔和氧PIII表面处理过的样品以及对照品获得的Ni深度曲线图。
图2包括了在细胞培养两天后,处理的NiTi和未处理的NiTi(对照)的显微照片,显示有表达EGFP的鼠成骨细胞。(A)表面未被处理的NiTi合金,(B)经过氮PIII注入的NiTi合金,(C)经过乙炔PIII注入的NiTi合金,和(D)经过氧PIII注入的NiTi合金。
本发明优选实施方案的详细描述
形状记忆材料例如镍钛合金(NiTi)由于其独特的性质,故在生物医学应用中是有用的材料。但是,对于其在人体内的长期使用来说,因为可能从基底释放有害离子到活组织中,所以所述材料的耐腐蚀性的衰退成为了关键的问题。所以,我们建议使用等离子浸没离子注入和沉积法以及相关的基于离子束和等离子的技术将一些其他成分,例如C2H2、N2和O2,注入NiTi基底以改变所述合金的耐腐蚀性和耐磨性。我们已经成功地证实,镍钛形状记忆合金的耐腐蚀性和耐磨性可通过将氮、碳和氧注入到该基底表面而得到增强。另外,由于使用等离子浸没离子注入法和沉积法,其生物学性质如骨传导性和亲水性也可得到减小或增强。
根据一个优选实施方案,本发明提供改变镍钛合金部分表面组成以增加其生物相容性的方法,包括通过等离子浸没离子注入法或沉积法,或离子束浸没法或注入法,将氮、氧或碳注入到所述镍钛合金部分的表面上。所述镍钛合金优选为形状记忆合金,且其中含约20-80%的镍和80-20%的钛。所述成分的表面注入增强了所述合金的机械性能如亲水性、耐腐蚀性和耐磨性。所述镍钛合金部分可被减小或增强。在本发明的实践中,所述等离子浸没离子注入和沉积法或相关的基于离子束和等离子的技术例如等离子增强的气相沉积法(PECVD)、物理气相沉积法(VPD)和化学气相沉积法(CVD)可减少、终止或防止有害离子从所述形状记忆材料的基底释放出来。所述材料可为用于整形外科、泌尿科、血管外科、肝胆外科或食管外科的生物材料。这些用于所述材料表面处理的各类方法的能量为:沉积法为1eV到1keV,注入和沉积法为500eV到100keV,束流离子注入法为500eV到10MeV。优选地,所述材料表面处理的能量为:沉积法为1eV到500eV,注入和沉积法为500eV到1000eV,束流离子注入法为1000到1000MeV。使用直流电,参数为“无限”脉冲持续时间的0Hz重复到5000Hz。所述注入的材料为气体、液体或固体形式的氮源、碳源或氧源。所述氮源为氮气。所述碳源为乙炔或其衍生物。所述氧源为氧气。
所述方法可用于制造整形外科植入物、血管植入物或食管植入物。
为了促进理解所述等离子浸没离子注入和沉积法或相关的基于离子束和等离子的技术如等离子增强的气相沉积法(PECVD)、物理气相沉积法(VPD)和化学气相沉积法(CVD)在形状记忆材料例如Ti-50.8%Ni合金的表面的作用原理,将描述本发明的具体的优选实施方案。
图1显示了经PIII表面处理的样品的Ni浓度曲线图和未经PIII表面处理的样品的Ni浓度曲线图。在氮等离子注入样品、乙炔等离子注入样品和氧等离子注入样品中的注入区域的Ni浓度相比较于未涂布(non-coated)的对照样品低很多。相比较于氧PIII,氮PIII产生了最高的Ni抑制。
乙炔、氮和氧注入的处理方法为,将所述样品磨、抛光成发光表面质地,随后用丙酮和乙醇进行超声波清洗,再在等离子浸没离子注入器中进行沉积或注入。乙炔、氮和氧注入样品的沉积和注入参数如表1所示。图1所示的元素深度曲线是由X射线光电子能谱(XPS)(Physical Electronics PHI 5802,Minnesota,USA)测定的。
表1-等离子浸没离子注入和沉积法处理参数
在五个区域进行纳米压痕试验(MTS Nano Indenter XP,USA)来测定经处理的样品和对照样品的平均硬度和杨氏模量。对照样品的硬度为4.5GPa,杨氏模量为57GPa。
表2列出了用纳米压痕试验测定的未处理的对照样品和处理过的样品表面的硬度(H)和杨氏模量(E)的结果。
表2-对照样品表面和经处理的样品表面的杨氏模量和硬度
所有的表面处理过的样品都具有比对照样品更高的表面硬度和杨氏模量。这意味着所述处理过的表面比在其下面的NiTi基底有更大的机械强度,且可以更有效地经受机械冲击。在所述经处理的表面中,氮注入层具有最大的H和E,接着是乙炔注入层和氧注入层。
表3列出了在电化学试验后从表面处理过和未处理过的样品沥滤出的Ni的量,其数值是由电感耦合等离子体质谱(ICPMS)测定的。基于ASTM G5-94(1999)和G61-86(1998)的电化学试验是使用pH为7.42、温度为3770.5 1C(37.5℃)的标准模拟体液(SBF)通过恒电位仪(VersaStat II EG&G,USA)完成的。所述SBF中的离子浓度如表4所示。以600mV/h的扫描速度使用-400mV到+1600mV的循环电势跨度(cyclic potential spanning)。在所述电化学试验之前,该介质用氮气吹扫1h以清除其中的溶解氧,且氮气吹扫持续贯穿整个测试过程。在腐蚀试验后,对来自各样品的SBF使用电感耦合等离子体质谱(ICPMS)(Perkin Elmer,PE SCIEX ELAN6100,USA)分析Ni和Ti。从所有处理过的样品沥滤出的Ni的量显著减少。其量只是对照样品的约0.03%到0.04%。SBF中的离子浓度如表4所示。
表3-电化学试验后由ICPMS检测的SBF中Ni和Ti离子含量
表4-SBF溶液的离子浓度
图2证实了氮、乙炔和氧等离子注入样品被表达EGFP的成骨细胞很好地耐受。从2天大的小鼠颅盖骨中分离出的成骨细胞,其普遍地表达增强的绿色荧光蛋白(EGFP),该成骨细胞用来在添加有10%(v/v)胎牛血清(Biowest,France)、抗生素(100U/ml的青霉素和100μg/ml的链霉素)和2mM L-谷氨酰胺的Dulbecco改良的Eagle培养基(Dulbecco′s Modified Eagle Medium(DMEM))(Invitrogen)中,于37℃下并在由5%CO2和95%空气组成的环境中培养。样品(厚1mm,直径5mm)用1%(w/v)琼脂糖固定在24孔组织培养板(Falcon)底部。具有5,000个细胞的细胞悬液被接种在未被处理的NiTi样品和所述三种等离子注入的样品(氧、氮和乙炔)的表面。细胞在1ml的培养基中生长且每两天更换一次。在培养的第二天后检查细胞附着和细胞增殖。在培养两天后,细胞开始附着到所有样品上并在其上增殖。我们的结果明确地证实了在所有表面处理过的样品上没有发生直接的细胞毒效应。
通过本发明获得的改良合金可用于各种各样的应用,如用作生物材料和其他这种合金可能显示出优势时的应用,这对本领域普通技术人员来说应是显然的。例如,所述合金可用于制造整形外科植入物包括置换关节,如髋、膝、肩、肘、指,或者所述合金可用于为整形外科目的的棒条体、螺丝、钉和脊椎植入物等等。它们也可被用于制成薄匹配物(thin matches),所述薄匹配物用于制造在泌尿科、心脏外科、脊髓外科、脑脊髓外科、胃肠外科、肝胆外科、血管外科或食管外科中有用的补片(patches)、管状材料(tubing)以及器械。
虽然本发明已在附图及之前描述中详细地说明和描述,但该说明应被认为是举例性的且并非限制性的,理应认为本发明只揭示和描述了优选的实施方案,并且所有在本发明本质范围内的改变和修改都希望得到保护。
引用的文献:
下列文献通过引用合并到此文中:
1.Berger-Gorbet,M.等,″Biocompatibility Testing of NiTi ScrewsUsing Immunohistochemistry on Sections Containing MetallicImplants(使用关于含金属植入物部分的免疫组织化学进行的NiTi螺丝的生物相容性试验),″Journal of Biomedical Materials Research,1996;32(2):243-8.
2.Jia,W.等,″Nickel Release from Orthodontic Arch Wires andCellular Immune Response to Various Nickel Concentrations(正牙线的镊释放和对不同镊浓度的细胞免疫反应),″Journal of BiomedicalMaterials Research,1999;48(4):488-95.
3.Es-Souni M.等,″On the Properties of Two Binary NiTi ShapeMemory Alloys:Effects of Surface Finish on the Corrosion Behavior andIn Vitro biocompatibility(关于二元NiTi形状记忆合金的性质:表面加工对于腐蚀行为和体外生物相容性的影响),″Biomaterials,2002;23(14):2887-2894.
4.Shih,C-C等,″The Cytotoxicity of Corrosion Products of NitinolStent Wire on Cultured Smooth Muscle Cells(镊钛合金展伸线的腐蚀产物对于培养的平滑肌细胞的细胞毒性),″Journal of BiomedicalMaterials Research,2000;52(2):395-403.
5.Kapanen,A.等,″Behavior of Nitinol in Osteoblast-like ROS-17Cell Cultures(造骨细胞样ROS-17细胞培养物中镊钛合金的行为),″Biomaterials,2002;23(3):645-650.
6.Kapanen,A.等,″TGF-[beta]1 Secretion of ROS-17/2.8Cultureson NiTi Implant Material(NiTi植入材料上ROS-17/2.8培养物的TGF-[β]1分泌),″Biomaterials,2002;23(16):3341-3346.
7.Dalmau,L.B.等,″A Study of Nickel Allergy(镊过敏的研究),″Journal of Prosthet.Dent.1984;52:1 16-1 19.
8.Lamster,I.B.等,″Rapid Loss of Alveolar Bone Associated withNonprecious Alloy Crowns in Two Patients with NickelHypersensitivity(两名镊过敏患者的非稀有合金冠相关的牙槽骨快速损失),″Journal of Periodont.1987;58:486-492.
9.Espana,A.等,″Chronic Urticaria After Implantation of 2Nickel-Containing Dental Prostheses in a Nickel-Allergic Patient(镊过敏患者植入2份含镊的牙修补物之后的慢性荨麻疹),″Contact Dermal1989;21:204-206.
10.Sanford,W.E.和Niboer,E.,″Renal Toxicity of Nickel inHumans(镊对人体的肾毒性),″Nriagu JO编辑.Nickel and HumanHealth Current Perspectives,Canada:John Wiley&Sons,Inc.;1992.p123-134.
11.Wu,S.K.等,″A Study of Vacuum Carburization of anEquiatomic TiNi Shape Memory Alloy(等原子TiNi形状记忆合金的真空渗碳的研究),″Scripta Materialia 1997;37:837-842.
12.Huber,P.等,″Formation of TiN,TiC and TiCN by Metal PlasmaImmersion Ion Implantation and Deposition(由金属等离子浸没离子植入和沉积法制成TiN、TiC和TiCN),″Surface and Coatings Technology2003;174-175:1243-1247.
13.Liu,N.等,″Effect of Nano-Micro TiN Addition on theMicrostructure and mechanical properties of TiC Based Cermets(纳米TiN添加对基于TiC的金属陶瓷微结构和机械性质的影响),″Journal of theEuropean Ceramic Society 2002;22:2409-2414.
14.Oliveira,M.M.和Bolton,J.D.,″High-Speed Steels:IncreasingWear Resistance by Adding Ceramic Particles(高速钢:通过添加陶瓷颗粒增加耐磨性),″Journal of Materials Processing Technology 1999;92-93:15-20.
15.Vaz,F.等,″Structural,Optical and mechanical properties ofColoured TiNxOy Thin Films(有色TiNxOy薄膜的结构性质、光学性质和机械性质),″Thin Solid Films 2004;447-448:449-454.
16.Kola,P.V.等,″Magnetron Sputtering of Tin Protective Coatingsfor Medical Applications(医用锡保护涂层的磁控溅射),″Journal ofMaterials Processing Technology 1996;56:422-430.
17.Tan,L.和Crone,W.C.,″Surface Characterization of NiTiModified by Plasma Source Ion Implantation(由等离子源离子注入改良的NiTi的表面特性),″Acta Materialia 2002;50:4449-4460.
18.Mandl,S.等,″Investigation on Plasma Immersion IonImplantation Treated Medical Implants(经等离子浸没离子注入处理的医用植入物的研究),″Biomolecular Engineering 2002;19:129-132.
19.Nie,X.等,″Deposition of Layered BioceramicHydroxyapatite/TiO2Coatings on Titanium Alloys Using a HybridTechnique of Micro-Arc Oxidation and Electrophoresis(用微弧氧化和电泳混合工艺将分层的生物陶瓷羟磷灰石/TiO2涂层沉积在钛合金上),″Surface and Coatings Technology 2000;125:407-414.
20.Lackner,J.M.等,″Pulsed Laser Deposition of Titanium OxideCoatings at Room Temperature-Structural,Mechanical and TribologicalProperties(室温下二氧化钛涂层的脉冲激光沉积——结构、机械和摩擦性质),″Surface and Coatings Technology 2004;180-181:585-590.
21.Li,M.C.等,″Corrosion Behavior of TiN Coated Type 316Stainless Steel in Simulated PEMFC Environments(TiN涂布的316型不锈钢在模拟PEMFC环境下的腐蚀行为),″Corrosion Science 2004;46:1369-1380.
22.Wan,GJ.,Huang等,″TiN and Ti-O/TiN Films Fabricated byPIII-D for Enhancement of Corrosion and Wear Resistance ofTi-6Al-4V(由PIII-D制成的增强Ti-6Al-4V耐腐蚀性和耐磨性的TiN和Ti-O/TiN膜),″Surface and Coatings Technology 2004,In Press.
23.Pfohl,C等,″Evaluation of the Corrosion Behaviour ofWear-Resistant PACVD Coatings(耐磨的PACVD涂层的腐蚀行为评价),″Surface and Coatings Technology 1999;1 12:1 14-1 17.
24.Maiya,P.S.等,″Failure and Corrosion Resistance of TiN andTiC Coatings Deposited on Graphite by Chemical Vapor Deposition(通过化学气相沉积法沉积在石墨上的TiN和TiC涂层的抗失效性和抗腐蚀性),″Surface and Coatings Technology 1998;102:218-222.
25.Leng,Y.X.等,″Structure and Properties of Biomedical TiO2Films Aynthesized by Dual Plasma Deposition(通过双等离子沉积合成的生物医学TiO2膜的结构和性质),″Surface and Coatings Technology2002;156:295-300.

Claims (16)

1.一种改变镍钛合金部分表面组成以增加生物相容性的方法,该方法包括通过等离子浸没离子注入和沉积在所述镍钛合金部分的表面上注入氮或氧,其中对于等离子浸没离子注入和沉积,该材料的表面处理所用的入射物的能量为500eV至100keV。
2.权利要求1的方法,其中所述镍钛合金是形状记忆合金,且含有20%至80%的镍和80%至20%的钛。
3.权利要求1的方法,其中表面注入元素增强所述合金的机械性能。
4.权利要求3的方法,其中所述表面机械性能包括亲水性、耐腐蚀性和耐磨性。
5.权利要求2的方法,其中所述镍钛合金的生物活性被减小或增强。
6.权利要求2的方法,其中所述等离子浸没离子注入和沉积或者相关的基于离子束和等离子的技术,例如等离子增强的气相沉积法(PECVD)、物理气相沉积法(VPD)和化学气相沉积法(CVD),减少Ni离子从所述形状记忆材料的基底释放。
7.权利要求2的方法,其中所述材料是用于整形外科、泌尿科、血管外科、肝胆外科或食管外科的生物材料。
8.权利要求6的方法,其中用于所述材料表面处理的入射物的能量如下:注入和沉积法为500eV到1000eV。
9.权利要求6的方法,其中使用直流电,参数为无限脉冲持续时间的0Hz重复到5000Hz。
10.权利要求2的方法,其中注入的材料为氮源或氧源。
11.权利要求10的方法,其中所述氮源为氮气。
12.权利要求10的方法,其中所述氧源为氧气。
13.根据权利要求1的方法制造出的整形外科植入物。
14.根据权利要求1的方法制造出的血管植入物。
15.根据权利要求1的方法制造出的食管植入物。
16.权利要求9的方法,其中所述元素是气体形式、液体形式、固体形式或其组合物。
CN201410366096.3A 2005-01-13 2006-01-11 经表面处理的形状记忆材料及其制造方法 Pending CN104294233A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64374405P 2005-01-13 2005-01-13
US60/643,744 2005-01-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800022254A Division CN101128224A (zh) 2005-01-13 2006-01-11 经表面处理的形状记忆材料及其制造方法

Publications (1)

Publication Number Publication Date
CN104294233A true CN104294233A (zh) 2015-01-21

Family

ID=36677364

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2006800022254A Pending CN101128224A (zh) 2005-01-13 2006-01-11 经表面处理的形状记忆材料及其制造方法
CN201410366096.3A Pending CN104294233A (zh) 2005-01-13 2006-01-11 经表面处理的形状记忆材料及其制造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNA2006800022254A Pending CN101128224A (zh) 2005-01-13 2006-01-11 经表面处理的形状记忆材料及其制造方法

Country Status (8)

Country Link
US (1) US7803234B2 (zh)
EP (1) EP1835946B1 (zh)
CN (2) CN101128224A (zh)
AT (1) ATE485845T1 (zh)
DE (1) DE602006017794D1 (zh)
ES (1) ES2356465T3 (zh)
PL (1) PL1835946T3 (zh)
WO (1) WO2006074604A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483800A (zh) * 2015-12-09 2016-04-13 北京市医疗器械检验所 一种医用级镍钛形状记忆合金循环动电位成膜工艺

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2907797B1 (fr) * 2006-10-26 2011-07-22 Quertech Ingenierie Dispositif de nitruration par implantation ionique d'une piece en alliage a memoire de forme en nickel titane et procede mettant en oeuvre un tel dispositif.
US20080312639A1 (en) * 2007-06-13 2008-12-18 Jan Weber Hardened polymeric lumen surfaces
US20090048652A1 (en) * 2007-08-13 2009-02-19 Cardiac Pacemakers, Inc Medical device having plasma polymerized coating and method therefor
US8153015B2 (en) * 2007-08-20 2012-04-10 Depuy Products, Inc. Ultra-passivation of chromium-containing alloy and methods of producing same
US20110046747A1 (en) * 2009-02-19 2011-02-24 Kelvin Wai Kwok Yeung Antibacterial surface and method of fabrication
CA3016976C (en) * 2009-08-07 2021-05-25 Smarter Alloys Inc. Methods and systems for processing materials, including shape memory materials
CN102649915B (zh) 2011-02-28 2015-08-26 通用电气公司 气化装置中使用的泵及该泵的耐磨性的方法
JP5924094B2 (ja) * 2012-04-18 2016-05-25 新明和工業株式会社 刃物、その製造方法およびそれを製造するためのプラズマ装置
RU2502829C1 (ru) * 2012-11-07 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Вакуумная установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали
RU2508130C1 (ru) * 2013-01-21 2014-02-27 Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) Способ изготовления кардиоимплантата из сплава на основе никелида титана с модифицированным ионно-плазменной обработкой поверхностным слоем
DE102013101337A1 (de) * 2013-02-11 2014-08-14 Acandis Gmbh & Co. Kg Intravaskuläres Funktionselement und System mit einem solchen Funktionselement
DE102013101334A1 (de) 2013-02-11 2014-08-14 Acandis Gmbh & Co. Kg Intravaskuläres Funktionselement und Verfahren zu dessen Herstellung, Verwendung eines Salzbades zur Wärmebehandlung
CN103305801B (zh) * 2013-06-05 2015-04-08 哈尔滨工程大学 一种TiNi基形状记忆合金多层薄膜及其制备方法
RU2579314C1 (ru) * 2015-05-22 2016-04-10 Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) Способ плазменно-иммерсионной ионной модификации поверхности изделия из сплава на основе никелида титана медицинского назначения
RU2605395C1 (ru) * 2015-06-29 2016-12-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ химико-термической обработки детали из сплава на основе никеля
RU2605394C1 (ru) * 2015-06-29 2016-12-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ химико-термической обработки детали из сплава на основе кобальта
CN107773782A (zh) * 2016-08-24 2018-03-09 上海双申医疗器械股份有限公司 一种提高纯钛和钛合金表面骨细胞相容性和抑菌性的方法
CN107875446B (zh) * 2017-09-20 2021-03-02 深圳市中科摩方科技有限公司 金属材料表面共价接枝生物分子的方法及其产品和用途
SI3636294T1 (sl) 2018-10-08 2022-01-31 Jozef Stefan Institute Postopek za obdelavo medicinskih naprav iz nikelj-titanovih (NiTi) zlitin
RU2718785C1 (ru) * 2019-11-20 2020-04-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали
CN111961996B (zh) * 2020-09-11 2022-02-15 上海交通大学 一种形状记忆合金微丝加工工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115362A (ja) * 1988-10-24 1990-04-27 Furukawa Electric Co Ltd:The 黄金色を呈するNi−Ti形状記憶合金およびその製造方法
CN1385142A (zh) * 2001-12-21 2002-12-18 中国科学院上海微系统与信息技术研究所 改善人工心脏瓣叶材料血液相容性和使用安全性的方法
WO2004108983A2 (de) * 2003-06-05 2004-12-16 Forschungszentrum Rossendorf E. V. Verfahren zur herstellung einer nickelarmen oberfläche auf nitinol

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1045637C (zh) * 1995-11-15 1999-10-13 哈尔滨工业大学 用于材料表面改性的等离子体浸没离子注入装置
US5674293A (en) * 1996-01-19 1997-10-07 Implant Sciences Corp. Coated orthopaedic implant components
US6613432B2 (en) * 1999-12-22 2003-09-02 Biosurface Engineering Technologies, Inc. Plasma-deposited coatings, devices and methods
CN1158403C (zh) * 1999-12-23 2004-07-21 西南交通大学 一种人工器官表面改性方法
DE10309019A1 (de) * 2003-02-24 2004-09-09 Curative Medical Devices Gmbh Deformierbares medizinisches Implantat oder Implantatteil und Verfahren für dessen Herstellung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115362A (ja) * 1988-10-24 1990-04-27 Furukawa Electric Co Ltd:The 黄金色を呈するNi−Ti形状記憶合金およびその製造方法
CN1385142A (zh) * 2001-12-21 2002-12-18 中国科学院上海微系统与信息技术研究所 改善人工心脏瓣叶材料血液相容性和使用安全性的方法
WO2004108983A2 (de) * 2003-06-05 2004-12-16 Forschungszentrum Rossendorf E. V. Verfahren zur herstellung einer nickelarmen oberfläche auf nitinol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L.TAN ET AL.: ""Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation"", 《BIOMATERIALS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483800A (zh) * 2015-12-09 2016-04-13 北京市医疗器械检验所 一种医用级镍钛形状记忆合金循环动电位成膜工艺

Also Published As

Publication number Publication date
US20060157159A1 (en) 2006-07-20
PL1835946T3 (pl) 2011-06-30
CN101128224A (zh) 2008-02-20
ES2356465T3 (es) 2011-04-08
WO2006074604A1 (en) 2006-07-20
EP1835946A4 (en) 2008-01-30
US7803234B2 (en) 2010-09-28
DE602006017794D1 (de) 2010-12-09
EP1835946B1 (en) 2010-10-27
ATE485845T1 (de) 2010-11-15
EP1835946A1 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
CN104294233A (zh) 经表面处理的形状记忆材料及其制造方法
Paital et al. Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies
Rifai et al. Polycrystalline diamond coating of additively manufactured titanium for biomedical applications
Niinomi Recent research and development in titanium alloys for biomedical applications and healthcare goods
Zhao et al. Effects of carbon and nitrogen plasma immersion ion implantation on in vitro and in vivo biocompatibility of titanium alloy
Shittu et al. Biocompatible high entropy alloys with excellent degradation resistance in a simulated physiological environment
Mohammad et al. Sol gel deposited hydroxyapatite-based coating technique on porous titanium niobium for biomedical applications: A mini review
Izman et al. Surface modification techniques for biomedical grade of titanium alloys: oxidation, carburization and ion implantation processes
Shimabukuro et al. Investigation of realizing both antibacterial property and osteogenic cell compatibility on titanium surface by simple electrochemical treatment
Yeung et al. Corrosion resistance, surface mechanical properties, and cytocompatibility of plasma immersion ion implantation–treated nickel‐titanium shape memory alloys
Mazigi et al. Biocompatibility and degradation of a low elastic modulus Ti-35Nb-3Zr alloy: Nanosurface engineering for enhanced degradation resistance
Buyuksungur et al. In vitro cytotoxicity, corrosion and antibacterial efficiencies of Zn doped hydroxyapatite coated Ti based implant materials
Yeung et al. Investigation of nickel suppression and cytocompatibility of surface‐treated nickel‐titanium shape memory alloys by using plasma immersion ion implantation
Suntharavel Muthaiah et al. Electrophoretic deposition of nanocrystalline calcium phosphate coating for augmenting bioactivity of additively manufactured Ti-6Al-4V
Gnanavel et al. Biocompatible response of hydroxyapatite coated on near-β titanium alloys by E-beam evaporation method
Haftlang et al. The effect of nano-size second precipitates on the structure, apatite-inducing ability and in-vitro biocompatibility of Ti-29Nb-14Ta-4.5 Zr alloy
Affi et al. Adhesion strength of hydroxyapatite coating on titanium alloy (Ti-6Al-4V ELI) for biomedical application
Ul Haq et al. Synthesis and characterization of a titanium-based functionally graded material-structured biocomposite using powder metallurgy
Shtansky et al. Multifunctional bioactive nanostructured films
Xu et al. Preparation and characterization of the aesthetic coating on nickel-titanium orthodontic archwire by electrophoretic deposition
Thakur et al. Recent advancements in the surface treatments for enhanced biocompatibility and corrosion resistance of titanium-based biomedical implants
Gupta et al. Cell viability and growth on metallic surfaces: in vitro studies
Vasilescu et al. Aspects regarding the evolution and characteristics of some titanium alloys used in oral implantology
Kumar et al. Enhancement of Corrosion and Biocompatibility of Implants by Thermal Spray Coatings
Kaur et al. Biodegradable metals as bioactive materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150121

RJ01 Rejection of invention patent application after publication