RU2625694C2 - Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали - Google Patents

Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали Download PDF

Info

Publication number
RU2625694C2
RU2625694C2 RU2015142284A RU2015142284A RU2625694C2 RU 2625694 C2 RU2625694 C2 RU 2625694C2 RU 2015142284 A RU2015142284 A RU 2015142284A RU 2015142284 A RU2015142284 A RU 2015142284A RU 2625694 C2 RU2625694 C2 RU 2625694C2
Authority
RU
Russia
Prior art keywords
gas
powder
longitudinal movement
shape memory
memory effect
Prior art date
Application number
RU2015142284A
Other languages
English (en)
Other versions
RU2015142284A (ru
Inventor
Петр Олегович Русинов
Жесфина Михайловна Бледнова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ")
Priority to RU2015142284A priority Critical patent/RU2625694C2/ru
Publication of RU2015142284A publication Critical patent/RU2015142284A/ru
Application granted granted Critical
Publication of RU2625694C2 publication Critical patent/RU2625694C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Изобретение относится к области машиностроения и металлургии, в частности к комбинированным способам получения покрытий, и может быть использовано, в частности, для получения покрытий на деталях. Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали содержит раму с размещенными на ней механизмом закрепления детали с патроном и задней бабкой, механизмом вращения детали, вакуумной камерой, которая соединена с вакуумным насосом и газопламенной горелкой для высокоскоростного газопламенного напыления, размещенной на механизме продольного перемещения, технологический модуль для ионной очистки обрабатываемой детали с источником питания, первый пирометр для измерения температуры детали, размещенный перед фронтом высокоскоростного газопламенного напыления, управляющее устройство, связанное с механизмом подачи порошкового материала с эффектом памяти формы, механизмом продольного перемещения газопламенной горелки и первым пирометром, приспособление для поверхностно-пластического деформирования детали для формирования наноструктурированного слоя, установленное на механизме продольного перемещения газопламенной горелки, второй пирометр, установленный в зоне поверхностно-пластического деформирования, понижающий трансформатор, обеспечивающий дополнительный нагрев поверхности детали, и устройство для охлаждения поверхности детали, установленное на механизме продольного перемещения газопламенной горелки, механизм подачи порошкового материала с эффектом памяти формы, выполненный в виде трех порошковых дозаторов с аттриторами для механической активации порошков, сообщенными с вакуумной камерой. Дозаторы выполнены с возможностью подачи механически активированного порошка в каналы газопламенной горелки, выполненной трехканальной и закрепленной на механизме продольного перемещения под углом 70-85° к поверхности детали. Обеспечивается повышение эксплуатационных свойств и надежности многофункциональных покрытий на деталях, обеспечивающих повышенную адгезионную прочность, износостойкость, прочность. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области машиностроения и металлургии, в частности к комбинированным способам получения покрытий и может быть использовано в частности для получения покрытий на деталях.
В настоящее время существуют следующие установки, для получения покрытий:
Известна установка для напыления покрытий, характеризующаяся тем, что содержит вакуумную камеру, распылители мишеней-катодов с анодными блоками, устройства для эвакуации и регулирования подачи газа, приспособление, на котором крепят держатели, и устройство для вращения приспособления. Держатели для подложек вращаются в одном направлении, а приспособление вращается в другом направлении. Распылители мишеней-катодов расположены таким образом, что их осевые линии образуют угол не более 90° и смещены по высоте друг относительно друга. Внутренняя поверхность камеры снабжена ложными стенками. Держатели подложек выполнены в виде призм. Каждая грань призм прозрачна не менее чем на 75%. Подложки и анодные блоки распылителей гальванически связаны между собой и с положительным электродом. Мишени-катоды и ложные стенки гальванически связаны с отрицательным электродом. Между приспособлением для крепления держателей и устройством для его вращения установлен экран, гальванически изолированный от камеры. Устройство формирует упрочненные покрытия во всей поверхности подложек, включая и тыльную сторону (патент №2214477).
Недостатком этой установки является невозможность получения массивных покрытий (толщиной более 100 мкм), а также сложность получения покрытий нужного для проявления эффекта памяти формы (ЭПФ) химического состава и, как следствие, небольшая величина обратимой деформации, менее 3%.
Также известна установка для комплексной ионно-плазменной обработки и нанесения покрытий, содержащая цилиндрическую вакуумную камеру с загрузочной дверью, оснащенную фланцевыми соединениями для установки технологических модулей, вакуум-провода, вакуумных насосов и вакуумных вводов, поворотное приспособление для размещения обрабатываемых изделий, технологические модули, систему подачи газов, откачную систему, источники питания и блок управления, источники ускоренных ионов металлов и газов, протяженный вакуумно-дуговой генератор металлической плазмы, протяженный дуальный магнетрон, протяженный генератор газовой плазмы, причем вакуумная камера выполнена из немагнитной нержавеющей стали размерами: диаметр от 900 мм до 1000 мм, высота от 1300 мм до 1400 мм, а поворотное приспособление для размещения обрабатываемых изделий выполнено с возможностью размещения длинномерных изделий (патент №97730). Недостатком этой установки является невозможность получения объемных покрытий (толщиной более 10 мкм) и сложность получения покрытий нужного для проявления ЭПФ химического состава.
Наиболее близкой является установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на цилиндрической поверхности деталей, содержащая раму с размещенными на ней механизмом закрепления детали с патроном и задней бабкой, механизмом вращения детали, и плазмотроном с механизмом его продольного перемещения, механизм подачи порошкового материала с эффектом памяти формы, первый пирометр для измерения температуры детали перед фронтом плазменной дуги, управляющее устройство, связанное с механизмами подачи порошкового материала и продольного перемещения плазмотрона и первым пирометром, приспособление для поверхностного пластического деформирования детали для формирования наноструктурированного слоя, установленное на механизме продольного перемещения плазмотрона, второй пирометр, установленный в зоне поверхностного пластического деформирования и связанный с управляющим устройством, соединенный с приспособлением для поверхностного пластического деформирования детали, понижающий трансформатор, обеспечивающий дополнительный нагрев поверхности детали, и устройство для охлаждения поверхности детали, связанное с устройством продольного перемещения плазмотрона, при этом плазмотрон установлен на механизме продольного перемещения под углом 46-50° к поверхности детали. Установка, дополнительно содержит вакуумную камеру, соединенную с вакуумным насосом, газопламенную горелку для газопламенного напыления и технологический модуль для ионной очистки обрабатываемой детали с источником питания, при этом вакуумная камера установлена на раме, газопламенная горелка размещена на механизме продольного перемещения плазмотрона и установлена под углом 45° или 90° к поверхности детали, «плюс» источника питания технологического модуля ионной очистки соединен с корпусом вакуумной камеры, а его «минус» соединен с задней бабкой механизма закрепления детали. Вакуумная камера выполнена с водяной рубашкой охлаждения (Патент РФ №2475567).
Недостатком этой установки является невозможность получения композитных покрытий в едином технологическом цикле.
Задачей изобретения является получение на поверхности деталей многофункциональных композитных покрытий в едином технологическом цикле.
Техническим результатом является повышение эксплуатационных свойств и надежности многофункциональных покрытий на деталях, обеспечивающих повышенную адгезионную прочность, износостойкость, прочность.
Технический результат достигается тем, что установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали содержит раму с размещенными на ней механизмом закрепления детали с патроном и задней бабкой, механизмом вращения детали, вакуумной камерой, в корпусе которой выполнены два смотровых окна и которая соединена с вакуумным насосом и газопламенной горелкой для высокоскоростного газопламенного напыления, размещенной на механизме продольного перемещения, технологический модуль для ионной очистки обрабатываемой детали с источником питания, причем «плюс» источника питания технологического модуля ионной очистки соединен с корпусом вакуумной камеры, а его «минус» соединен с задней бабкой механизма закрепления детали, первый пирометр для измерения температуры детали, размещенный перед фронтом высокоскоростного газопламенного напыления, управляющее устройство, связанное с механизмом подачи порошкового материала с эффектом памяти формы, механизмом продольного перемещения газопламенной горелки и первым пирометром, приспособление для поверхностно-пластического деформирования детали для формирования наноструктурированного слоя, установленное на механизме продольного перемещения газопламенной горелки, второй пирометр, установленный в зоне поверхностно-пластического деформирования и связанный с управляющим устройством, соединенный с трехроликовым приспособлением для поверхностно-пластического деформирования детали, понижающий трансформатор, обеспечивающий дополнительный нагрев поверхности детали, и устройство для охлаждения поверхности детали, установленное на механизме продольного перемещения газопламенной горелки, механизм подачи порошкового материала с эффектом памяти формы, выполненный в виде трех порошковых дозаторов с аттриторами для механической активации порошков, сообщенными с вакуумной камерой, при этом дозаторы выполнены с возможностью подачи механически активированного порошка в каналы газопламенной горелки, выполненной трехканальной и закрепленной на механизме продольного перемещения под углом 70-85° к поверхности детали.
Аттритор представляет собой герметичную цилиндрическую емкость, которая после создания вакуума заполнена аргоном и металлическими шарами диаметром 8 мм, при этом упомянутая емкость оснащена мешалкой, приводимой в движение посредством электродвигателя, и ситом для пересыпки молотых металлических порошков в порошковый дозатор.
В процессе высокоскоростного газопламенного напыления механически активированных порошков происходит выделение энергии, накопленной в процессе механической активации, что обеспечивает более надежную адгезию с основой и между слоями и повышенные прочностных свойств многослойного композитного покрытия, а высокая скорость напыления обеспечивает формирование наноразмерной структуры. Принятая последовательность нанесения слоев «адгезионный слой - функциональный слой из материала с эффектом памяти формы - функциональный упрочняющий износостойкий слой» обеспечивает повышение прочностных характеристик и износостойкости композита. Наличие промежуточного слоя из материала с эффектом памяти формы, помимо характерных для этих материалов свойств памяти, сверхупругости или сверхэластичности (в зависимости от термообработки), тормозят, а иногда блокируют распространение дефектов типа трещин, возникающих в прочном, но хрупком поверхностном слое и, как следствие, способствует повышению прочности и долговечности. Предложенный способ обеспечивает получение многослойного наноструктурированного композитного покрытия с эффектом памяти формы на стальных образцах с размером зерен 15-120 нм.
На фиг. 1 представлена установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали и фиг. 2 - газопламенная горелка установки для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали.
Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали состоит из следующих конструктивных элементов: блока управления 1, источника питания 2, понижающего трансформатора 3, патрона 4 для закрепления детали 16 с цилиндрической поверхностью, трехроликового приспособления 5 для поверхностно-пластического деформирования детали с получением наноструктурированного слоя, вакуумной камеры 6, в корпусе которой выполнены два смотровых окна 17 и сообщенной с вакуумным насосом 9, газопламенной горелки 18 для высокоскоростного газопламенного напыления, устройства для перемещения 7 газопламенной горелки 18, устройства 8 для охлаждения цилиндрической детали, выполненного в виде двух емкостей, заполненных жидким азотом, пирометров 10 для измерения температуры, баллонов 11 для создания высокоскоростной газопламенной струи и транспортировки порошков, задней бабки 12, электродвигателя 13, шкивов 14 для передачи крутящего момента от электродвигателя 13 на патрон 4, рамы 15 и упрочняемой стальной цилиндрической детали 16, ионную очистку поверхности детали 16 осуществляют в технологическом модуле 2 для ионной очистки поверхностей деталей с источником питания. Механизм подачи порошкового материала с ЭПФ, сообщенный с вакуумной камерой, состоит из порошкового дозатора 19 с аттритором 20, который представляет собой герметичную цилиндрическую емкость для создания вакуума и защитной среды (аргона), заполненную металлическими шарами 24 диаметром 8 мм для механической активации порошка 25 (порошок Ni), оснащенную мешалкой 22, приводимой во вращательное движение при помощи электродвигателя 23, и ситом 21 для пересыпки молотого металлического порошка в порошковый дозатор 19, порошкового дозатора 26 связанного с аттритором 27 при помощи сита 28, аттритор 27 включает мешалку 29 которая приводится во вращательное движение с помощью электродвигателя 30, также он включает металлические шары 31 для механической активации порошка 32 (порошок на основе TiNi), порошкового дозатора 33 связанного с аттритором 34 при помощи сита 35, аттритор 34 включает мешалку 36 которая приводится во вращательное движение с помощью электродвигателя 37, также он включает металлические шары 38 для механической активации порошка 39 (порошок износостойкий WC-Co-Mo, cNB-Co-Mo). При этом аттриторы 20, 27, 34 сообщаются с вакуумной камерой 6. Каждый атритор представляет собой герметичную цилиндрическую емкость, которую после создания вакуума заполняют аргоном из баллона 40 для подачи аргона в аттриторы. Газопламенная горелка 18, закреплена на механизме продольного перемещения под углом 70-85°С к поверхности стальной цилиндрической детали и выполнена трехканальной, при этом первый канал 40 для ввода порошка Ni, второй канал 41 для ввода порошка на основе TiNi, третий канал 42 для ввода износостойкого порошка Wc-Co-Mo, cNb-Co-Mo. Установка работает следующим образом:
Упрочняемая цилиндрическая деталь 16 устанавливается в патроне 4 и в задней бабки 12, закрепленных на раме 15. С помощью вакуумного насоса 9 производится откачка вакуумной камеры 6 до давления 6,5⋅10-3÷6,8⋅10-3 Па. Далее осуществляется заполнение вакуумной камеры 6 аргоном до давления 0,07÷0,6 Па, при помощи технологического модуля 2 для ионной очистки поверхностей деталей с источником питания производится ионная очистка упрочняемой цилиндрической детали 16. Посредством электродвигателя 13 шкивов 14 системе придается вращательное движение. При помощи технологического модуля 2 для ионной очистки поверхностей деталей с источником питания и блока управления 1 производится включение устройства для перемещения газопламенной горелки 18 и поджиг высокоскоростной газопламенной струи. В аттритор 20 с мешалкой 22 и с металлическими шарами 24 засыпается порошок Ni, в аттритор 27 с мешалкой 29 и с металлическими шарами 31 засыпается порошок на основе TiNi, в аттритор 34 с мешалкой 36 и с металлическими шарами 38 засыпается износостойкий порошок на основе WC-Со-Мо, cNB-Co-Mo далее происходит создание вакуума в аттриторах 20, 27, 34 с помощью вакуумного насоса 9 с последующим созданием защитной среды аргона с помощью баллона 40, включение электродвигателей 23, 30, 37 в процессе измельчения порошок Ni, порошок на основе TiNi, износостойкий порошок на основе WC-Co-Mo, cNB-Co-Mo через соответствующие сита 21, 28, 35 просыпаются в соответствующие порошковые дозаторы 19, 26, 33, далее производится включение порошкового дозатора 19 содержащего механически активированный порошок Ni, с подачей порошка Ni в первый канал 40 для ввода порошка Ni газопламенной горелки 18 с высокоскоростной газопламенной струей. Далее спустя 2-4 минуты включается порошковый дозатор 26 содержащий механически активированный порошок на основе TiNi, с подачей механически активированного порошка TiNi во второй канал 41 для порошка на основе TiNi газопламенной горелки 18 с высокоскоростной газопламенной струей. Далее производится пластическое деформирование полученного слоя с эффектом памяти формы на основе TiNi, пластическое деформирование осуществляется трехроликовым приспособлением 5 для поверхностно-пластического деформирования детали, закрепленным на устройстве для перемещения 7. Далее спустя 4-8 минут включается порошковый дозатор 33 содержащий механически активированный износостойкий порошок на основе WC-Co-Mo, cNB-Co-Mo, с подачей этого порошка в третий канал 42 для ввода износостойкого порошка WC-Co-Mo, cNB-Co-Mo газопламенной горелки 18 с высокоскоростной газопламенной струей. Измерение температуры упрочняемой детали 16 перед фронтом высокоскоростного газопламенного напыления и в зоне поверхностно-пластического деформирования производится пирометрами 10. Напыление покрытия производится газопламенной горелкой 18 расположенной под углом 70-85° размещенной на устройстве для перемещения 7. На устройстве для перемещения 7 устанавливается устройство 8 для охлаждения детали с целью ее охлаждения, в случае отрицательного интервала температур мартенситного превращения при поверхностно-пластическом деформировании трехроликовым приспособлением 5 для поверхностно-пластического деформирования детали. Поверхностное пластическое деформирование трехроликовым приспособлением 5 для поверхностно-пластического деформирования детали сразу же после высокоскоростного газопламенного напыления осуществляется в три этапа, на первом этапе оно производится в интервале температур 500-700°С, на втором этапе оно производится в интервале температур 800-1000°С, на третьем в интервале температур мартенситных превращений (Ms-Mf) слоя с эффектом памяти формы на основе TiNi. В случае охлаждения детали с покрытием с эффектом памяти формы после высокоскоростного газопламенного напыления до температуры менее 500°С, при этом дополнительно имеется понижающий трансформатор 3 для разогрева детали до данной температуры.

Claims (2)

1. Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали, характеризующаяся тем, что она содержит раму с размещенными на ней механизмом закрепления детали с патроном и задней бабкой, механизмом вращения детали, вакуумной камерой, в корпусе которой выполнены два смотровых окна и которая соединена с вакуумным насосом и газопламенной горелкой для высокоскоростного газопламенного напыления, размещенной на механизме продольного перемещения, технологический модуль для ионной очистки обрабатываемой детали с источником питания, причем источник питания технологического модуля ионной очистки соединен с корпусом вакуумной камеры «плюсом», а «минусом» соединен с задней бабкой механизма закрепления детали, первый пирометр для измерения температуры детали, размещенный перед фронтом высокоскоростного газопламенного напыления, управляющее устройство, связанное с механизмом подачи порошкового материала с эффектом памяти формы, механизмом продольного перемещения газопламенной горелки и первым пирометром, приспособление для поверхностно-пластического деформирования детали для формирования наноструктурированного слоя, установленное на механизме продольного перемещения газопламенной горелки, второй пирометр, установленный в зоне поверхностно-пластического деформирования и связанный с управляющим устройством, соединенный с трехроликовым приспособлением для поверхностно-пластического деформирования детали, понижающий трансформатор, обеспечивающий дополнительный нагрев поверхности детали, и устройство для охлаждения поверхности детали, установленное на механизме продольного перемещения газопламенной горелки, механизм подачи порошкового материала с эффектом памяти формы, выполненный в виде трех порошковых дозаторов с аттриторами для механической активации порошков, сообщенными с вакуумной камерой, при этом дозаторы выполнены с возможностью подачи механически активированного порошка в каналы газопламенной горелки, выполненной трехканальной и закрепленной на механизме продольного перемещения под углом 70-85° к поверхности детали.
2. Установка по п. 1, отличающаяся тем, что аттритор представляет собой герметичную цилиндрическую емкость, которая после создания вакуума заполнена аргоном и металлическими шарами диаметром 8 мм, при этом упомянутая емкость оснащена мешалкой, приводимой в движение посредством электродвигателя, и ситом для пересыпки молотых металлических порошков в порошковый дозатор.
RU2015142284A 2015-10-05 2015-10-05 Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали RU2625694C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015142284A RU2625694C2 (ru) 2015-10-05 2015-10-05 Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015142284A RU2625694C2 (ru) 2015-10-05 2015-10-05 Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали

Publications (2)

Publication Number Publication Date
RU2015142284A RU2015142284A (ru) 2017-04-11
RU2625694C2 true RU2625694C2 (ru) 2017-07-18

Family

ID=58641624

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015142284A RU2625694C2 (ru) 2015-10-05 2015-10-05 Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали

Country Status (1)

Country Link
RU (1) RU2625694C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2718785C1 (ru) * 2019-11-20 2020-04-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030168334A1 (en) * 2001-06-15 2003-09-11 Delphi Technologies, Inc. High temperature shape memory alloy thin film
RU2214477C2 (ru) * 2001-07-18 2003-10-20 Дочернее государственное предприятие "Институт ядерной физики" Национального ядерного центра Республики Казахстан Установка для напыления покрытий
RU2402628C1 (ru) * 2009-03-23 2010-10-27 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУВПО "КубГТУ") Установка для получения наноструктурированных покрытий деталей с цилиндрической поверхностью с эффектом памяти формы
RU2475567C1 (ru) * 2011-06-17 2013-02-20 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет " (ГОУВПО "КубГТУ") Установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на цилиндрической поверхности деталей
RU2502829C1 (ru) * 2012-11-07 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Вакуумная установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030168334A1 (en) * 2001-06-15 2003-09-11 Delphi Technologies, Inc. High temperature shape memory alloy thin film
RU2214477C2 (ru) * 2001-07-18 2003-10-20 Дочернее государственное предприятие "Институт ядерной физики" Национального ядерного центра Республики Казахстан Установка для напыления покрытий
RU2402628C1 (ru) * 2009-03-23 2010-10-27 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУВПО "КубГТУ") Установка для получения наноструктурированных покрытий деталей с цилиндрической поверхностью с эффектом памяти формы
RU2475567C1 (ru) * 2011-06-17 2013-02-20 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет " (ГОУВПО "КубГТУ") Установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на цилиндрической поверхности деталей
RU2502829C1 (ru) * 2012-11-07 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Вакуумная установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2718785C1 (ru) * 2019-11-20 2020-04-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали

Also Published As

Publication number Publication date
RU2015142284A (ru) 2017-04-11

Similar Documents

Publication Publication Date Title
US7520965B2 (en) Magnetron sputtering apparatus and method for depositing a coating using same
US20060076231A1 (en) Method for magnetron sputter deposition
RU2475567C1 (ru) Установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на цилиндрической поверхности деталей
CN102220561B (zh) 用于磁控溅射装置中的环状阴极
RU2425173C2 (ru) Установка для комбинированной ионно-плазменной обработки
CN100999814A (zh) 一种多功能溅镀系统及溅镀方法
RU2625694C2 (ru) Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали
KR20200129615A (ko) 균일한 두께로 코팅 가능한 플라스틱 진공증착 코팅장치
CN203498467U (zh) 用等离子体增强化学气相沉积在长管内表面沉积薄膜装置
RU2496913C2 (ru) Установка для ионно-лучевой и плазменной обработки
RU2502829C1 (ru) Вакуумная установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали
US20180037984A1 (en) Endblock for rotatable target with electrical connection between collector and rotor at pressure less than atmospheric pressure
RU2402628C1 (ru) Установка для получения наноструктурированных покрытий деталей с цилиндрической поверхностью с эффектом памяти формы
US20070074970A1 (en) Device and method of manufacturing sputtering targets
CN100560786C (zh) 溅镀装置及溅镀方法
WO2019164422A1 (ru) Вакуумная ионно-плазменная установка для нанесения покрытий оксинитрида титана на поверхность металлических внутрисосудистых стентов
Yakovin et al. Integral cluster set-up for complex compound composites syntesis
CN103510034A (zh) 多元电弧喷涂加工多层金属基复合材料的方法及装置
CN110965034B (zh) 一种高熵合金靶材制备装置
CN109576665A (zh) 一种离子源、镀膜装置以及镀膜方法
JP4866555B2 (ja) 複数の利用可能なターゲットによる連続的アーク蒸着の装置および方法
CN103866241A (zh) 一种离子辅助热蒸发复合磁控溅射镀膜装置
RU2672969C1 (ru) Установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали
TWI518193B (zh) 真空鍍覆的方法與裝置
CN101280416B (zh) 在钢/铝复合管材表面制备α-Al2O3涂层的等离子氧化装置