RU2718785C1 - Установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали - Google Patents

Установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали Download PDF

Info

Publication number
RU2718785C1
RU2718785C1 RU2019137463A RU2019137463A RU2718785C1 RU 2718785 C1 RU2718785 C1 RU 2718785C1 RU 2019137463 A RU2019137463 A RU 2019137463A RU 2019137463 A RU2019137463 A RU 2019137463A RU 2718785 C1 RU2718785 C1 RU 2718785C1
Authority
RU
Russia
Prior art keywords
gas
vacuum chamber
vacuum
inert gas
mechanical activator
Prior art date
Application number
RU2019137463A
Other languages
English (en)
Inventor
Петр Олегович Русинов
Жесфина Михайловна Бледнова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority to RU2019137463A priority Critical patent/RU2718785C1/ru
Application granted granted Critical
Publication of RU2718785C1 publication Critical patent/RU2718785C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Nozzles (AREA)

Abstract

Изобретение относится к установке для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы. Техническим результатом изобретения является увеличение срока эксплуатации установки. Установка содержит вакуумную камеру с вакуумным насосом, два магнетрона и источник для ионной имплантации металлов, газопламенную горелку, механизм подачи порошкового материала с эффектом памяти формы в газопламенную горелку, пирометр для измерения температуры обрабатываемой детали, технологический модуль для ионной очистки обрабатываемой детали, понижающий трансформатор, управляющее устройство, пресс для поверхностно-пластического деформирования с зажимным механизмом закрепления детали, устройство для охлаждения поверхности детали, газовый баллон с инертным газом для создания инертной атмосферы в вакуумной камере с давлением 2-4 бар, дополнительный газовый баллон с аргоном с редуктором, штуцером для подачи инертного газа в камеру, гибким шлангом и регулируемым вентиляционным отводом и манометром. Диффузионный насос прикреплен к раме и соединен с корпусом вакуумной камеры. Порошковый дозатор-механоактиватор с металлической мешалкой, сообщенной с электродвигателем, жестко закреплен в кожухе для охлаждения. Дозатор-механоактиватор связан посредством линии транспортировки порошка с ЭПФ с газопламенной горелкой. Металлическое сито имеет размер отверстий 5 мкм. Дозатор-механоактиватор связан с газовым баллоном с инертным газом, с диффузионным насосом и через вакуумный шланг сообщен с вакуумным насосом. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области машиностроения и металлургии, и может быть использовано для получения наноструктурированных покрытий из материалов с эффектом памяти формы на поверхности детали.
Аналогом изобретения является вакуумная установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали (патент №2502829, опубл. Бюл. №36 от 27.12.2013 г.), которая содержит раму с установленной на ней вакуумной камерой, соединенной с вакуумным насосом, механизм закрепления детали, газопламенную горелку для высокоскоростного газодинамического напыления, установленную под углом 45° к поверхности детали, механизм подачи порошкового материала с эффектом памяти формы в газопламенную горелку, пирометр для измерения температуры обрабатываемой детали, технологический модуль для ионной очистки обрабатываемой детали, приспособление для поверхностно-пластического деформирования детали для формирования наноструктурированного слоя, понижающий трансформатор для дополнительного нагрева поверхности детали, устройство для охлаждения поверхности детали для отрицательного интервала температур мартенситного превращения приповерхностно-пластическом деформировании и управляющее устройство, при этом она дополнительно содержит два магнетрона и источник для ионной имплантации металлов, закрепленные в корпусе вакуумной камеры с возможностью направления на обрабатываемую деталь, при этом приспособление для поверхностно-пластического деформирования выполнено в виде пресса с верхней неподвижной и нижней подвижной траверсами, расположенными в вакуумной камере, причем на нижней подвижной траверсе установлены зажимной механизм закрепления детали и упомянутое устройство для охлаждения поверхности детали, а газопламенная горелка жестко закреплена в корпусе вакуумной камеры.
К недостаткам описанной конструкции можно отнести ее низкие эксплуатационные характеристики, обусловленные быстрым выходом газопламенной горелки из строя, за счет образования конгломератов порошка приводящих к забитости горелки и недостаточной степени очистки вакуумной камеры от примесей кислорода-воздуха, приводящей к постепенному прогоранию горелки из-за повышенной температуры, вызванной наличием в вакуумной камере небольших примесей кислорода-воздуха.
Прототипом изобретения является установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали путем высокоскоростного газопламенного напыления (патент №2672969 опубл. Бюл. №33 от 21.11.2018 г.), которая содержит, раму с установленной на ней вакуумной камерой, соединенной с вакуумным насосом, два магнетрона и источник для ионной имплантации металлов, закрепленные в корпусе вакуумной камеры и направленные на обрабатываемую деталь, газопламенную горелку, установленную под углом 45° к поверхности детали и жестко закрепленную в корпусе вакуумной камеры, механизм подачи порошкового материала с эффектом памяти формы в газопламенную горелку, пирометр для измерения температуры обрабатываемой детали, технологический модуль для ионной очистки обрабатываемой детали, понижающий трансформатор, управляющее устройство, пресс для поверхностно пластического деформирования, выполненный с верхней неподвижной траверсой и нижней подвижной траверсой, на которой установлены зажимной механизм закрепления детали, устройство для охлаждения поверхности детали и газовый баллон с инертным газом для создания инертной атмосферы в вакуумной камере, при этом установка выполнена с возможностью достижения в вакуумной камере давления 2-4 бар, при этом снабжена дополнительным газовым баллоном с инертным газом с редуктором, штуцером для подачи инертного газа в камеру, гибким шлангом и регулируемым вентиляционным отводом и манометром, при этом упомянутый штуцер для подачи инертного газа установлен в нижней части вакуумной камеры и соединен посредством гибкого шланга через редуктор с упомянутым дополнительным газовым баллоном инертного газа, а в верхней части вакуумной камеры установлены упомянутые регулируемый вентиляционный отвод и манометр. Дополнительный газовый баллон содержит аргон.
Недостатком данной установки является низкие эксплуатационные характеристики, обусловленные быстрым выходом газопламенной горелки из строя, за счет образования конгломератов порошка приводящих к забитости горелки и недостаточной степени очистки вакуумной камеры от примесей кислорода-воздуха, приводящей к постепенному прогоранию горелки из-за повышенной температуры, вызванной наличием в вакуумной камере небольших примесей кислорода-воздуха.
Задачей изобретения является усовершенствование установки для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали, позволяющее повысить ее эксплуатационные характеристики.
Техническим результатом изобретения является увеличение срока эксплуатации установки.
Технический результат достигается тем, что установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали содержит раму с установленной на ней вакуумной камерой, соединенной с вакуумным насосом, два магнетрона и источник для ионной имплантации металлов, закрепленные в корпусе вакуумной камеры и направленные на обрабатываемую деталь, газопламенную горелку, установленную под углом 45° к поверхности детали жестко закрепленную в корпусе вакуумной камеры, механизм подачи порошкового материала с эффектом памяти формы в газопламенную горелку, пирометр для измерения температуры обрабатываемой детали, технологический модуль для ионной очистки обрабатываемой детали, понижающий трансформатор, управляющее устройство, пресс для поверхностно пластического деформирования, выполненный с верхней неподвижной траверсой и нижней подвижной траверсой, на которой установлены зажимной механизм закрепления детали, устройство для охлаждения поверхности детали и газовый баллон с инертным газом для создания инертной атмосферы в вакуумной камере с давлением 2-4 бар, при этом она снабжена дополнительным газовым баллоном с инертным газом с редуктором, штуцером для подачи инертного газа в камеру, гибким шлангом и регулируемым вентиляционным отводом и манометром, при этом упомянутый штуцер для подачи инертного газа установлен в нижней части вакуумной камеры и соединен посредством гибкого шланга через редуктор с упомянутым дополнительным газовым баллоном инертного газа, а в верхней части вакуумной камеры установлены упомянутые регулируемый вентиляционный отвод и манометр, дополнительный газовый баллон содержит аргон, при этом установка дополнительно содержит, прикрепленный к раме и соединенный с корпусом вакуумной камеры диффузионный насос, а также жестко закрепленный в кожухе для охлаждения, порошковый дозатор-механоактиватор, внутри которого размещена металлическая мешалка, сообщенная с электродвигателем, установленным в верхней части корпуса дозатора-механоактиватора, в нижней части корпуса дозатора-механоактиватора, которая связана посредством линии транспортировки порошка с ЭПФ с газопламенной горелкой, установлено металлическое сито с размером отверстий 5 мкм, при этом с одной стороны средняя часть корпуса дозатора-механоактиватора закреплена на боковой поверхности блока управления посредством двух крепежных элементов, и через штуцер для подачи инертного газа связана с газовым баллоном с инертным газом, а через штуцер связанным через вакуумный шланг с диффузионным насосом, а с другой противоположной стороны дозатора-механоактиватора размещен штуцер, который через вакуумный шлаг сообщен с вакуумным насосом.
При этом закрепленный на корпусе дозатора-механоактиватора кожух для охлаждения выполнен в виде полых патрубков.
Увеличение срока эксплуатации установки достигается за счет дополнительной установки, прикрепленного к раме и соединенного с корпусом вакуумной камеры диффузионного насоса, а также жестко закрепленного в кожухе для охлаждения порошкового дозатора-механоактиватора, внутри которого размещена металлическая мешалка, сообщенная с электродвигателем, установленным в верхней части корпуса дозатора-механоактиватора, в нижней части корпуса дозатора-механоактиватора, которая связана посредством линии транспортировки порошка с ЭПФ с газопламенной горелкой, установлено металлическое сито с размером отверстий 5 мкм, при этом с одной стороны средняя часть корпуса дозатора-механоактиватора закреплена на боковой поверхности блока управления посредством двух крепежных элементов, и через штуцер для подачи инертного газа связана с газовым баллоном с инертным газом, а с другой противоположной стороны дозатора-механоактиватора размещен штуцер, который через вакуумный шлаг сообщен с вакуумным насосом.
Установка дозатора-механоактиватора для измельчения напыляемого порошка с эффектом памяти формы позволяет исключить процесс окисления напыляемого материала, за счет осуществления его механической активации, измельчения и просева (при помощи сита) с моментальной и одновременной его подачей в газопламенную горелку для напыления, что позволяет снизить вероятность образования конгломератов порошков из многокомпонентных сплавов, способствующих забиванию газопламенной горелки и как следствие невозможности напыления (прогоранию резиновых уплотнений в горелке) и сокращению срока ее эксплуатации.
Дополнительная установка диффузионного насоса, прикрепленного к раме и соединенного с корпусом вакуумной камеры, позволяет достичь в вакуумной камере, высокой степени разряжения (низкого давления 6⋅10-9-9⋅10-9 бар). Это обеспечит повышение степени очистки вакуумной камеры от кислорода-воздуха, удаление всех остатков примесей кислорода-воздуха, оставшегося в вакуумной камере после откачки форвакуумным насосом (давления 4,7⋅10-6-7,7⋅10-6 бар). Вследствие чего происходит снижение степени окисления напыляемого порошка в процессе нанесения, а также нормализация температуры газопламенной струи горелки. В результате снижается вероятность образования конгломератов порошков из многокомпонентных сплавов, способствующих забиванию газопламенной горелки, что позволяет увеличить срок эксплуатации установки и повысить качество нанесения покрытия, за счет отсутствия в нем оксидов.
Таким образом, усовершенствование установки для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали позволяет повысить ее эксплуатационные характеристики, за счет увеличения срока эксплуатации установки, который достигается путем снижения возможности забивания газопламенной горелки.
Совокупность предлагаемых существенных признаков, позволяет достичь желаемый технический результат.
На фиг. 1 и фиг. 2 представлена установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали.
Установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали содержит раму 17 с установленной на ней вакуумной камерой 3, соединенной с вакуумным насосом 18. Источник питания 5 для магнетронов, а также два магнетрона 2 и источник для ионной имплантации металлов 4, закрепленные в корпусе вакуумной камеры 3 и направленные на обрабатываемую деталь 11. При этом источник для ионной имплантации металлов 4 сообщен с блоком питания 6 для источника ионной имплантации. Газопламенную горелку 7, установленную под углом 45° к поверхности детали 11 и жестко закрепленную в корпусе вакуумной камеры 3, а также источник питания 8 для высокоскоростного газодинамического напыления. Механизм подачи порошкового материала с эффектом памяти формы в газопламенную горелку (состоит из следующих конструктивных элементов Фиг. 1, Фиг. 2, поз. 22, 29-39), пирометр 15 для измерения температуры обрабатываемой детали 11, технологический модуль 19 для ионной очистки обрабатываемой детали 11, понижающий трансформатор 20, подключенного к зажимному устройству 21 обрабатываемой детали 11, управляющее устройство 1, пресс для поверхностно пластического деформирования 9, выполненный с верхней неподвижной траверсой 12 и нижней подвижной траверсой 10, на которой установлены зажимной механизм (состоит из следующих конструктивных элементов Фиг. 1, поз. 10, 13, 21) закрепления детали 11. Устройство для охлаждения 13 поверхности детали 11, газовых баллонов 16 с инертным газом (аргон), метаном и кислородом, для создания инертной атмосферы в вакуумной камере 3 с давлением 2-4 бар., а также дополнительный газовый баллон с аргоном 26, который через редуктор 25 соединен посредством гибкого шланга 24 со штуцером 23 для подачи инертного газа, расположенным в нижней части вакуумной камеры 3.
В верхней части вакуумной камеры 3 установлены регулируемый вентиляционный отвод 27 и манометр 28.
Диффузионный насос 14, прикрепленный к раме 17 и соединенный с корпусом вакуумной камеры 3. Жестко закрепленный в кожухе 39 для охлаждения, порошковый дозатор-механоактиватор 29. Кожух для охлаждения выполнен в виде полых патрубков. Внутри порошкового дозатора-механизатора размещена металлические шарики 32 и металлическая мешалка 31, сообщенная с электродвигателем 30, установленным в верхней части корпуса дозатора-механоактиватора 29. В нижней части корпуса дозатора-механоактиватора 29, которая связана посредством линии транспортировки порошка с ЭПФ 22 с газопламенной горелкой 7, установлено металлическое сито 33 с размером отверстий 5 мкм. С одной стороны средняя часть корпуса дозатора-механоактиватора 29 закреплена на боковой поверхности управляющего устройства 1 посредством двух крепежных элементов 36, и через штуцер 35 для подачи инертного газа и шланг, связанный с газовым баллоном 16 с инертным газом, а через штуцер 38 связанным через вакуумный шланг 40 с диффузионным насосом 14, а с другой противоположной стороны дозатора-механоактиватора размещен штуцер 34 который через вакуумный шлаг 37 сообщен с вакуумным насосом 18.
Установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали работает следующим образом: обрабатываемую деталь 11 устанавливают на нижней траверсе 10 пресса 9, при помощи зажимного устройства 21. С помощью вакуумного насоса 18 производят откачку воздуха, установленной на раме 17 вакуумной камеры 3 и порошкового дозатора-механоактиватора 29 закрепленного на управляющем устройстве 1 до давления 4,7⋅10-6-7,7⋅10-6 бар, вакуумный насос 18, связан с порошковым дозатором-механоактиватором 29 через вакуумный шланг 37 со штуцером 34. После осуществляют откачку вакуумной камеры 3 и порошкового дозатора-механоактиватора 29 диффузионным насосом 14 до давления 6⋅10-9-9⋅10-9 бар, при этом диффузионный насос 14 связан с порошковым дозатором - механоактиватором 29 с штуцером 38 при помощи вакуумного шланга 40. Далее осуществляют заполнение вакуумной камеры 3 аргоном, от газового баллона 26 с аргоном через редуктор 25, по средствам гибкого шланга 24 и штуцера 23 до достижения в вакуумной камере 3 постоянного давления 2÷4 бар. Далее осуществляют заполнение порошкового дозатора-механоактиватора 29 аргоном от газового баллона 16 (с надписью аргон (Ar)) при помощи вакуумного шланга 41 соединяющего баллон с аргоном 16 и штуцер 35 порошкового дозатора-механоактиватора 29 до достижения в порошковом дозаторе-механоактиваторе 29 постоянного давления 5÷15 МПа. Давление в вакуумной камере 3 отслеживают при помощи манометра 28 и выравнивают регулируемым вентиляционным отводом 27. Далее при помощи технологического модуля 19 производят ионную очистку обрабатываемой детали 11. После чего при помощи источника питания 8 для высокоскоростного газодинамического напыления и управляющего устройства 1 производят включение газопламенной горелки 7 с одновременной подачей порошка с ЭПФ по линии 22 транспортировки из закрепленного на боковой поверхности управляющего устройства 1 посредством двух крепежных элементов 36, порошкового дозатора-механоактиватора 29 в газопламенную струю для газодинамического напыления. При этом внутри порошкового дозатора-механоактиватора 29 находится рабочая среда, состоящая из порошка с ЭПФ и металлических шариков 32 диаметром 5-10 мм, которая перемешивается посредством металлической мешалки 31, приводимой в движение электродвигателем 30. В процессе механоактивации активированный порошок с ЭПФ просеивается через, размещенное внутри дозатора-механоактиватора 29, металлическое сито 33 с размером отверстий 5 мкм. В процессе работы порошкового дозатора-механоактиватора 29 происходит механическая активация и измельчение напыляемого порошка, с одновременной его подачей в газопламенную горелку 7 для напыления, что исключает промежуточную операцию механической активации порошков в шаровых мельницах (аттриторах). Затем при помощи источника питания 5 для магнетронов 2 и блока питания 6 для источника ионной имплантации 4 включают магнетроны 2 и источник 4 для ионной имплантации металлов и производят магнетронное напыление металлов с ЭПФ и ионную имплантацию металлов. Измерение температуры обрабатываемой детали 11 в зоне обработки производится пирометром 15. Сразу же после высокоскоростного газодинамического напыления, магнетронного напыления, ионной имплантации производят поверхностно-пластическое деформирование. Для этого включают пресс 9 и начинают вертикальное перемещение нижней траверсы 10 вверх до контакта обрабатываемой детали 11 с полученным покрытием с верхней траверсой 12 до достижения заданного давления на поверхности обрабатываемой детали 11 с покрытием до ее деформирования. Поверхностно-пластическое деформирование осуществляют в три этапа при разных температурах. На первом этапе оно производят в интервале температур 300-400°С, на втором в интервале температур 400-500°С, на третьем в интервале температур мартенситных превращений (Ms-Mf). Требуемая температура достигается за счет нагревательного элемента 20, подключенного к зажимному устройству 21 обрабатываемой детали 11. Устройство 13 для охлаждения детали с покрытием с эффектом памяти формы срабатывает в случае отрицательного интервала температур мартенситного превращения при поверхностно-пластическом деформировании.

Claims (2)

1. Установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали, содержащая раму с установленной на ней вакуумной камерой, соединенной с вакуумным насосом, два магнетрона и источник для ионной имплантации металлов, закрепленные в корпусе вакуумной камеры и направленные на обрабатываемую деталь, газопламенную горелку, установленную под углом 45° к поверхности детали и жестко закрепленную в корпусе вакуумной камеры, механизм подачи порошкового материала с эффектом памяти формы в газопламенную горелку, пирометр для измерения температуры обрабатываемой детали, технологический модуль для ионной очистки обрабатываемой детали, понижающий трансформатор, управляющее устройство, пресс для поверхностно-пластического деформирования, выполненный с верхней неподвижной траверсой и нижней подвижной траверсой, на которой установлены зажимной механизм закрепления детали, устройство для охлаждения поверхности детали, газовый баллон с инертным газом для создания инертной атмосферы в вакуумной камере с давлением 2-4 бар, дополнительный газовый баллон с инертным газом с редуктором, штуцером для подачи инертного газа в камеру, гибким шлангом, регулируемым вентиляционным отводом и манометром, при этом упомянутый штуцер для подачи инертного газа установлен в нижней части вакуумной камеры и соединен посредством гибкого шланга через редуктор с упомянутым дополнительным газовым баллоном инертного газа, причем в верхней части вакуумной камеры установлены упомянутые регулируемый вентиляционный отвод и манометр, а дополнительный газовый баллон содержит аргон, отличающаяся тем, что она дополнительно содержит диффузионный насос, прикрепленный к раме и соединенный с корпусом вакуумной камеры, порошковый дозатор-механоактиватор, закрепленный в кожухе для охлаждения, при этом внутри дозатора-механоактиватора размещена металлическая мешалка, сообщенная с электродвигателем, установленным в верхней части корпуса дозатора-механоактиватора, в нижней части корпуса дозатора-механоактиватора, которая связана посредством линии транспортировки порошка с ЭПФ с газопламенной горелкой, установлено металлическое сито с размером отверстий 5 мкм, при этом с одной стороны корпус дозатора-механоактиватора в средней части посредством двух крепежных элементов закреплен на боковой поверхности блока управления, имеет штуцер для подачи инертного газа, посредством которого он связан с газовым баллоном с инертным газом, и через вакуумный шланг - с диффузионным насосом, а с другой противоположной стороны дозатор-механоактиватор имеет штуцер, который через вакуумный шлаг сообщен с вакуумным насосом.
2. Установка по п. 1, отличающаяся тем, что кожух для охлаждения выполнен в виде полых патрубков.
RU2019137463A 2019-11-20 2019-11-20 Установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали RU2718785C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019137463A RU2718785C1 (ru) 2019-11-20 2019-11-20 Установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019137463A RU2718785C1 (ru) 2019-11-20 2019-11-20 Установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали

Publications (1)

Publication Number Publication Date
RU2718785C1 true RU2718785C1 (ru) 2020-04-14

Family

ID=70277917

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019137463A RU2718785C1 (ru) 2019-11-20 2019-11-20 Установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали

Country Status (1)

Country Link
RU (1) RU2718785C1 (ru)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5988103A (en) * 1995-06-23 1999-11-23 Wisconsin Alumni Research Foundation Apparatus for plasma source ion implantation and deposition for cylindrical surfaces
US20030168334A1 (en) * 2001-06-15 2003-09-11 Delphi Technologies, Inc. High temperature shape memory alloy thin film
US20090206065A1 (en) * 2006-06-20 2009-08-20 Jean-Pierre Kruth Procedure and apparatus for in-situ monitoring and feedback control of selective laser powder processing
EP1835946B1 (en) * 2005-01-13 2010-10-27 Versitech Limited Surface treated shape memory materials and methods for making same
RU2475567C1 (ru) * 2011-06-17 2013-02-20 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет " (ГОУВПО "КубГТУ") Установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на цилиндрической поверхности деталей
RU2569871C1 (ru) * 2014-07-01 2015-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Устройство для формирования на поверхности полых деталей наноструктурированных покрытий с эффектом памяти формы
RU2625694C2 (ru) * 2015-10-05 2017-07-18 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали
EP2324139B1 (en) * 2008-08-27 2017-07-19 Teer Coatings Limited Apparatus and method for deposition of material to form a coating
RU2672969C1 (ru) * 2017-10-03 2018-11-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали
RU2674532C1 (ru) * 2018-06-15 2018-12-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Вакуумная установка для нанесения наноструктурированного покрытия из материала с эффектом памяти формы на поверхности детали

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5988103A (en) * 1995-06-23 1999-11-23 Wisconsin Alumni Research Foundation Apparatus for plasma source ion implantation and deposition for cylindrical surfaces
US20030168334A1 (en) * 2001-06-15 2003-09-11 Delphi Technologies, Inc. High temperature shape memory alloy thin film
EP1835946B1 (en) * 2005-01-13 2010-10-27 Versitech Limited Surface treated shape memory materials and methods for making same
US20090206065A1 (en) * 2006-06-20 2009-08-20 Jean-Pierre Kruth Procedure and apparatus for in-situ monitoring and feedback control of selective laser powder processing
EP2324139B1 (en) * 2008-08-27 2017-07-19 Teer Coatings Limited Apparatus and method for deposition of material to form a coating
RU2475567C1 (ru) * 2011-06-17 2013-02-20 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет " (ГОУВПО "КубГТУ") Установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на цилиндрической поверхности деталей
RU2569871C1 (ru) * 2014-07-01 2015-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Устройство для формирования на поверхности полых деталей наноструктурированных покрытий с эффектом памяти формы
RU2625694C2 (ru) * 2015-10-05 2017-07-18 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали
RU2672969C1 (ru) * 2017-10-03 2018-11-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали
RU2674532C1 (ru) * 2018-06-15 2018-12-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Вакуумная установка для нанесения наноструктурированного покрытия из материала с эффектом памяти формы на поверхности детали

Similar Documents

Publication Publication Date Title
US5989487A (en) Apparatus for bonding a particle material to near theoretical density
TWI490087B (zh) 磨料噴射系統之通氣切割頭本體
CN101418426B (zh) 喷镀膜形成方法以及喷镀膜形成装置
KR101835825B1 (ko) 쇼트 처리 장치
CA3054112A1 (en) An improved gas dynamic cold spray device and method of coating a substrate
RU2718785C1 (ru) Установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали
CN106272106B (zh) 一种磁场辅助微细磨料水射流加工方法及其喷射装置
EP0745018B1 (en) Blast system
RU2502829C1 (ru) Вакуумная установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали
RU2672969C1 (ru) Установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали
CN101265513A (zh) 奥氏体不锈耐热无缝钢管内壁喷丸强化工艺及其装置
RU2475567C1 (ru) Установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на цилиндрической поверхности деталей
CN213590831U (zh) 一种可制备超高结合强度涂层的激光喷涂喷枪
JP5722358B2 (ja) 圧縮空気砲噴射機能を備えた清掃装置
RU2674532C1 (ru) Вакуумная установка для нанесения наноструктурированного покрытия из материала с эффектом памяти формы на поверхности детали
CN107022743A (zh) 一种用于微纳米粉体的磁控溅射连续镀膜设备
KR101659985B1 (ko) 도장층 제거를 위한 헤드 장치 및 이를 포함하는 도장층 제거 자동화 시스템
CN116060626A (zh) 纳米合金颗粒的制备装置及方法
RU2625694C2 (ru) Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали
US7322188B2 (en) Anti-condensation control system for device driven by compressed air
EP1491432A1 (en) Device capable of moving while adhering to object surface under liquid level
RU2386721C1 (ru) Устройство для газотермического нанесения покрытий на внутренние поверхности отверстий
RU2190695C2 (ru) Устройство газодинамического напыления порошковых материалов
US1029444A (en) Pot-filling apparatus for glass-furnaces.
CN211278025U (zh) 用于摩托车配件加工的喷砂设备