CN104293912A - 显性基因抑制性转基因及其使用方法 - Google Patents
显性基因抑制性转基因及其使用方法 Download PDFInfo
- Publication number
- CN104293912A CN104293912A CN201410397301.2A CN201410397301A CN104293912A CN 104293912 A CN104293912 A CN 104293912A CN 201410397301 A CN201410397301 A CN 201410397301A CN 104293912 A CN104293912 A CN 104293912A
- Authority
- CN
- China
- Prior art keywords
- plant
- gene
- promotor
- promoter
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8218—Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8209—Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
- C12N15/821—Non-antibiotic resistance markers, e.g. morphogenetic, metabolic markers
- C12N15/8212—Colour markers, e.g. beta-glucoronidase [GUS], green fluorescent protein [GFP], carotenoid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8222—Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
- C12N15/823—Reproductive tissue-specific promoters
- C12N15/8231—Male-specific, e.g. anther, tapetum, pollen
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8262—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
- C12N15/8263—Ablation; Apoptosis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8287—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8287—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
- C12N15/8289—Male sterility
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8287—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
- C12N15/829—Female sterility
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/13—Plant traits
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pregnancy & Childbirth (AREA)
- Reproductive Health (AREA)
- Virology (AREA)
- Botany (AREA)
- Mycology (AREA)
- Immunology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Developmental Biology & Embryology (AREA)
- Environmental Sciences (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及显性基因抑制性转基因及其使用方法。本发明提供其中互补构建物导致子代中亲本表型抑制的植株对。本发明提供产生和保持这种植株的方法、使用所述植株的方法,包括使用亲本植株生产用于杂合体种子生产的不育植株。本发明还提供用于连接多核苷酸的花粉优选表达的调节元件。本发明还提供鉴别基因功能的方法和抑制转基因传递的方法。
Description
本申请是以下申请的分案申请:优先权日2003年12月16日,申请号200910004758.1,名称“显性基因抑制性转基因及其使用方法”。
技术领域
一般地讲,本发明涉及用于显性基因抑制的组合物和方法。某些实施方案提供防止转基因在配子中传递的方法。某些实施方案包括其中亲本表型在子代中受到抑制的植株对。某些实施方案提供用于产生在杂交时产生不育子代植株的可育亲本植株的构建物和方法、制备和使用这种转基因和植株的方法以及这种植株的产物。
背景技术
植物育种提供了一种将需要的性状(包括例如疾病抗性、昆虫抗性、干旱耐受性、提升产量和更好的农艺品质)组合在单个植物变种或杂合体中的手段。大田作物一般通过传粉育种,包括通过自花传粉(自交,其中一朵花的花粉转移至同一植株的同一朵或另一朵花,或转移至遗传相同植株)和异花传粉(杂交,其中一个植株的花粉转移至遗传不同植株的花)育种。
自交并经过多个世代选型的植株在几乎全部基因座都变成了纯合型,并产生均一的纯种子代群。两个不同纯合系之间的杂交产生了在许多基因座可为杂合型的均一杂合体植物群。其中每种植株在许多基因座为杂合型的两种植株的杂交产生遗传学上不同且不均一的杂合体植物。
许多作物,包括例如玉米,可使用自花传粉或异花传粉技术育种。玉米在同一植株上具有分离的雄花和雌花,分别位于雄穗和雌穗上。当风将雄穗的花粉吹至雌穗顶部突出的穗丝时,在玉米中发生天然传粉。包括玉米在内的许多作物以杂合体形式培育,一般来说杂合体表现出的活力比产生其的亲本植株更强。因此,在生产杂合体植物时需要防止随机传粉。
通过使两个不同的近交父本(P1)和母本(P2)植株杂交,产生杂合体植株(F1)。杂合体植株是有价值的,因为它们可表现出比产生其的亲本植株提升的产量和活力。另外,杂合体(F1)植株一般具有比由其产生的子代(F2)植株更理想的特性。因此,杂合体植株在商业上是很重要的,其包括许多农作物,包括例如小麦、玉米、稻、番茄和瓜。自20世纪30年代以来,玉米杂交就受到了特别的关注。杂交玉米的生产包括开发纯合近交父系和母系,使这些系杂交,鉴定农业性状改良的杂交。纯种繁育和反复选择是用于由种群中开发近交系的两种育种方法。育种程序将两个或多个近交系或各种广泛来源的需要性状组合在培育池中,通过自交和选择需要的表型由该培育池开发新近交系。这些新近交系与其它近交系杂交,评价产生的新杂合体,以确定哪些杂合体具有改良的特性或其它需要的性状,因此增加商业价值。第一代杂合体子代称为F1,它比其近交亲本更有活力。此杂合体活力或杂合体优势可以多种方式表现出来,包括营养生长增加和种子产量增加。
生产杂合体种子需要保持亲本种子储备,因为杂合体植株的自交产生类似P1和P2的子代(F2),一般来说其表现出的需要特征比F1杂合体植株少。因为亲本植株具有的商业价值一般比杂合体(F1)低,所以已进行了努力,以防止在大田中的亲本植株自交(“自花受精”),因为这种杂交会降低杂合体种子产量。因此,已开发了亲本植株自交的方法。
一种控制传粉的方法是使用为雄性不育的亲本植株群,由此提供母本。已使用几种方法来控制雄性育性,包括例如人工或机械去雄(去雄花穗)、细胞质雄性不育、遗传雄性不育和使用杀配子剂。例如,通过去除花药或去雄母本(P2)群植株,由此去除大田的P2花粉源,可防止大田亲本自交。然后,通过手工或使用机械方法,可用P1花粉对P2母本植株授粉。一般可由手工或机械去雄结合雄性不育系统生产杂交玉米种子。在大田中交互带状种植两种玉米近交系,去除一种近交系(P2母本)的带有花粉的雄穗。只要大田与外来玉米花粉源足够分开,则只有另一近交系(P1父本)的花粉才能使去雄近交系的雌穗受精;获得的种子为杂合体,形成杂合体植株。不幸的是,该方法耗时耗力。另外,在植物发育中的环境变化可产生在完成母本人工去雄后产雄穗的植株。因此,去雄不能确保雌性近交植株的完全雄性不育。在此情况下,获得的可育雌性植株将成功散发花粉,某些雌性植株将自花传粉。这将使目的杂合体种子与雌性近交系的种子一起收获。雌性近交系种子不能和F1种子一样多产。另外,存在雌性近交系种子可能意味着杂合体生产公司的种质安全风险。还可以对雌性近交系机械去雄。机械去雄与人工去雄近似一样可靠,但更快,成本更低。然而,大部分去雄设备对植株产生的损伤比手工去雄大,这降低了F1种子产量。因此,目前两种形式的去雄都不是完全令人满意,对降低生产成本、增加生产安全性和在杂合体种子生产过程中消除母本自花传粉的替代性杂合体生产方法的需要一直存在。
另一种防止亲本植株自交的方法是使用为雄性不育或雌性不育的亲本植株。已在许多植物中鉴别出雄性育性基因,包括显性和隐性雄性育性基因。隐性雄性育性基因纯合型植株不产生有生命力的花粉,可用作母本植株。但是,雄性可育基因隐性纯合型母本植株的结果是其不能自交,因此,必须提供一种获得花粉的方法,以便保持亲本P2植株系。一般而言,通过使纯合显性雄性育性植株和纯合隐性雌性不育植株杂交,产生雄性育性基因杂合型保持细胞系。然后,使杂合保持系植株和纯合隐性雄性不育植株杂交,产生其中50%的子代为雄性不育的群。然后选择雄性不育植株用于产生杂合体。因此,该方法需要额外的育种和选择步骤来获得雄性不育植株,因此增加了生产杂合体植物所需的时间和成本。
为克服不得不由雄性育性植株(通过使保持植株系和雌性(雄性不育)植株系杂交产生)中选择雄性不育植株的要求,已开发了通过在植株的雄性生殖器官细胞中表达细胞毒性分子获得雄性不育植株的方法。例如,可将编码细胞毒性分子的核酸连接至绒毡层特异性启动子,并导入到植物细胞中,使得毒性分子在表达时杀死花药细胞,由此使植株雄性不育。但是,如上所述,这种母本植株不能自交,因此,需要制备和使用保持植株系,其例如通过提供显性雄性育性基因或通过提供失活或者抑制细胞毒性基因产物活性的方法(参见美国专利第5,977,433号)在与雄性不育母本杂交时恢复育性。
已描述了其它赋予遗传雄性不育性的方法,包括例如产生在赋予雄性不育性的基因组中的不同位置具有多个突变基因(参见美国专利第4,654,465号和4,727,219号)或具有染色体转座(参见美国专利第3,861,709号和3,710,511号)的植株。另一种赋予遗传雄性不育性的方法包括鉴别雄性育性需要的基因;沉默该内源基因,产生包含有效连接至该雄性育性基因编码序列的诱导型启动子的转基因,将该转基因插回到植株中,由此产生在没有诱导剂时为雄性不育的植株,当使该植株接触诱导剂时其恢复雄性育性(参见美国专利第5,432,068号)。
尽管先前描述的获得和保持杂合体植物系的方法已用于植物育种和农业用途,但为了获得杂合体植物,它们需要众多步骤和/或用于保持雄性不育或雌性不育植株群的其它系。这种要求增加了培育杂合体植株的成本,由此增加了消费者成本。因此,存在着对便利有效的杂合体植物生产方法的需要,特别是对产生可杂交获得杂合体植物的亲本系的需要。
可信赖的遗传雄性不育系统应提供众多超越其它系统的优势。通过使用胞质雄性不育(CMS)近交系可在某些基因型中避免艰苦的去雄程序。在没有育性恢复基因的情况下,CMS近交系植株由于胞质(非核)基因组因素而雄性不育。因此,此CMS特征在玉米植株中只通过母本遗传,因为仅有母本才能向受精种子提供胞质。用来自另一个非雄性不育的近交系的花粉使CMS植株受精。第二个近交系的花粉可能提供或不提供使杂合体植物雄性可育的基因。通常,必须将同一杂合体的去雄正常玉米种子和产生CMS的种子混合,以确保在培育杂合体植物时可获得足够用于受精的花粉量和确保胞质多样性。
另一类遗传不育性公开于授予Brar等的美国专利第4,654,465号和第4,727,219号。但是,该形式的遗传雄性不育性需要在基因组中的不同位置保持多个突变基因,并需要复杂的标记系统追踪基因,使得该系统不便使用。Patterson描述了染色体转座的遗传系统,其可能是有效的,但也很复杂。(参见美国专利第3,861,709和3,710,511号)。
为解决现有不育系统的缺点,已进行了许多其它尝试。例如,Fabijanski等开发了几种在植物中引起雄性不育的方法(参见EPO89/3010153.8公开号329,308,以及以WO 90/08828公开的PCT申请PCT/CA90/00037)。一种方法包括将编码细胞毒性物质、使用雄性组织特异性启动子表达的基因传递入植株中。另一种方法包括一种反义系统,其中鉴别出育性关键基因,并将该基因的反义构建物插入植株中。Mariani等还展示了几种细胞毒性反义系统。参见EP 89/401,194。再其它系统使用抑制对雄性育性关键的其它基因表达的“阻抑物”基因。参见WO 90/08829。
对该系统的再进一步改进描述于美国专利第5,478,369号,其中通过使对雄性育性关键的植物天然基因沉默,再导入处于控制基因表达的诱导型启动子控制之下的雄性育性基因功能拷贝,获得赋予可控雄性不育性的方法。该植株因此是组成型不育的,仅在启动子被诱导使得雄性育性基因表达时才变成可育的。
在许多情况下,通过保持纯合隐性状态表达特定植物性状。在必须使用转基因性恢复基因进行保持时,保持纯合状态就出现了困难。例如,已表明玉米中的MS45基因(美国专利第5,478,369号)是雄性育性关键性基因。由于MS45育性性状的孢子体性质,所以显性MS45等位基因杂合或半合型植株是完全可育的。MS45基因中的天然突变被称为ms45,当该突变等位基因为纯合状态时,其赋予植株雄性不育表型。当通过正常杂交或转基因互补法将非突变型的该基因导入到植物中时,这种不育性可被逆转(即育性恢复)。但是,通过杂交恢复育性去除了需要的纯合隐性状态,两种方法都恢复了完整的雄性育性,并防止纯雄性不育母系保持。在控制植物的雌性育性时产生了同样的担心,其中纯合隐性雌性必须通过与含恢复基因的植株杂交得以保持。因此,不仅在控制遗传隐性系中的恢复基因表达方面有可观价值,而且在控制杂合体生产过程中恢复基因向子代传递方面有重要价值。
发明内容
本发明基于以下判定:可修饰生物(例如植物或哺乳动物)的基因型,以包含降低但不消除基因活性的显性抑制基因等位基因或转基因构建物,其中生物表型基本不受影响。例如,植株可包含抑制植株雄性育性基因活性的显性抑制基因等位基因和/或转基因构建物,而不使植株雄性不育,或者可包含抑制存活所需基因活性的显性抑制基因等位基因和/或转基因构建物,而不杀死植株。此外,可使这种具有含显性抑制基因等位基因或转基因构建物的选定基因型的植株对杂交,以产生表现出表型变化(例如雄性不育性)的子代。含受抑制的雄性育性基因的植株子代例如可在杂合体植物生产中用作母本。
因此,在一个实施方案中,本发明涉及植株育种对,其中育种对所含的植株是可育(即雄性可育和雌性可育)的,其中不育子代(例如雄性不育子代)通过使植株育种对杂交产生。例如,本发明的植株育种对可包括:具有失活的第一内源育性基因的第一植株,其中第一植株可育;和具有失活的第二内源育性基因的第二植株,其中第二植株可育。这种育种对的特征还在于:如果第一内源育性基因是雄性育性基因,则第二内源育性基因也是雄性育性基因,同样,如果第一内源育性基因是雌性育性基因,则第二内源育性基因也是雌性育性基因。
在本发明的植株育种对中,第一内源育性基因和第二内源育性基因可编码在涉及决定植株育性的单个通路中存在的基因产物,或第一内源育性基因和第二内源育性基因可编码在分开但汇聚的通路中的基因产物。在任一种情况下,在植株中存在单个失活育性基因都基本上不影响植株或由其产生的植株的育性,除了在如上定义的第一和第二植株杂交时以外,子代植株中第一和第二育性基因同时失活产生不育(即雄性不育或雌性不育)的子代植株。
优选在育性基因的两个等位基因中,由于例如突变(例如在降低或抑制育性基因表达的编码或非编码序列中缺失、置换或插入一个或多个核苷酸),包括例如基因敲除(例如通过同源重组事件),可使失活的育性基因失活。失活的育性基因还可以由于例如在通常表达基因的植株细胞或祖细胞中表达基因产物(例如转基因产物(例如RNA或编码多肽))而失活,其中所述基因产物降低或抑制内源育性基因的表达。此外,在本发明的植株育种对中,第一植株的第一内源育性基因和第二植株的第二内源育性基因可以相同或不同方式失活。例如,第一内源育性基因可由于突变失活,而第二内源育性基因可由于表达转基因产物(例如含第二个育性基因启动子核苷酸序列的发夹RNA)失活。
在各种实施方案中,育种对可包括第一植株(其中第一内源育性基因通过突变失活)和第二植株(其具有的第二内源育性基因以突变以外的方式失活);或可包括第一植株(其中第一内源育性基因通过突变失活)和第二植株(其中第二内源育性基因通过突变失活);或可包括第一植株(其中第一内源育性基因以突变以外的方式失活)和第二植株(其中第二内源育性基因以突变以外的方式失活)。在该实施方案的多个方面中,分别通过敲除第一或第二育性基因使第一或第二植株的第一或第二内源育性基因失活;或分别通过突变第一或第二育性基因的启动子使第一或第二植株的第一或第二内源育性基因失活。在其它方面,分别通过敲除第一和第二育性基因使第一和第二植株的第一和第二内源育性基因失活;或分别通过突变第一和第二育性基因的启动子使第一和第二植株的第一和第二内源育性基因失活。
在其它实施方案中,在本发明的植株育种对中,由于含启动子(其有效连接至第一发夹(hp)核糖核酸(RNA)分子(hpRNA)的编码核苷酸序列)的第一外源核酸分子在第一植株中表达而使第一内源育性基因失活,其中第一hpRNA含第一内源育性基因启动子的核苷酸序列,其中第一hpRNA在表达时抑制第一内源育性基因的表达;或由于含启动子(其有效连接至第二hpRNA的编码核苷酸序列)的第二外源核酸分子在第二植株中表达而使第二内源育性基因失活,其中第二hpRNA含第二内源育性基因启动子的核苷酸序列,其中第二hpRNA在表达时抑制第二内源育性基因的表达;或由于具有上述特征的第一hpRNA和第二hpRNA分别在第一植株和第二植株中表达而使第一内源育性基因和第二内源育性基因均失活。在该实施方案的各个方面中,第一外源核酸分子(当存在时)稳定整合入第一植株的细胞基因组中;或第二外源核酸分子(当存在时)稳定整合入第二植株的细胞基因组中;或第一外源核酸分子(当存在时)和第二外源核酸分子(当存在时)二者分别稳定整合入第一植株和第二植株的细胞基因组中。
由于包含有效连接至hpRNA编码核苷酸序列的启动子的外源核酸分子分别在第一个和/或第二植株中表达,第一和/或第二内源育性基因失活,在此,启动子可为任何在植物细胞中有活性的启动子,例如组成活性启动子(例如遍在蛋白启动子);组织特异性启动子,具体地说是生殖组织启动子(例如花药特异性启动子,例如绒毡层特异性启动子);诱导型启动子;或发育或阶段特异性启动子。失活的育性基因可为雄性育性基因或雌性育性基因,前提是如果在育种对的第一植株中雄性育性基因失活(即第一内源雄性育性基因),则育种对的第二植株具有不同于第一内源雄性育性基因的失活雄性育性基因;反之,如果在育种对的第一植株中雌性育性基因失活(即第一内源雌性育性基因),则育种对的第二植株具有不同于第一内源雌性育性基因的失活雌性育性基因。此外,第一或第二内源育性基因的单独失活不能使植株不育,而具有第一失活育性基因的第一植株和具有第二失活育性基因的第二植株杂交产生不育的子代。
在另一个实施方案中,本发明涉及转基因植株育种对,其包括已将含启动子(其有效连接至第一hpRNA的编码核苷酸序列)的第一外源核酸分子整合入其基因组的第一育性转基因植株,其中第一hpRNA含第一内源育性基因启动子的核苷酸序列,其中第一hpRNA在表达时抑制第一内源育性基因的表达;和已将含启动子(其有效连接至第二hpRNA的编码核苷酸序列)的第二外源核酸分子整合入其基因组的第二育性转基因植株,其中第二hpRNA含第二内源育性基因启动子的核苷酸序列,其中第二个内源基因不同于第一内源基因,其中第二hpRNA在表达时抑制第二内源育性基因的表达。如本文所公开,第一内源基因不同于第二内源基因,此外,如果在植株育种对中第一植株的第一内源育性基因是雄性育性基因,则育种对的第二植株的第二内源育性基因也是雄性育性基因;而如果第一植株的第一内源育性基因是雌性育性基因,则第二植株的第二内源育性基因也是雌性育性基因。
在某些实施方案中,在本发明植株育种对的第一或第二转基因植株中包含的外源核酸分子中,分别编码第一或第二hpRNA的核苷酸序列含要失活的育性基因启动子序列,具体地说是反向重复的启动子序列,以至于其在表达时RNA自杂交形成hpRNA。因此,核苷酸序列在细胞中表达时形成发夹RNA分子(即hpRNA),其抑制(即降低或抑制)内源育性基因由其内源启动子表达。
在育种对的第一或第二转基因植株中包含的外源核酸分子中,有效连接至hpRNA编码核苷酸序列的启动子可为任何在植物细胞中有活性的启动子,具体地说是在植物生殖组织(例如雄蕊和子房)中有活性(或可被活化)的启动子。因此,启动子可为例如组成活性启动子、诱导型启动子、组织特异性启动子或发育阶段特异性启动子。另外,第一外源核酸分子的启动子可与第二外源核酸分子的启动子相同或不同。
一般来说,基于例如要抑制的内源育性基因是雄性育性基因还是雌性育性基因选择启动子。因此,当要抑制的内源育性基因是雄性育性基因(例如BS7基因和SB200基因)时,启动子可为雄蕊特异性和/或花粉特异性启动子,例如MS45基因启动子(美国专利6,037,523)、5126基因启动子(美国专利5,837,851)、BS7基因启动子(WO02/063021)、SB200基因启动子(WO 02/26789)、TA29基因启动子(Nature347:737(1990))、PG47基因启动子(美国专利5,412,085;美国专利5,545,546;Plant J 3(2):261-271(1993))、SGB6基因启动子(美国专利5,470,359)、G9基因启动子(5,837,850;5,589,610)等,使得hpRNA在花药和/或花粉中或在产生花药细胞和/或花粉的组织中表达,由此降低或抑制内源雄性育性基因的表达(即使内源雄性育性基因失活)。相比之下,当要抑制的内源基因为雌性育性基因时,启动子例如可为子房特异性启动子。然而,如本文所公开,可使用任何引导hpRNA在目的生殖组织中表达的启动子,包括例如一般在大多数或全部植物细胞中实现转录的组成活性启动子,如遍在蛋白启动子。
本发明还提供本发明植株育种对的第一植株的细胞或第二植株的细胞或第一植株和第二植株二者的细胞。另外,提供第一植株和/或第二植株的种子,还提供第一植株和/或第二植株的插条。
本发明进一步涉及为隐性基因型的隐性纯合型转基因非人生物,其中转基因生物含可表达的第一外源核酸分子和编码hpRNA的第二外源核酸分子,其中第一外源核酸分子包含有效连接至恢复基因编码多核苷酸的第一启动子,其表达恢复了表型,否则该表型将由于纯合隐性基因型而不存在。转基因非人生物可为任何具有二倍体(或更高倍体)基因组的非人生物,包括例如哺乳动物、鸟、爬行动物、两栖动物或植物。
在一个实施方案中,本发明转基因植物的第二可表达外源核酸分子编码第一启动子特异性的hpRNA,第一启动子驱动恢复基因表达。在该实施方案的一个方面,第二可表达外源核酸分子还包含第二启动子,该启动子有效连接至hpRNA编码核苷酸序列。第二启动子一般不同于(第一可表达外源核酸分子的)第一启动子,其可为例如组成型启动子、诱导型启动子、组织特异性启动子或发育阶段特异性启动子,使得hpRNA可以组成型方式、诱导型方式、组织特异性方式或在发育的特定阶段在转基因生物中表达。在另一个实施方案中,本发明转基因植物的第二可表达外源核酸分子编码非第一启动子(其驱动第一可表达外源核酸分子的恢复基因表达)的启动子特异性hpRNA。
本文以转基因植物作为本发明转基因非人生物的示例,该转基因植物是隐性不育基因型的隐性纯合型(例如ms45基因隐性纯合型,ms45基因是雄性育性基因),含(a)第一可表达转基因(例如含MS45编码序列的转基因),其包含有效连接至恢复基因编码核苷酸序列的第一启动子,该转基因在表达时恢复转基因植物的育性,和(b)编码hpRNA的第二可表达转基因,其在在表达时抑制不同于第一启动子的第二启动子的表达。在一个实施方案中,第一启动子是组成型或发育调节型启动子,其中育性恢复基因在转基因植物中表达,转基因植物是可育的。在另一个实施方案中,第一启动子是诱导型启动子,其中在转基因植物接触合适的诱导剂时,育性恢复基因的表达被诱导,使转基因植物可育。
在另一个实施方案中,本发明还涉及转基因非人生物育种对,包括第一转基因生物和第二转基因生物,其各自均为相同隐性基因型的隐性纯合型。育种对的特征进一步在于:第一转基因生物含第一可表达外源核酸分子和第二可表达外源核酸分子,第一可表达外源核酸分子包含有效连接至恢复基因编码核苷酸序列的第一启动子,该恢复基因的表达恢复表型,否则该表型将由于纯合隐性基因型而不存在,第二可表达外源核酸分子编码不同于第一启动子的第二启动子特异性的hpRNA。第二转基因生物含第三可表达外源核酸分子和第四可表达外源核酸分子,第三可表达外源核酸分子包含有效连接至恢复基因编码核苷酸序列的第二启动子,该恢复基因的表达恢复表型,否则该表型将由于纯合隐性基因型而不存在,第四可表达外源核酸分子编码第一启动子特异性hpRNA。第一和第二转基因非人生物的特征进一步在于:当使其相互配种时,产生这种子代:其中第二hpRNA抑制第一转基因的恢复基因的表达,第一hpRNA抑制第三转基因的恢复基因的表达,使得子代表现出纯合隐性基因型的隐性表型。
如下以转基因植物育种对作为本发明转基因非人生物育种对的示例。
育种对的第一植株是育性转基因植株,其具有纯合隐性不育基因型,具有整合入其基因组中的第一外源核酸分子和第二外源核酸分子,第一外源核酸分子包含有效连接至第一异源启动子的育性恢复基因编码核苷酸序列,其中恢复基因的表达恢复第一转基因植株的育性;第二外源核酸分子含第一hpRNA,其中第一hpRNA含第二启动子的核苷酸序列,其中第一hpRNA在表达时抑制不同于第一启动子的第二启动子的表达。
育种对的第二转基因植株具有和第一转基因植株相同的纯合隐性不育基因型,具有整合入其基因组中的第三外源核酸分子和第四外源核酸分子,第三外源核酸分子包含有效连接至第二启动子(其与育性恢复基因异源)的育性恢复基因编码核苷酸序列,其中恢复基因的表达恢复第二转基因植株的育性;第四外源核酸分子含第二hpRNA,其中第二hpRNA含有第一异源启动子的核苷酸序列,其中第二hpRNA在表达时抑制含第一异源启动子的第一外源核酸分子表达。
如本文所公开,在第一和第二转基因植株的杂交子代中,第二hpRNA抑制第一外源核酸分子的表达,包括其中包含的育性恢复基因,第一hpRNA抑制第三外源核酸分子的表达,包括其中包含的育性恢复基因。因此,子代是不育的,例如雌性不育。本发明转基因植株育种对可为雄性育性基因隐性纯合型(即雄性不育,除了在育性恢复基因表达时以外),或者可为雌性育性基因隐性纯合型(即雌性不育,除了在育性恢复基因表达时以外)。
在一个方面,本发明的转基因植物育种对包括第一转基因植株,其为ms45隐性纯合型,其中第一外源核酸分子包含有效连接至5126基因启动子的MS45编码核苷酸序列,第二外源核酸分子含第一hpRNA,其含有BS7基因启动子的反向重复序列。所述育种对进一步包括第二转基因植株,其为ms45隐性纯合型,其中第三外源核酸分子包含有效连接至BS7基因启动子的MS45编码核苷酸序列,第四外源核酸分子含第二hpRNA,其含有5126基因启动子的反向重复序列。当此第一和第二转基因植株杂交时,获得雄性不育子代植株。
本发明还涉及生产不育植株的方法。此方法可通过使如本文所公开的植株育种对杂交来实施。在一个实施方案中,育种对的第一植株含使雄性育性相关通路的第一内源基因失活的突变,第二植株含也涉及雄性不育的相同或不同但汇聚的通路的第二个内源基因,其中子代植株是双突变体,并具有雄性不育表型。在另一个实施方案中,使用第一和第二转基因植株实施该方法,第一和第二转基因植株各自含有hpRNA编码转基因,其分别使第二和第一转基因植株中的内源育性基因失活,其中通过使亲本植株杂交产生的子代植株表现出不育表型。
本发明还涉及通过繁殖不表现出隐性表型的亲本转基因生物,生产表现出隐性表型的转基因非人生物的方法。例如,本发明提供生产不育子代植株的方法:使各自为相同育性基因隐性纯合型的第一和第二转基因植株杂交,其中在第一转基因植株中,育性恢复基因由第一启动子表达,并表达抑制第二启动子表达的hpRNA,在第二转基因植株中,育性恢复基因由第二启动子表达,并表达抑制第一启动子表达的第二hpRNA。不育子代植株可为雌性不育或雄性不育植株。例如,在第一转基因植株和第二转基因植株的杂交中产生雄性不育子代,第一转基因植株含第一外源核酸分子和第二外源核酸分子,第一外源核酸分子包含有效连接至5126基因启动子的MS45编码核苷酸序列,第二外源核酸分子含第一hpRNA,其含有BS7基因启动子的核苷酸序列;第二转基因植株含第三外源核酸分子和第四外源核酸分子,第三外源核酸分子包含有效连接至BS7基因启动子的MS45编码核苷酸序列,第四外源核酸分子含第二hpRNA,其含有5126基因启动子的核苷酸序列。因此,本发明提供通过如本文公开的方法生产的植株,例如雄性不育植株。
本发明进一步涉及生产杂合体植物种子的方法。该方法例如可如下实施:用含至少一个显性等位基因(其对应于雄性不育植株的纯合隐性不育基因型)的雄性可育植株的花粉对如本文公开内容所生产的雄性不育植株传粉(例如天然、机械或人工),被传粉的雄性不育植株由此生产杂合体种子。因此,本发明还提供通过该方法生产的杂合体种子。本发明涉及通过培育该杂合体种子获得杂合体植物的方法,并进一步提供通过培育该杂合体种子产生的杂合体植物。
本发明进一步涉及鉴别细胞中表达基因的功能的方法。在细胞中表达的基因可为任何含启动子的基因,包括含内源启动子的内源基因。例如可如下实施鉴别基因功能的方法:将第一外源核酸分子导入到表达该基因的细胞中,第一外源核酸分子包含有效连接至第一异源启动子的hpRNA编码核苷酸序列,其中hpRNA含要检测其功能的基因的内源启动子核苷酸序列,其中hpRNA在表达时抑制该基因的表达;检测与hpRNA未表达时野生型表型相比hpRNA表达时细胞表型的变化,由此以表型变化鉴别该基因的功能。一方面,该方法进一步包括将第二外源核酸分子导入到细胞中,第二外源核酸分子包含有效连接至第二异源启动子的基因编码的多肽的编码核苷酸序列,其中当基因编码的多肽由第二异源启动子表达时,恢复野生型表型。
本发明的方法可使用含目的基因的单细胞实施,或者可使用含该细胞的生物实施。生物可为任何其中表达目的基因的目的生物。在一个实施方案中,细胞为植物细胞,植物细胞可为体外植物细胞,或可为一种个多个原位植物细胞。在一个实施方案中,生物为转基因植物,其含稳定整合入其基因组的第一外源核酸分子。在该实施方案的一个方面,转基因植物进一步包含整合入其基因组的第二外源核酸分子(含目的基因编码的多肽的编码核苷酸序列),其有效连接至第二异源启动子,其中当第二外源核酸分子由第二异源启动子表达时,恢复野生型表型。
在某些实施方案中,本发明解决了繁殖具有隐型纯合型繁殖性状的植株的难题,而在产生的子代中没有失去隐型纯合型状态。这可如下实现:将至少一种恢复转基因构建物导入植株中,该构建物有效连接(1)含基因的功能拷贝的第一核苷酸序列,其与由隐型纯合状态产生的突变表型性状互补,和(2)第二功能核苷酸序列,其干扰植株雄性配子的形成、功能或散播,并有效连接至雄性-配子-组织优选启动子。该构建物保持为半合状态,含该构建物的植株在本文被称为保持系。当含该连接构建物的保持系植株用作花粉供体使隐性纯合型植株受精时,提供给隐性纯合型植株的唯一有生命力的雄性配子是含隐性等位基因且不含任何转基因构建物元件的雄性配子。由于连接的第二个基因防止有生命力的花粉形成的作用,含恢复转基因构建物的花粉粒均没无生命力。因此,由这种有性杂交产生的子代对该转基因构建物而言是非转基因的。
尽管保持系产生的、含恢复转基因构建物的花粉无生命力,但50%的保持系胚珠(雌性配子)含恢复转基因构建物。因此,保持系可通过自花受精繁殖,恢复转基因构建物分离使得其包含在50%的自花受精保持系雌穗种子中。通过将恢复转基因构建物与选择标记连接,可分离出50%含转基因的种子,以繁殖保持系群,该保持系群保持为隐性基因纯合型和恢复转基因构建物半合型。
在进一步的实施方案中,如果禁止雌性配子形成或起作用,则需要将能够互补此突变表型的基因与诱导型启动子连接,以帮助保持保持系植株。这种植株在暴露于诱导环境时,将恢复雌性育性,然后植株可自花受精,以产生既具有需要的隐性突变性状又具有恢复转基因构建物的子代。
尽管本发明以植物作为示例,但本领域技术人员会认识到其适用于其它非人生物,包括哺乳动物。例如,本发明包括一种在非人生物亲本对的子代中抑制表型的方法,其中(a)所述表型在所述亲本的每一个中均表达;(b)操作每个亲本的基因组,以使影响目的表型的基因失活;和(c)在第一个亲本中失活的基因编码与在第二个亲本中失活的基因不同的基因产物。
本发明涉及以下实施方式:
1.一种鉴别在细胞中表达的目的基因产物功能的方法,所述方法包括:
(a)将第一外源核酸分子导入到所述细胞中,第一外源核酸分子包含有效连接至第一启动子的hpRNA分子编码核苷酸序列,其中hpRNA含所述目的基因启动子核苷酸序列,其中hpRNA在表达时抑制所述基因的表达;和
(b)与不表达hpRNA的对应细胞或生物相比,在hpRNA表达时检测细胞或由所述细胞再生的生物的表型变化,
借此表型变化鉴别目的基因产物功能。
2.第1项的方法,所述方法进一步包括将第二外源核酸分子导入到所述细胞中,第二外源核酸分子包含有效连接至第二启动子的所述目的基因编码多肽的编码核苷酸序列,其中所述第二异源核酸分子在表达时恢复原始表型。
3.第1项的方法,其中所述细胞是植物细胞。
具体实施方式
本发明的实施方案反映了以下判定:可修饰生物的基因型,以包含抑制(即降低但不消除)基因活性的显性抑制基因等位基因或转基因构建物,其中生物的表型基本不受影响。
在某些实施方案中,本发明以植物育性作为示例,更具体地说以植物雄性育性作为示例。例如,可遗传修饰植物以包含编码发夹RNA(hpRNA)分子的转基因构建物,其抑制内源雄性育性基因的表达,但不使植株雄性不育。
在一个实例中,基因A和基因B在产生产物的通路中调节序贯(但不必是连续的)步骤。在第一植株中,基因A受抑制,以降低但不消除基因A活性。通路基本上不受抑制,因此所述第一植株的表型不受影响。在第二植株中,基因B受抑制,以降低但不消除基因B活性。通路基本上不受抑制,因此所述第二植株的表型不受影响。在所述第一和第二植株杂交的子代中,联合抑制基因A和基因B导致通路产物丧失和表型改变。可通过使用如本文别处描述的发夹构建物(hpRNA)实现对基因A和/或基因B的抑制。
在另一个实例中,基因A和基因B调节汇聚点前的汇聚通路步骤,该汇聚通路产生产物。在第一植株中,基因A受抑制,以降低但不消除基因A活性,所述第一植株的表型不受影响。在第二植株中,基因B受抑制,以降低但不消除基因B活性,所述第二植株的表型不受影响。在所述第一和第二植株杂交的子代中,联合抑制基因A和基因B导致汇聚通路的产物丧失。可通过使用如本文别处描述的发夹构建物(hpRNA)实现对基因A和/或基因B的抑制。
在某些实施方案中,基因A和基因B调节涉及植物育性的通路步骤。例如,以此方式,表达靶向hpRNA分子的表型育性植株的杂交可产生雄性不育植株。例如,可转化具有纯合隐性雄性不育基因型的亲本植株,使其各自表达不同异源启动子的恢复雄性育性基因和抑制另一亲本植株中恢复基因表达的hpRNA。这种亲本植株是可育的,其可相互杂交,产生雄性不育植株。这可以一对雄性育性植株A和B为示例。两个植株均具有纯合隐性雄性不育基因型ms45ms45。用在单个或多个构建物中的5126启动子(其有效连接至MS45恢复基因)和BS7启动子特异性的hpRNA转化植株A。用在单个或多个构建物中的BS7启动子(其有效连接至MS45恢复基因)和5126启动子特异性的hpRNA转化植株B。由于存在MS45恢复基因,植株A和植株B均是雄性可育的。在植株A和植株B的杂交中,由于互补发夹构建物靶向驱动恢复基因的各启动子的作用,育性恢复被逆转,所述杂交的子代是雄性不育的。该子代在杂合体生产中可用作母本。由于ms45等位基因的隐性性质,所以野生型花粉可恢复杂合体的育性。
本发明的某些实施方案包含具有纯合隐性基因型的转基因非人生物,纯合隐性基因型导致没有特定目的表型,所述生物进一步包含(a)含特定表型恢复基因的第一外源核酸分子,其有效连接至第一启动子;和(b)含第二启动子的第二外源核酸分子,第二启动子有效连接至第一发夹核糖核酸分子(hpRNA)编码核苷酸序列,其中第一hpRNA包含第一启动子或第三启动子的核苷酸序列,其中所述转基因非人生物表现出目的表型。
农业产业生产的作物用于供给人和动物,另外还用于其它产业,以制备各种产物如粘结剂和炸药,例如,玉米用作人类食品、牲畜饲料(例如肉牛、奶牛、肉猪和家禽饲料)和工业原材料。玉米的食品用途包括食用玉米种仁以及干磨和湿磨工业的产物(例如粗磨谷粉、玉米片、玉米粉、玉米淀粉、玉米浆和葡萄糖)。玉米油由玉米胚芽回收,玉米胚芽是干磨和湿磨工业的副产物。玉米的工业用途包括生产乙醇、湿磨工业中的玉米淀粉和干磨工业中的玉米粉。玉米淀粉和玉米粉的工业用途基于其功能特性,包括例如粘度、薄膜形成、粘附性质和悬浮颗粒的能力。玉米淀粉和玉米粉应用于纸张和纺织品产业,还应用于粘结剂、建筑材料、铸造粘结剂、洗衣用淀粉、炸药、油井泥和其它矿业用途。
许多作物,包括稻、小麦、玉米、番茄和瓜,都以杂合体形式培育,和亲本植株相比,杂合体表现出更强的活力和改良的品质。在植物育种程序中的杂合体发育一般需要开发纯合近交系,使这些系杂交,评价杂交情况。使用纯种繁育和反复选择育种方法由育种群开发近交系。例如,玉米植株育种程序将两种或多种近交系(或各种其它胚质源)的遗传背景组合入育种池中,通过自花传粉(自交)和选择需要的表型由该育种池开发新近交系。然后将选定近交系与其它近交系杂交,评价这些杂交的杂合体,以确定哪些具有商业潜力。因此,植物育种和杂合体发育是昂贵和耗时的过程。
纯种繁育以两个基因型杂交开始,每个基因型都可具有一种或多种在其它基因型没有或补充其它基因型的需要特征。如果两个原始亲本不提供所有的需要特征,则在育种群中可包含其它来源。使用该方法,在连续世代中选择优良植株并自交,直至获得纯合植物系。可使用反复选择育种,例如回交,以改良近交系,并可使用近交系生产杂合体。可使用回交将特定的需要性状由一个近交系或来源转移至没有该性状的第二个近交系,例如首先通过使优良近交系(回交亲本)与携带合乎所述性状的基因(或多个基因)的供体近交系(非回交亲本)杂交,使第一次杂交的子代与优良回交亲本回交,在产生的子代中选择由非回交亲本转移过来的需要性状。在5代或5代以上具有选定需要性状的回交世代之后,子代就控制要转移性状的基因座而言是纯合的,基本上所有其它基因都类似于优良亲本。最后的回交世代自交,获得要转移基因的纯育子代。
单杂交杂合体(F1)由两个近交系(P1和P2)杂交产生,每个近交系都具有互补另一个近交系基因型的基因型。在玉米植株育种程序中的商业化杂合体开发中,例如仅研究F1杂合体植株,因为其比其近交亲本更有活力。该杂合体活力(杂合体优势)可在多种多基因性状中表现出来,例如增加营养生长和增加产量。在玉米植株育种程序中的杂合体开发例如包括由各种种质库中选择用于初始育种杂交的植株;将由几个世代的育种杂交选定的植株自交,以产生一系列近交系,尽管其彼此不同,但真实繁育并高度均一;使选定的近交系和不同的近交系杂交,以产生杂合体F1子代。在玉米的近交过程中,近交系的活力下降,但当两个不同近交系杂交产生杂合体植株时活力恢复。近交系的纯合性和均一性的重要性在于,所定义的近交亲本植株对之间的F1杂合体总是相同的。因此,一旦鉴别出提供优良杂合体的近交系,则可无限地繁殖杂合体种子,只要近交亲本得以保持。
杂合体种子生产需要去除或失活母本产生的花粉。不完全去除或失活花粉提供了自交潜力,产生了风险:无心地将无意中自花传粉的种子和杂合体种子收获和包装在一起。一旦种植了该种子,可鉴别和选择自交植株;自交植株在遗传上等同于用于生产杂合体的雌性近交系。通常,根据其降低的活力鉴别和选择自交植株。例如,通过其较少活力的植物外观和/或繁殖特征(包括植株高度较矮、雌穗外形小、雌穗和种仁形状、穗轴颜色或其它特征)鉴别雌性自交植株。还可使用分子标记分析鉴别自交系(参见例如Smith and Wych,Seed Sci.Technol.14:1-8,1995)。使用该方法,可通过分析基因组中各个基因座的等位基因组成来验证自花传粉系的纯合性。
因为杂合体植物是重要和有价值的大田作物,植物育种工作者一直在研究开发以稳定近交系为基础的合乎农业经济学的高产杂合体。此杂合体的可用性使得可在所使用的投入下生产最大量的作物,同时对病虫害和环境压力的敏感性最小。为实现此目标,植物育种工作者必须通过鉴别和选择在分离群中存在的遗传独特个体,开发用于生产杂合体的优良近交亲本系。本发明有助于此目标,例如通过提供杂交时产生雄性不育子代的植株,其可用作生产杂合体植株的母本植株。
使用传统方法和更近的高通量方法,已鉴别出大量在其表达谱中为雄穗优选的基因。当方法限于传统的正向和反向遗传突变分析时,难以关联起这些基因的功能和最终产生育性花粉的重要生化或发育过程。如本文所公开,在玉米中的抑制方法提供了鉴别玉米中与花粉发育直接相关的基因的替代性快速手段。使用已被充分表征的玉米雄性育性基因MS45和几个功能未知的花药优选基因,使用转录后基因沉默(PTGS;参见例如Kooter等,(1999)Trends Plant Sci.4:340-346)或转录基因沉默(TGS;参见例如Mette等,(2000)EMBO J 19:5194-5201)方法评价产生雄性不育性的效率。
为检验PTGS,将含发夹的RNAi构建物(其具有由花药表达的cDNA序列的反向重复序列组成的茎(stem)结构)和含玉米非同源编码序列或可剪接内含子的环状结构导入到玉米中。
为检验作为敲除花药基因功能的方法的TGS,产生第二组构建物,其中花药特异性基因序列的启动子形成茎,非同源序列形成环状。使用组成型启动子和花药优选启动子表达构建物。
根据表达的发夹构建物类型观察对比的育性表型。表达PTGS构建物的植株是雄性可育的。相反,表达TGS构建物的植株是雄性不育的,没有MS45mRNA和蛋白。此外,当在这些植株中由异源启动子表达MS45时,含MS45启动子特异性hpRNA(即TGS构建物)的植株的不育表型被逆转。这些结果表明,TGS提供了一种将基因表达和未知基因(例如花药表达的单子叶植物基因)功能快速相关联的工具。
因此,本发明提供植株育种对,其中组成育种对的植株是可育的(即雄性可育和雌性可育),其中植株育种对杂交产生的子代是不育的(例如雄性不育)。如本文所公开,本发明的植株育种对可包括例如具有失活的第一内源育性基因、可育的第一植株和具有失活的第二内源育性基因、可育的第二植株。这种育种对的特征部分在于,如果第一内源育性基因是雄性育性基因,则第二内源育性基因也是雄性育性基因;而如果第一内源育性基因是雌性育性基因,则第二内源育性基因也是雌性育性基因。
本文使用的术语“内源”当用于基因时,指这种基因一般存在于特定生物的细胞基因组中,并以其正常状态存在于细胞中(即以其一般天然存在的状态存在于基因组中)。本文使用的术语“外源”指导入到细胞中的任何物质。术语“外源核酸分子”或“转基因”指一般不存在于细胞基因组中或导入到细胞中的任何核酸分子。这种外源核酸分子一般为重组核酸分子,其使用本文公开的重组DNA方法产生,或者使用本领域已知的方法产生。在各种实施方案中,本文公开的转基因非人生物可包含例如第一转基因和第二转基因。此第一和第二转基因可以单个核酸分子或单个单位(例如分别包含在不同载体中或包含在一个载体中)导入到细胞中,例如导入到转基因生物的祖细胞中。在每种情况下,可使用常规和众所周知的方法,例如标记基因表达或核酸杂交或PCR分析,证实要由其产生转基因生物的细胞含两个转基因。或者或另外,可以以后证实转基因的存在,例如在由推定的转化细胞再生植株之后。
本发明育种对植株的内源育性基因可例如由于以下原因失活:(1)内源基因突变,使得由该基因编码的产物功能被抑制(例如基因产物不表达或表达水平不足以介导其在植物或植物细胞中的完整功能);或(2)外源核酸分子的表达降低或抑制内源基因编码的基因产物的表达。因此,术语“失活”在本文广义地用于指对内源基因或含该基因的细胞的任何操作,使得基因编码产物介导的功能被抑制。还应认识到,不管失活的内源基因是活性降低还是完全失活,需要的相关表型都得以保持。因此,提到在亲本植株中被定义为具有雄性育性表型的失活雄性育性基因,可包括例如以低于正常水平表达、但足以保持亲本植株育性的雄性育性基因,或完全失活的雄性育性基因,其中亲本植株育性由于第二个基因产物的表达而得以保持。
可通过将一个或几个核苷酸缺失或插入到基因的核苷酸序列中(例如插入到启动子、编码序列或内含子中)、通过用其它不同核苷酸置换基因中的一个或几个核苷酸或通过敲除基因(例如通过使用合适靶向载体的同源重组),使内源基因实现突变,对基因功能产生抑制。例如使用本文公开的杂交方法,或者使用本领域已知的方法,可获得在两个等位基因都具有该突变的植株。通过在一般表达该基因的植物细胞中将抑制内源基因或内源基因表达产物(例如编码的多肽)表达的转基因或其编码产物(例如RNA)抑制内源基因或内源基因编码产物表达的转基因导入到植物细胞中,也可使内源基因实现失活,对基因功能产生抑制。
作为实例,通过在植物生殖器官细胞(例如其中要失活的内源育性基因为雄性育性基因的雄蕊细胞)中表达发夹RNA分子(hpRNA),可实现内源育性基因的失活。含植物雄性生殖器官的雄蕊包含各种细胞类型,包括例如花丝、花药、绒毡层和花粉。设计用于本发明目的的hpRNA,以包含要失活的内源基因启动子的反向重复序列;已描述能抑制基因表达的hpRNA(参见例如Matzke等,(2001)Curr.Opin.Genet.Devel.11:221-227;Scheid等,(2002)Proc.Natl.Acad.Sci.,USA99:13659-13662;Waterhouse和Helliwell(2003)Nature ReviewsGenetics 4:29-38;Aufsaftz等,(2002)Proc.Natl.Acad.Sci.99(4):16499-16506;Sijen等,Curr.Biol.(2001)11:436-440)。如本文所公开,雄蕊特异性启动子或雄蕊优选启动子(包括花药特异性启动子、花粉特异性启动子、绒毡层特异性启动子等)的使用,使得可以在植物中表达hpRNA(具体地说是在植物的雄性生殖细胞中),其中hpRNA抑制内源育性基因的表达,由此使内源育性基因的表达失活。因此,使用引导育性基因表达的启动子特异性的hpRNA进行抑制提供了一种使内源育性基因失活的方法。
在一个实施方案中,本发明的植株育种对可包括第一植株和第二植株,第一植株含第一外源核酸分子,第一外源核酸分子包含有效连接至第一hpRNA编码核苷酸序列的启动子,其中第一hpRNA含有的核苷酸序列包含第一内源育性基因启动子的反向重复序列,其中第一hpRNA在表达时抑制第一内源育性基因的表达;第二植株含第二外源核酸分子,第二外源核酸分子包含有效连接至第二hpRNA编码核苷酸序列的启动子,其中第二hpRNA含有的核苷酸序列包含第二内源育性基因启动子的反向重复序列,其中第二hpRNA在表达时抑制第二内源育性基因的表达。按照本发明,第一和/或第二外源核酸可以但不必须分别稳定整合在第一和/或第二植株的细胞基因组中。此育种对的第一和第二植株的特征部分在于,其各自均为可育的,其特征进一步在于杂交时该杂交的子代是不育的(例如雄性不育)。
本文使用的术语“第一”、“第二”、“第三”和“第四”仅用于澄清各种细胞和分子之间的关系,或用于区别不同类型的分子,除非另有明确说明,否则这些术语没有表示任何具体顺序、重要性或定量特征的意思。例如,除非另有明确说明,否则提到含“第一内源基因”的“第一”植株,其含义仅指特定基因存在于特定植株中。作为第二个实例,除非另有明确说明,否则提到含“第一转基因和第二转基因的第一植株”,其含义仅指所述植株包含两种彼此不同的外源核酸分子。
本文使用的术语“核酸分子”或“多核苷酸”或“核苷酸序列”广义上指通过磷酸二酯键连接在一起的两个或更多个脱氧核糖核苷酸或核糖核苷酸序列。因此,该术语包括RNA和DNA,其可为基因或其部分、cDNA、合成多脱氧核糖核酸序列等,可为单链或双链,以及可为DNA/RNA杂合体。而且,该术语在本文用于包括可由细胞分离的天然核酸分子,以及可通过例如化学合成法或酶法(例如通过聚合酶链反应(PCR))制备的合成分子。术语“重组体”在本文用于指在细胞外操作的核酸分子,包括两个或更多个相连的异源核苷酸序列。术语“异源”在本文用于指一般天然不连接或者连接的话也以不同于所公开的连接方式连接的核苷酸序列。例如,提到包含有效连接至异源启动子的编码序列的转基因,是指该启动子在天然所明细胞中一般不引导核苷酸序列的表达。
一般来说,含外源核酸分子(转基因)的核苷酸是天然脱氧核糖核苷酸(例如连接至2′-脱氧核糖的腺嘌呤、胞嘧啶、鸟嘌呤或胸腺嘧啶)或天然核糖核苷酸(例如连接至核糖的腺嘌呤、胞嘧啶、鸟嘌呤或尿嘧啶)。但是,核酸分子或核苷酸序列也可含核苷酸类似物,包括非天然合成核苷酸或修饰的天然核苷酸。这种核苷酸类似物在本领域众所周知,并市售可得,含此核苷酸类似物的多核苷酸也是如此(Lin等,Nucl.Acids Res.22:5220-5234,1994;Jellinek等,Biochemistry 34:11363-11372,1995;Pagratis等,Nature Biotechnol.15:68-73,1997)。同样,连接核苷酸序列的核苷酸的共价键一般也是磷酸二酯键,但也可以是例如硫二酯键(thiodiester)、硫代磷酸酯键、肽样键或本领域已知的用于连接核苷酸产生合成多核苷酸的任何其它键(参见例如Tam等,Nucl.AcidsRes.22:977-986,1994;Ecker和Crooke,BioTechnology 13:351360,1995)。在核酸分子将接触可含溶核活性的环境(包括例如植物组织培养基或在植物细胞中)时,掺入非天然核苷酸类似物或连接核苷酸或类似物的键可能是特别有用的,因为修饰的分子可以降低对降解的敏感性。
含天然核苷酸或磷酸二酯键的核苷酸序列可化学合成,或者可使用重组DNA方法、使用合适的多核苷酸作为模板生产。比较起来,含核苷酸类似物或非磷酸二酯键的共价键的核苷酸序列一般是化学合成的,尽管T7聚合酶之类的酶可将某些类型的核苷酸类似物掺入到多核苷酸中,并因此可用于由某些合适的模板重组生产这种多核苷酸(Jellinek等,出处同上,1995)。
外源核酸分子可包含有效连接的核苷酸序列,例如有效连接至hpRNA编码核苷酸序列的启动子或连接至雄性育性基因产物编码核苷酸序列的启动子。术语“有效连接的”在本文用于指两个或多个分子连接在一起时产生的分子具有单个分子各自的特征。例如,当用于指启动子(或其它调节元件)和编码基因产物的第二个核苷酸序列时,术语“有效连接的”指调节元件相对于第二个核苷酸序列的定位使得分离核苷酸序列的转录或翻译处于调节元件影响之下。当用于指含第一个多肽和一个或多个其它多肽的融合蛋白时,术语“有效连接的”指融合(嵌合)蛋白的各个多肽组分表现出为多肽组分特征的某些或全部功能(例如细胞小室定位结构域和酶活性)。在另一个实例中,各自编码多肽的两个有效连接的核苷酸序列可使编码序列符合读框,因此在转录和翻译时产生两种多肽,这两种多肽可为两种分离的多肽或融合蛋白。
当外源核酸分子包含有效连接至目的RNA或多肽编码核苷酸序列的启动子时,外源核酸分子可被认为是可表达的外源核酸分子(或转基因)。在本文使用术语“可表达的”,因为尽管此核苷酸序列可由启动子表达,但实际上用不着必须在特定的时间点及时表达。例如,当可表达转基因的启动子为没有基础活性的诱导型启动子时,有效连接的目的RNA或多肽编码核苷酸序列仅在接触合适的诱导剂后才表达。
转录启动子一般以位置和方向依赖性方式起作用,并通常定位在天然基因转录起始位点5′(上游)的约5个核苷酸至约50个核苷酸上或当中。比较起来,增强子可相对以位置或方向非依赖性方式起作用,并可定位在转录起始位点上游或下游的几百或几千个核苷酸处,或定位在基因编码区的内含子中,但仍有效连接至编码区,以便增强转录。除了启动子之外,各种调节元件的相对位置和方向是众所周知的,包括定位在合适读框中的转录调节序列(例如内部核糖体进入位点)或翻译调节元件(例如细胞区室化结构域),有效连接这些元件的方法在本领域是常规方法(参见例如Sambrook等,“Molecular Cloning:Alaboratory manual”(Cold Spring Harbor Laboratory Press 1989);Ausubel等,“Current Protocols in Molecular Biology”(John Wiley and Sons,Baltimore MD1987和至1995年的增刊))。
用于表达目的核酸分子的启动子可随意地为任何已知在植物或动物中可操作的系列天然启动子。引导在植物雄性或雌性生殖器官细胞中表达的启动子用于产生本发明的转基因植株或植株育种对。用于本发明的启动子可包括一般在植物的大多数或全部组织中有活性的组成型启动子;一般无活性或表现出低基础表达水平的诱导型启动子,其在细胞与合适的诱导剂接触时可被诱导至较高活性;组织特异性(或组织优选)启动子,其通常仅在一种或几种特定细胞类型(例如植物花药细胞)中表达;和发育或阶段特异性启动子,其仅在植物的生长或发育过程中的限定阶段有活性。如果有必要,通常可修饰启动子,以改变表达水平。某些实施方案包括待操作种的外源启动子。例如,可由分离自另一植物物种的启动子驱动导入到ms45ms45玉米种质中的Ms45基因;然后可设计发夹构建物,以靶向外源植物启动子,降低发夹与非靶内源玉米启动子相互作用的可能性。
示例性的组成型启动子包括35S花椰菜花叶病毒(CaMV)启动子(Odell等,(1985)Nature 313:810-812);玉米遍在蛋白启动子(Christensen等,(1989)Plant Mol.Biol.12:619-632和Christensen等,(1992)Plant Mol.Biol.18:675-689);Rsyn7启动子的核启动子以及公开于WO 99/43838和美国专利第6,072,050号的其它组成型启动子;稻肌动蛋白(McElroy等,(1990)Plant Cell 2:163-171);pEMU(Last等,(1991)Theor.Appl.Genet.81:581-588);MAS(Velten等,(1984)EMBO J.3:2723-2730);ALS启动子(美国专利第5,659,026号);稻肌动蛋白启动子(美国专利第5,641,876号;WO 00/70067);玉米组蛋白启动子(Brignon等,Plant Mol Bio 22(6):1007-1015(1993);Rasco-Gaunt等,Plant Cell Rep.21(6):569-576(2003))等。其它组成型启动子包括例如描述于美国专利第5,608,144号和第6,177,611号以及PCT公开WO03/102198的组成型启动子。
组织特异性、组织优选或阶段特异性调节元件进一步包括例如AGL8/FRUITFULL调节元件,其在成花诱导时被活化(Hempel等,Development 124:3845-3853,1997);根特异性调节元件,例如RCP1基因和LRP1基因调节元件(Tsugeki和Fedoroff,Proc.Natl.Acad.,USA96:12941-12946,1999;Smith和Fedoroff,Plant Cell 7:735-745,1995);花特异性调节元件,例如LEAFY基因和APETALA1基因调节元件(Blazquez等,Development 124:3835-3844,1997;Hempel等,出处同上,1997);种子特异性调节元件,例如油质蛋白基因调节元件(Plant等,Plant Mol.Biol.25:193-205,1994)以及开裂区特异性调节元件。其它的组织特异性或阶段特异性调节元件包括Zn13启动子,其为花粉特异性启动子(Hamilton等,Plant Mol.Biol.18:211-218,1992);UNUSUALFLORAL ORGANS(UFO)启动子,其在顶端枝条分生组织中有活性;在枝条分生组织中活性的启动子(Atanassova等,Plant J.2:291,1992),cdc2启动子和cyc07启动子(参见例如Ito等,Plant Mol.Biol.24:863-878,1994;Martinez等,Proc.Natl.Acad.Sci.,USA89:7360,1992);分生组织优选的meri-5和H3启动子(Medford等,Plant Cell3:359,1991;Terada等,Plant J.3:241,1993);大麦Myb-相关基因的分生组织和韧皮部优选启动子(Wissenbach等,Plant J.4:411,1993);拟南芥(Arabidopsis)cyc3aAt和cyc1At(Shaul等,(1996)Proc.Natl.Acad.Sci.93:4868-4872);长春花(C.roseus)细胞周期蛋白CYS和CYM(Ito等,(1997)Plant J.11:983-992);和烟草(Nicotiana)细胞周期蛋白B1(Trehin等,(1997)Plant Mol.Biol.35:667-672);APETALA3基因启动子,其在花分生组织中有活性(Jack等,Cell 76:703,1994;Hempel等,出处同上,1997);隐花样(Agamous-like,AGL)家族成员(例如AGL8)启动子,其在转变至开花时在枝条分生组织中有活性(Hempel等,出处同上,1997);花开裂区启动子;L1-特异性启动子;成熟增强型番茄多聚半乳糖醛酸酶启动子(Nicholass等,Plant Mol.Biol.28:423-435(1995));E8启动子(Deikman等,Plant Physiol.100:2013-2017(1992))和果实特异性2A1启动子、玉米的U2和U5 snRNA启动子、Z4 22kD玉米醇溶蛋白编码基因的Z4启动子、10kD玉米醇溶蛋白编码基因的Z10启动子、27kD玉米醇溶蛋白编码基因的Z27启动子、19kD玉米醇溶蛋白编码基因的A20启动子等。其它的组织特异性启动子可使用众所周知的方法分离(参见例如美国专利第5,589,379号)。枝条优选启动子包括枝条分生组织优选启动子,例如公开于Weigel等,(1992)Cell69:843-859(登录号M91208)的启动子;登录号AJ131822的启动子;登录号Z71981的启动子;登录号AF049870的启动子和公开于McAvoy等,(2003)Acta Hort.(ISHS)625:379-385的枝条优选启动子。花序优选启动子包括查耳酮合酶启动子(Van der Meer等,(1992)PlantJ.2(4):525-535);花药特异性LAT52(Twell等,(1989)Mol.Gen.Genet.217:240-245);花粉特异性Bp4(Albani等,(1990)Plant Mol Biol.15:605);玉米花粉特异性基因Zm13(Hamilton等,(1992)Plant Mol.Biol.18:211-218;Guerrero等,(1993)Mol.Gen.Genet.224:161-168);小孢子-特异性启动子,例如apg基因启动子(Twell等,Sex.PlantReprod.6:217-224(1993)),和绒毡层特异性启动子,例如TA29基因启动子(Mariani等,Nature 347:737,1990;美国专利第6,372,967号);以及其它雄蕊特异性启动子,例如MS45基因启动子,5126基因启动子、BS7基因启动子、PG47基因启动子(美国专利第5,412,085号;第5,545,546号;Plant J 3(2):261-271(1993))、SGB6基因启动子(美国专利第5,470,359号)、G9基因启动子(5,8937,850;5,589,610)、SB200基因启动子(WO 02/26789)等(参见实施例1)。目的组织优选启动子还包括向日葵花粉表达的基因SF3(Baltz等,(1992)The Plant Journal2:713-721)、甘蓝型油菜(B.napus)花粉特异性基因(Arnoldo等,(1992)J.Cell.Biochem,Abstract No.Y101204)。组织优选的启动子还包括Yamamoto等,(1997)Plant J.12(2):255-265(psaDb);Kawamata等,(1997)Plant Cell Physiol.38(7):792-803(PsPAL1);Hansen等,(1997)Mol.Gen Genet.254(3):337-343(ORF13);Russell等,(1997)TransgenicRes.6(2):157-168(waxy或ZmGBS;27kDa玉米醇溶蛋白,ZmZ27;osAGP;osGT1);Rinehart等,(1996)Plant Physiol.112(3):1331-1341(棉花的Fbl2A);Van Camp等,(1996)Plant Physiol.112(2):525-535(烟草SodA1和SodA2);Canevascini等,(1996)Plant Physiol.112(2):513-524(烟草ltp1);Yamamoto等,(1994)Plant Cell Physiol.35(5):773-778(Pinus cab-6启动子)、Lam(1994)Results Probl.Cell Differ.20:181-196;Orozco等,(1993)Plant Mol Biol.23(6):1129-1138(菠菜核酮糖二磷酸羧化酶-加氧酶活化酶(Rca));Matsuoka等,(1993)Proc Natl.Acad.Sci.USA 90(20):9586-9590(PPDK启动子)和Guevara-Garcia等,(1993)Plant J.4(3):495-505(土壤杆菌(Agrobacterium)pmas启动子)报道的启动子。在雄性或雌性生殖器官细胞中有活性的组织特异性启动子在本发明的某些方面可能特别有用。
“种子优选的”启动子既包括“种子特异性”启动子(在种子发育过程中有活性的启动子,例如种子贮藏蛋白启动子),也包括“种子发芽”启动子(在种子发芽过程中有活性的启动子)。参见Thompson等,(1989)BioEssays 10:108。这种种子优选启动子包括但不限于Cim1(诱导细胞分裂素的信息)、cZ19B1(玉米19kDa玉米醇溶蛋白)、mi1ps(肌醇-1-磷酸合酶);参见WO 00/11177和美国专利第6,225,529号。γ-玉米醇溶蛋白是胚乳特异性启动子。球蛋白-1(Glob-1)是代表性的胚特异性启动子。对于双子叶植物,种子特异性启动子包括但不限于扁豆β-菜豆蛋白、Napin、β-伴大豆球蛋白、大豆凝集素、Cruciferin等。对于单子叶植物,种子特异性启动子包括但不限于玉米15kDa玉米醇溶蛋白、22kDa玉米醇溶蛋白、27kDa玉米醇溶蛋白、γ-玉米醇溶蛋白、Waxy、Shrunken1、Shrunken2、球蛋白1等。另参见WO 00/12733和美国专利第6,528,704号,其中公开了得自end1和end2基因的种子优选启动子。另外的胚特异性启动子公开于Sato等,(1996)Proc.Natl.Acad.Sci.93:8117-8122(稻同源框,OSH1);和Postma-Haarsma等,(1999)Plant Mol.Biol.39:257-71(稻KNOX基因)。其它的胚乳特异性启动子公开于Albani等,(1984)EMBO 3:1405-15;Albani等,(1999)Theor.Appl.Gen.98:1253-62;Albani等,(1993)Plant J.4:343-55;Mena等,(1998)The Plant Journal 116:53-62(大麦DOF);Opsahl-Ferstad等,(1997)Plant J 12:235-46(玉米Esr);和Wu等,(1998)Plant CellPhysiology 39:885-889(稻GluA-3、GluB-1、NRP33、RAG-1)。
诱导型调节元件是在诱导剂作用下能够直接或间接活化一个或多个DNA序列或基因转录的调节元件。诱导剂可为化学物质,例如蛋白、代谢物、生长调节物、除莠剂或酚类化合物;或生理应力,例如通过热、冷、盐或毒性元素直接施加或通过病原体或致病物(例如病毒)作用间接施加的生理应力;或其他生物或物理物质或环境条件。例如可通过喷雾、加水、加热或相似的方法外部施加诱导剂至细胞或植株,使含诱导调节元件的植物细胞接触诱导剂。基于特定诱导调节元件选择用于由诱导型启动子诱导表达的诱导剂。响应接触诱导剂,转录一般由诱导调节元件重新启动,或增加至基础或组成表达水平以上。通常,特异性结合诱导调节元件活化转录的蛋白因子以失活形式存在,然后其由诱导剂直接或间接转变为活性形式。本发明可使用任何诱导型启动子(参见Ward等,Plant Mol.Biol.22:361-366,1993)。
诱导调节元件的实例包括金属硫蛋白调节元件、铜诱导型调节元件或四环素诱导型调节元件,其转录分别可在二价金属离子、铜或四环素作用下实现(Furst等,Cell 55:705-717,1988;Mett等,Proc.Natl.Acad.Sci.,USA 90:4567-4571,1993;Gatz等,Plant J.2:397-404,1992;Roder等,Mol.Gen.Genet.243:32-38,1994)。诱导调节元件还包括蜕皮素调节元件或糖皮质激素调节元件,其转录在蜕皮激素或其它类固醇作用下实现(Christopherson等,Proc.Natl.Acad.Sci.,USA 89:6314-6318,1992;Schena等,Proc.Natl.Acad.Sci.,USA 88:10421-10425,1991;美国专利第6,504,082号);冷反应型调节元件或热休克型调节元件,其转录可在分别暴露于冷或热作用下实现(Takahashi等,Plant Physiol.99:383-390,1992);醇脱氢酶基因启动子(Gerlach等,PNAS USA79:2981-2985(1982);Walker等,PNAS 84(19):6624-6628(1987)),可由厌氧条件诱导;和来源于豌豆rbcS基因或豌豆psaDb基因的光诱导型启动子(Yamamoto等,(1997)Plant J.12(2):255-265);光诱导型调节元件(Feinbaum等,Mol.Gen.Genet.226:449,1991;Lam和Chua,Science248:471,1990;Matsuoka等,(1993)Proc.Natl.Acad.Sci.USA90(20):9586-9590;Orozco等,(1993)Plant Mol.Bio.23(6):1129-1138);植物激素诱导型调节元件(Yamaguchi-Shinozaki等,Plant Mol.Biol.15:905,1990;Kares等,Plant Mol.Biol.15:225,1990)等。诱导型调节元件还可以为玉米In2-1或In2-2基因的启动子,其响应于苯磺酰胺除莠保护剂(Hershey等,Mol.Gen.Gene.227:229-237,1991;Gatz等,Mol.Gen.Genet.243:32-38,1994),和转座子Tn10的Tet阻遏物(Gatz等,Mol.Gen.Genet.227:229-237,1991)。应激诱导型启动子包括盐/水应激诱导型启动子,例如P5CS(Zang等,(1997)Plant Sciences 129:81-89);冷诱导型启动子,例如cor15a(Hajela等,(1990)Plant Physiol.93:1246-1252)、cor15b(Wlihelm等,(1993)Plant Mol Biol23:1073-1077)、wsc120(Ouellet等,(1998)FEBS Lett.423-324-328)、ci7(Kirch等,(1997)Plant Mol Biol.33:897-909)、ci21A(Schneider等,(1997)Plant Physiol.113:335-45);干旱诱导型启动子,例如Trg-31(Chaudhary等,(1996)Plant Mol.Biol.30:1247-57)、rd29(Kasuga等,(1999)Nature Biotechnology 18:287-291);渗透压诱导型启动子,例如Rab17(Vilardell等,(1991)Plant Mol.Biol.17:985-93)和渗透蛋白(Raghothama等,(1993)Plant Mol Biol 23:1117-28);和热诱导型启动子,例如热激蛋白(Barros等,(1992)Plant Mol.19:665-75;Marrs等,(1993)Dev.Genet.14:27-41)、smHSP(Waters等,(1996)J.ExperimentalBotany 47:325-338)和欧芹遍在蛋白启动子的热激诱导型元件(WO03/102198)。其它应激诱导型启动子包括rip2(美国专利第5,332,808号和美国专利公开2003/0217393)和rd29a(Yamaguchi-Shinozaki等,(1993)Mol.Gen.Genetics 236:331-340)。某些启动子由伤害诱导,包括土壤杆菌(Agrobacterium)pmas启动子(Guevara-Garcia等,(1993)PlantJ.4(3):495-505)和土壤杆菌(Agrobacterium)ORF13启动子(Hansen等,(1997)Mol.Gen.Genet.254(3):337-343)。
在植物细胞中有活性并用于本发明方法或组合物的其它调节元件包括例如菠菜亚硝酸还原酶基因调节元件(Back等,Plant Mol.Biol.17:9,1991)、γ玉米醇溶蛋白启动子、油质蛋白ole16启动子、球蛋白1启动子、肌动蛋白1启动子、肌动蛋白c1启动子、蔗糖合成酶启动子、INOPS启动子、EXM5启动子、球蛋白2启动子、b-32、ADPG-焦磷酸化酶启动子、Ltp1启动子、Ltp2启动子、油质蛋白ole17启动子、油质蛋白ole18启动子、肌动蛋白2启动子、花粉特异性蛋白启动子、花粉特异性果胶酸裂合酶基因启动子或PG47基因启动子、花药特异性RTS2基因启动子、SGB6基因启动子或G9基因启动子、绒毡层特异性RAB24基因启动子、邻氨基苯甲酸盐合酶α亚单位启动子、α玉米醇溶蛋白启动子、邻氨基苯甲酸盐合酶β亚单位启动子、二氢二吡啶甲酸盐合酶启动子、Thi1启动子、醇脱氢酶启动子、cab结合蛋白启动子、H3C4启动子、RUBISCO SS淀粉分支酶启动子、肌动蛋白3启动子、肌动蛋白7启动子、调节蛋白GF14-12启动子、核糖体蛋白L9启动子、纤维素生物合成酶启动子、S-腺苷-L-高半胱氨酸水解酶启动子、超氧化物歧化酶启动子、C-激酶受体启动子、磷酸甘油酸盐变位酶启动子、根特异性RCc3mRNA启动子、葡萄糖-6磷酸异构酶启动子、焦磷酸盐-果糖6-磷酸-1-磷酸转移酶启动子、β-酮酰基-ACP合酶启动子、33kDa光系统11启动子、放氧蛋白启动子、69kDa空泡ATP酶亚单位启动子、甘油醛-3-磷酸脱氢酶启动子、类ABA和成熟诱导蛋白启动子、苯丙氨酸氨裂解酶启动子、腺嘌呤三磷酸盐S-腺苷-L-高半胱氨酸水解酶启动子、查耳酮合酶启动子、玉米醇溶蛋白启动子、球蛋白-1启动子、植物生长素结合蛋白启动子、UDP葡萄糖类黄酮糖基转移酶基因启动子、NT1启动子、肌动蛋白启动子和不透明2启动子。
外源核酸分子可作为裸DNA分子,可掺入到基质(例如脂质体)或颗粒(例如病毒颗粒)中,或可掺入到载体中,而导入到细胞中。将多核苷酸掺入到载体中可利于多核苷酸的操作,或利于将多核苷酸导入到植物细胞中。因此,载体可来源于质粒,或可为病毒载体,例如T-DNA载体(Horsch等,Science 227:1229-1231(1985))。如果有需要,载体可包括植物转座因子的组分,例如Ds转座子(Bancroft和Dean,Genetics 134:1221-1229,1993)或Spm转座子(Aarts等,Mol.Gen.Genet.247:555-564,1995)。除了含目的转基因以外,载体还可包含各种核苷酸序列,这些序列例如利于由转化的植物细胞回收载体;利于载体在宿主细胞中的传代,宿主细胞可为植物、动物、细菌或昆虫宿主细胞;或利于载体中编码核苷酸序列的表达,包括拯救编码区的全部或部分。因此,载体可含任何众多其它转录和翻译元件,包括组成型启动子和诱导型启动子、增强子等(参见例如Bitter等,Meth.Enzymol.153:516-544,1987)。例如,载体可包含用于在细菌系统中传代、生长或表达的元件,包括细菌复制起点;启动子,其可为诱导型启动子;等等。载体还可包含一个或多个限制性内切核酸酶识别和切割位点,包括例如多接头序列,以利于转基因的插入或去除。
除了与育性基因相关的核苷酸序列(例如含育性基因启动子反向重复序列的hpRNA,或单独的或有效连接至异源启动子的育性基因编码序列)之外,或者作为该核苷酸序列的替代,外源核酸分子或含该转基因的载体,可包含一个或多个编码目的RNA或多肽的其它可表达核苷酸序列。例如,另外的核苷酸序列可编码反义核酸分子;酶,例如β-半乳糖苷酶、β-葡糖醛酸酶、荧光素酶、碱性磷酸酶、谷胱甘肽α-转移酶、氯霉素乙酰转移酶、鸟嘌呤黄嘌呤转磷酸核糖基酶和新霉素磷酸转移酶;病毒多肽或其肽部分;或植物生长因子或激素。
在某些实施方案中,表达载体含选择标记编码基因,其功能性连接至控制转录起始的启动子。关于植物表达载体和报告基因的一般性描述,参见Gruber等,“Vectors for Plant Transformation”载于Methodsof Plant Molecular Biology and Biotechnology 89-119(CRC Press,1993)。在使用此术语时,其含义包括所有类型的选择标记,无论它们是可记分的(scorable)还是选择性的。此核苷酸序列的表达可提供选择含构建物的细胞的方法,例如通过赋予含核苷酸序列的植物细胞需要的表型。例如,另外的核苷酸序列可为选择标记或编码选择标记,其在植物细胞中存在或表达时提供了鉴别含该标记的植物细胞的方法。
选择标记提供了生物群或生物细胞(例如植物或植物细胞)筛选方法,以鉴别具有该标记的生物群或生物细胞,并因此鉴别目的转基因。选择标记一般赋予细胞或含细胞的生物(例如植物)选择优势,例如在负选择剂(例如抗生素,或对植物而言是除莠剂)存在下生长的能力。选择优势还可以例如源于利用添加化合物作为营养物、生长因子或能源的增强能力或新能力。选择性优势可单独由多核苷酸或其表达产物赋予,或与其在植物细胞中的表达给予细胞正选择优势、负选择优势或二者的多核苷酸组合赋予。应当认识到,目的转基因(例如编码hpRNA的转基因)的表达还提供选择含编码核苷酸序列的细胞的方法。但是,使用例如允许植物细胞在毒性条件下存活的其它选择标记,提供了富集含所需转基因的转化植物细胞的方法。本领域已知的合适可记分基因或选择基因的实例可见于例如Jefferson等,(1991),载于Plant Molecular Biology Manual,Gelvin等编辑,(Kluwer AcademicPublishers),1-33页;DeWet等,Mol.Cell.Biol.7:725-737,1987;Goff等,EMBO J.9:2517-2522,1990;Kain等,BioTechniques19:650-655,1995;和Chiu等,Curr.Biol.6:325-330,1996。
选择标记的实例包括赋予抗代谢物(例如除莠剂或抗生素)抗性的选择标记,例如二氢叶酸还原酶,其赋予氨甲蝶呤抗性(Reiss,PlantPhysiol.(Life Sci.Adv.)13:143-149,1994;另参见Herrera Estrella等,Nature 303:209-213,1983;Meijer等,Plant Mol.Biol.16:807-820,1991);新霉素磷酸转移酶,其赋予对氨基糖苷类新霉素、卡那霉素和巴龙霉素的抗性(Herrera-Estrella,EMBO J.2:987-995,1983);以及hygro,其赋予对潮霉素的抗性(Marsh,Gene 32:481-485,1984;另参见Waldron等,Plant Mol.Biol.5:103-108,1985;Zhijian等,Plant Science108:219-227,1995);trpB,其允许细胞利用吲哚代替色氨酸;hisD,其允许细胞利用组氨醇代替组氨酸(Hartman,Proc.Natl.Acad.Sci.,USA 85:8047,1988);甘露糖-6-磷酸异构酶,其允许细胞利用甘露糖(WO 94/20627);鸟氨酸脱羧酶,其赋予对鸟氨酸脱羧酶抑制剂2-(二氟甲基)-DL-鸟氨酸(DFMO;McConlogue,1987,载于:CurrentCommunications in Molecular Biology,Cold Spring Harbor Laboratoryed.)的抗性;以及土曲霉(Aspergillus terreus)的脱氨酶,其赋予对杀稻瘟素S的抗性(Tamura,Biosci.Biotechnol.Biochem.59:2336-2338,1995)。其它的选择标记包括例如突变EPSPV合酶,其赋予草甘膦抗性(Hinchee等,BioTechnology 91:915-922,1998);突变乙酰乳酸合酶,其赋予咪唑啉酮或磺酰脲抗性(Lee等,EMBO J.7:1241-1248,1988);突变psbA,其赋予莠去净抗性(Smeda等,Plant Physiol.103:911-917,1993);或突变原卟啉原氧化酶(参见美国专利第5,767,373号);或其它赋予对除莠剂(例如草铵膦)抗性的标记。合适的选择标记基因的实例包括但不限于编码氯霉素抗性的基因(Herrera Estrella等,EMBO J.2:987-992,1983);编码链霉素抗性的基因(Jones等,Mol.Gen.Genet.210:86-91,1987);编码壮观霉素抗性的基因(Bretagne-Sagnard等,Transgenic Res.5:131-137,1996);编码博来霉素抗性的基因(Hille等,Plant Mol.Biol.7:171-176,1990);编码磺酰胺抗性的基因(Guerineau等,Plant Mol.Biol.15:127-136,1990);编码溴苯腈抗性的基因(Stalker等,Science 242:419-423,1988);编码草甘膦抗性的基因(Shaw等,Science 233:478-481,1986);编码草胺膦抗性的基因(DeBlock等,EMBO J.6:2513-2518,1987);等等。使用选择基因的一个选择是草铵膦抗性编码DNA,在一个实施方案中,其可为处于CaMV 35S或遍在蛋白启动子控制之下的膦丝菌素乙酰转移酶(“PAT”)、玉米优化PAT基因或bar基因。这些基因赋予对双丙氨膦的抗性。参见Gordon-Kamm等,Plant Cell 2:603;1990;Uchimiya等,BioTechnology 11:835,1993;White等,Nucl.Acids Res.18:1062,1990;Spencer等,Theor.Appl.Genet.79:625-631,1990;和Anzai等,Mol.Gen.Gen.219:492,1989。一种形式的PAT基因是描述于美国专利第6,096,947号的玉米优化PAT基因。
另外,利于鉴别含标记编码多核苷酸的植物细胞的标记包括例如荧光素酶(Giacomin,Plant Sci.116:59-72,1996;Scikantha,J.Bacteriol.178:121,1996)、绿色荧光蛋白(Gerdes,FEBS Lett.389:44-47,1996;Chalfie等,Science 263:802,1994)和其它荧光蛋白变体,或β-葡糖醛酸酶(Jefferson,Plant Mol.Biol.Rep.5:387,1987;Jefferson等,EMBO J.6:3901-3907,1987;Jefferson,Nature 342(6251):837-838,1989);调节色素产生的玉米基因(Ludwig等,Science 247:449,1990;Grotewold等,PNAS 88:4587-4591,1991;Cocciolone等,Plant J 27(5):467-478,2001;Grotewold等,Plant Cell 10:721-740,1998);β-半乳糖苷酶(Teeri等,EMBO J.8:343-350,1989);荧光素酶(Ow 等,Science 234:856-859,1986);氯霉素乙酰转移酶(CAT)(Lindsey和Jones,Plant Mol.Biol.10:43-52,1987);以及本文公开的或本领域已知的众多其它标记。这种标记还可用作报告分子。本领域技术人员可获得对启动子、选择标记和构建物其它组分的许多变化。
本文的术语“植株”在广义上用于包括任何发育阶段的任意植株,或植株的一部分,包括植株插条、植株细胞、植株细胞培养物、植株器官、植株种子和幼苗。植株细胞是植株的结构和生理单位,含原生质体和细胞壁。植株细胞可为分离的单细胞形式,或者可为细胞的聚集形式,例如松散愈伤组织或培养的细胞,或者可为高级组织单位的一部分,例如植株组织、植株器官或植株。因此,植株细胞可为原生质体、配子产生的细胞或可再生为完整植株的细胞或细胞收集物。因此,含多种植株细胞并能够再生为完整植株的种子被认为是用于本公开内容目的的植株细胞。植株组织或植株器官可为种子、原生质体、愈伤组织或任何其它形成结构或功能单位的植株细胞群。植株特别有用的部分包括可收获的部分或用于繁殖子代植株的部分。植株的可收获部分可为植株的任何有用部分,例如花、花粉、秧苗、块茎、叶、干、果实、种子、根等。用于繁殖的植株部分包括例如种子、果实、插条、秧苗、块茎、根茎等。
转基因植株可由遗传修饰的植株细胞再生,即完整的植株可由植株细胞、植株细胞群、原生质体、种子或植株的一部分(例如叶、子叶或插条)再生。由原生质体再生在植物种间有变化。例如,可制备原生质体悬浮液,在某些种中,可由原生质体悬浮液诱导胚形成,直至成熟和发芽阶段。培养基一般含生长和再生必需的各种组分,包括例如激素,例如植物生长素和细胞分裂素;和氨基酸,例如谷氨酸和脯氨酸,这些取决于具体的植物种。有效再生部分取决于培养基、基因型和培养史,如果这些变量受控,则再生是可重复的。
再生可由植株愈伤组织、外植体、器官或植株部分发生。转化可在器官或植株部分再生的背景下进行。(参见Meth.Enzymol.118卷;Klee等,Ann.Rev.Plant Physiol.38:467(1987))。例如利用叶碟-转化-再生法,在选择培养基上培养叶碟,接着在约2-4周内形成枝条(参见Horsch等,出处同上,1985)。切下愈伤组织发出的枝条,并移植至合适的根诱导性选择培养基。在根出现后尽快将生根的苗移植至土壤。根据需要可对苗换盆,直至达到成熟。
在种子繁殖作物中,成熟的转基因植株可自花传粉,以产生纯合型近交植株。获得的近交植株产生的种子含导入的转基因,并可培育,以生产表达多肽的植株。育种植株和选择具有需要特征或其它目的特征的杂交植株的方法包括本文公开的方法和植物育种工作者众所周知的其它方法。
在本发明的各个方面中,将一个或多个转基因导入到细胞中。当术语“导入”用于指转基因时,其指将外源核酸分子转移入细胞中。可利用各种方法将核酸分子导入到植物细胞中。例如,可使用直接基因转移法,例如电穿孔或微注射介导的转化,或使用土壤杆菌(Agrobacterium)介导的转化,将包含在载体中的转基因导入到植物细胞中。本文使用的术语“转化的”指含外源导入的核酸分子的植物细胞。
可使用任何众多众所周知和常规的植物转化方法,包括生物和物理植物转化法,将一种或多种外源核酸分子导入到植物细胞中(参见例如Miki等,“Procedures for Introducing Foreign DNA into Plants”;载于Methods in Plant Molecular Biology and Biotechnology,Glick和Thompson编辑,(CRC Press,Inc.,Boca Raton,1993),67-88页)。另外,用于植物细胞或组织转化和植株再生的表达载体和体外培养方法是常规的,且众所周知(参见例如Gruber等,“Vectors for PlantTransformation”;出处同上,89-119页)。
适于转化植物细胞的方法包括微注射,Crossway等,(1986)Biotechniques 4:320-334;电穿孔,Riggs等,(1986)Proc.Natl.Acad.Sci.USA 83:5602-5606;土壤杆菌介导的转化,参见例如Townsend等,美国专利第5,563,055号;直接基因转移,Paszkowski等,(1984)EMBO J.3:2717-2722;和弹道粒子加速,参见例如Sanford等,美国专利第4,945,050号;Tomes等,(1995)载于Plant Cell,Tissue,and OrganCulture:Fundamental Methods,Gamborg和Phillips编辑(Springer-Verlag,Berlin);和McCabe等,(1988)Biotechnology6:923-926。另参见Weissinger等,(1988)Annual Rev.Genet.22:421-477;Sanford等,(1987)Particulate Science and Technology 5:27-37(洋葱);Christou等,(1988)Plant Physiol.87:671-674(大豆);McCabe等,(1988)Bio/Technology 6:923-926(大豆);Datta等,(1990)Biotechnology8:736-740(稻);Klein等,(1988)Proc.Natl.Acad.Sci.USA85:4305-4309(玉米);Klein等,(1988)Biotechnology 6:559-563(玉米);Klein等,(1988)Plant Physiol.91:440-444(玉米);Fromm等,(1990)Biotechnology 8:833-839;Hooydaas-Van Slogteren等,(1984)Nature(London)311:763-764;Bytebier等,(1987)Proc.Natl.Acad.Sci.USA84:5345-5349(百合科);De Wet等,(1985),载于The ExperimentalManipulation of Ovule Tissues,G.P.Chapman等编辑(Longman,NewYork),197-209页(花粉);Kaeppler等,(1990)Plant Cell Reports9:415-418;和Kaeppler等,(1992)Theor.Appl.Genet.84:560-566(颈须介导的转化);D.Halluin等,(1992)Plant Cell4:1495-1505(电穿孔);Li等,(1993)Plant Cell Reports 12:250-255和Christou等,(1995)Annals ofBotany 75:407-413(稻);Osjoda等,(1996)Nature Biotechnology14:745-750(经根癌土壤杆菌(Agrobacterium tumefaciens)转化的玉米);所有这些文献都通过引用结合到本文中。
土壤杆菌介导的转化提供了将转基因导入到植物中的有用方法(Horsch等,Science 227:12291985)。根癌土壤杆菌(A.tumefaciens)和发根土壤杆菌(A.rhizogenes)是遗传转化植物细胞的植物致病性土壤细菌。根癌土壤杆菌(A.tumefaciens)和发根土壤杆菌(A.rhizogenes)的Ti和Ri质粒分别携带负责植物遗传转化的基因(参见例如Kado,Crit.Rev.Plant Sci.10:1,1991;另参见Moloney等,Plant Cell Reports 8:238,1989;美国专利第5,591,616号;WO 99/47552;Weissbach和Weissbach,“Methods for Plant Molecular Biology”(Academic Press,NY 1988),第VIII章,421-463页;Grierson和Corey,“Plant Molecular Biology”第2版,(Blackie,London 1988),7-9章;另参见Horsch等,出处同上,1985)。
关于根癌土壤杆菌(A.tumefaciens),野生型含Ti质粒,其引导产生在宿主植株上生长的瘤性冠瘿。将Ti质粒的肿瘤诱导性T-DNA区转移至植物基因组需要编码Ti质粒的病原性基因以及T-DNA边界序列,T-DNA边界序列是一组限定待转移区域的正向DNA重复序列。基于土壤杆菌的载体是修饰形式的Ti质粒,其中肿瘤诱导功能由要导入到植物宿主中的目的核苷酸序列取代。使用土壤杆菌介导的转化的方法包括将土壤杆菌与培养的分离原生质体共培养;用土壤杆菌转化植物细胞或组织;用土壤杆菌转化种子、顶端或分生组织。另外,可使用真空渗入土壤杆菌细胞悬浮液进行土壤杆菌的植株原位转化(Bechtold等,C.R.Acad.Sci.Paris 316:1194,1993)。
土壤杆菌介导的转化可使用共整合载体或二元载体系统,其中Ti质粒的组分分开在辅助载体(其永久性存在于土壤杆菌宿主中,携带致病基因)和穿梭载体(其含以T-DNA序列为边界的目的基因)之间。二元载体在本领域广为人知(参见例如De Framond,BioTechnology1:262,1983;Hoekema等,Nature 303:179,1983),可由市场购买(Clontech;Palo Alto CA)。对于转化,例如可将土壤杆菌和植物细胞或受伤组织(例如叶组织、根外植体、胚轴、子叶、茎部分或块茎)共培养(参见例如Glick和Thompson,“Methods in Plant Molecular Biologyand Biotechnology”(Boca Raton FL,CRC Press 1993))。已用土壤杆菌感染的植物组织中的受伤细胞当在合适的条件下培养时可重新发育成器官;获得的转基因枝条最终产生含导入的多核苷酸的转基因植物。
土壤杆菌介导的转化已用于生产各种转基因植物,包括例如转基因十字花科植物,例如拟南芥、芥菜、油菜籽和亚麻;转基因豆科植物,例如苜蓿、豌豆、大豆、三叶草和白三叶草;和转基因茄科植物,例如茄子、矮牵牛花、马铃薯、烟草和番茄(参见例如Wang等,“Transformation of Plants and Soil Microorganisms”(Cambridge,University Press 1995))。另外,土壤杆菌介导的转化可用于将外源核酸分子导入到苹果、白杨、颠茄、黑茶藨子、胡萝卜、芹菜、棉花、黄瓜、葡萄、辣根、莴苣、牵牛花、香瓜、印度楝、杨树、草莓、糖甜菜、向日葵、胡桃、芦笋、稻、小麦、高粱、大麦、玉米和其它植物中(参见例如Glick和Thompson,出处同上,1993;Hiei等,Plant J.6:271-282,1994;Shimamoto,Science 270:1772-1773,1995)。
合适的根癌土壤杆菌(A.tumefaciens)菌株和载体以及土壤杆菌转化和合适的生长和选择培养基在本领域众所周知(GV3101,pMK90RK),Koncz,Mol.Gen.Genet.204:383-396,1986;(C58C1,pGV3850kan),Deblaere,Nucl.Acid Res.13:4777,1985;Bevan,NucleicAcid Res.12:8711,1984;Koncz,Proc.Natl.Acad.Sci.USA86:8467-8471,1986;Koncz,Plant Mol.Biol.20:963-976,1992;Koncz,Specialized vectors for gene tagging and expression studies,载于:PlantMolecular Biology Manual第2卷,Gelvin and Schilperoort(编辑),Dordrecht,The Netherlands:Kluwer Academic Publ.(1994),1-22;欧洲专利A-120516;Hoekema:The Binary Plant Vector System,Offsetdrukkerij Kanters B.V.,Alblasserdam(1985),第V章;Fraley,Crit.Rev.Plant.Sci.,4:1-46;An,EMBO J.4:277-287,1985)。
如本文所指出,本发明提供能够在调节元件控制下表达目的基因的载体。一般来说,载体应当在植物细胞中有功能。有时,可能优选具有在大肠杆菌中有功能的载体(例如生产用于产生抗体的蛋白、DNA序列分析、构建插入序列、获得大量核酸)。载体以及在大肠杆菌中克隆和表达的方法论述于Sambrook等,(出处同上)。
在表达盒中包含有效连接至分离核苷酸序列的本发明启动子的转化载体,还可含有至少一种要共转化入生物中的基因的其它核苷酸序列。或者,此其它序列可由另一转化载体提供。
当外源核酸分子包含在载体中时,载体可含有功能元件,例如土壤杆菌T-DNA的“左边界”序列和“右边界”序列,其允许稳定整合入植物基因组。此外,已知允许产生无标记转基因植物(例如其中在植物发育和植物育种的某些阶段失去选择标记基因)的方法和载体,包括例如共转化法(Lyznik,Plant Mol.Biol.13:151-161,1989;Peng,PlantMol.Biol.27:91-104,1995),或使用能够在植物中促进同源重组的酶的方法(参见例如W097/08331;Bayley,Plant Mol.Biol.18:353-361,1992;Lloyd,Mol.Gen.Genet.242:653-657,1994;Maeser,Mol.Gen.Genet.230:170-176,1991;Onouchi,Nucl.Acids Res.19:6373-6378,1991;另参见Sambrook等,出处同上,1989)。
也可使用直接基因转移法将需要的转基因(或多个转基因)导入到细胞中,包括不易进行土壤杆菌介导转化的植物细胞(参见例如Hiei等,PlantJ.6:271-282,1994;美国专利第5,591,616号)。这种方法包括直接基因转移(参见欧洲专利A 164 575)、注射、电穿孔、弹道法如粒子轰击、花粉介导的转化、植物RNA病毒介导的转化、脂质体介导的转化、使用受伤或酶降解的不成熟胚或受伤或酶降解的胚发生愈伤组织进行的转化,等等。直接基因转移法包括微弹介导的(生物射弹)转化法,其中转基因携带在经检测为1-4mm的微弹表面上。用生物射弹装置将载体(具体地说是含目的转基因的表达载体)导入到植物组织中,生物射弹装置将微弹加速到300-600m/s,足以穿透植物细胞壁和膜(参见例如Sanford等,Part.Sci.Technol.5:27,1987;Sanford,Trends Biotech.6:299,1988;Klein等,BioTechnology6:559-563,1988;Klein等,BioTechnology10:268,1992)。例如,在玉米中,可用包被DNA的微弹轰击几种靶组织(包括例如愈伤组织(I型或II型)、不成熟胚和分生组织),以便产生转基因植物。
其它物理传递转基因进入植物的方法使用靶细胞超声波(Zhang等,BioTechnology 9:996,1991);脂质体或原生质体球融合(Deshayes等,EMBO J.4:2731,1985;Christou等,Proc Natl.Acad.Sci.,USA84:3962,1987);CaCl2沉淀或与聚乙烯醇或聚-L-鸟氨酸温育(Hain等,Mol.Gen.Genet.199:61,1985;Draper等,Plant Cell Physiol.23:451,1982);以及电穿孔原生质体和完整的细胞和组织(Donn等,载于“Abstracts of VIIIth International Congress on Plant Cell and TissueCulture”,IAPTC,A2-38,53页,1990;D'Halluin等,Plant Cell4:1495-1505,1992;Spencer等,Plant Mol.Biol.24:51-61,1994)。
详细地讲,直接基因转移法,例如电穿孔,可用于将外源核酸分子导入到细胞(例如植物细胞)中。例如,可在重组核酸分子(其可在载体中)存在下电穿孔植物原生质体(Fromm等,Proc.Natl.Acad.Sci.,USA 82:5824,1985)。高场强的电脉冲可逆地穿透膜,允许导入核酸。被电穿孔的植物原生质体再形成细胞壁,分化和形成植物愈伤组织。可如Potrykus和Spangenberg(编辑),Gene Transfer To Plants,SpringerVerlag,Berlin,NY(1995)所述进行微注射。由于包含在构建物中的选择标记的存在,所以可鉴别含导入的重组核酸分子的转化植物细胞。
如上所述,微弹介导的转化还提供将外源核酸分子导入到植物细胞中的有用方法(Klein等,Nature 327:70-73,1987)。该方法使用金或钨之类的微弹,通过用氯化钙、亚精胺或聚乙二醇沉淀使微弹包被需要的核酸分子。使用例如BIOLISTIC PD-1000粒子枪(BioRad;HerculesCA)的装置将微弹粒子加速至高速进入植物细胞中。微弹介导的传递(“粒子轰击”)尤其可用于转化使用其它方法难以转化或再生的植物细胞。使用生物射弹法转化的方法众所周知(Wan,Plant Physiol.104:37-48,1984;Vasil,BioTechnology11:1553-1558,1993;Christou,Trends in Plant Science 1:423-431,1996)。微弹介导的转化例如已用于产生各种转基因植物物种,包括棉花、烟草、玉米、小麦、燕麦、大麦、高粱、稻、杂交杨树和番木瓜(参见Glick和Thompson,出处同上,1993;Duan等,Nature Biotech.14:494-498,1996;Shimamoto,Curr.Opin.Biotech.5:158-162,1994)。
用于生产转基因植物的快速转化再生系统(例如在2-3个月内生产转基因小麦的系统)(参见欧洲专利EP 0709462A2)也可按照本发明方法用于产生转基因植物,因此允许更快速地鉴别基因功能。用上述方法有可能转化大部分双子叶植物。使用例如上述的生物射弹法、原生质体转化、电穿孔部分透化细胞、使用玻璃纤维导入DNA、土壤杆菌介导的转化等,也可转化单子叶植物。
也可使用质体转化将核酸分子导入到植物细胞中(美国专利第5,451,513、5,545,817和5,545,818号;WO 95/16783;McBride等,Proc.Natl.Acad.Sci.,USA 91:7301-7305,1994)。叶绿体转化包括使用例如生物射弹或原生质体转化法(例如氯化钙或PEG介导的转化),将位于目的核苷酸序列侧翼的克隆质体DNA区(例如与目的多核苷酸一起的选择标记)导入合适的靶组织中。1-1.5kb侧翼区(“靶向序列”)利于与质体基因组的同源重组,并允许置换或修饰原质体系的特定区域。使用该方法,在叶绿体16S rRNA和rps12基因(其赋予对壮观霉素和链霉素的抗性,并可用作转化的选择标记(Svab等,Proc.Natl.Acad.Sci.,USA 87:8526-8530,1990;Staub和Maliga,Plant Cell 4:39-45,1992))中的点突变以约1/100靶叶轰击的频率产生稳定的同质转化体。在这些标记之间存在的克隆位点允许创立用于导入外源基因的质体靶向载体(Staub和Maliga,EMBO J.12:601-606,1993)。通过用显性选择标记(编码壮观霉素脱毒酶氨基糖苷-3′-腺苷酰转移酶的细菌aadA基因)置换隐性rRNA或r-蛋白抗生素抗性基因,获得显著增加的转化频率(Svab和Maliga,Proc.Natl.Acad.Sci.,USA 90:913-917,1993)。为达到同质体状态,在转化后一般需要大约15-20个细胞分裂周期。质体表达(其中通过同源重组将基因插入到存在于每个植物细胞中的环状质体基因组的所有几千个拷贝中)利用了超越核表达基因的巨大拷贝数优势,使得表达水平可容易地超过总可溶性植物蛋白的10%。
可按照常规方法将已转化的细胞培育成植株。参见例如McCormick等,(1986)Plant Cell Reports5:81-84。这些植株然后可生长,并用相同转化品系或不同品系传粉,然后可鉴别具有目的表型特征表达的所获植株。可培育两代或多代,以确保目的表型特征的表达被稳定保持和遗传。
适于本发明目的的植物可为单子叶植物或双子叶植株,包括但不限于玉米、小麦、大麦、黑麦、甘薯、扁豆、豌豆、菊苣、莴苣、甘蓝、花椰菜、椰菜、芜菁、萝卜、菠菜、芦笋、洋葱、大蒜、胡椒、芹菜、南瓜、西葫芦、大麻、夏南瓜、苹果、梨、温柏、瓜、李子、樱桃、桃、油桃、杏、草莓、葡萄、悬钩子、黑莓、菠萝、鳄梨、番木瓜、芒果、香蕉、大豆、番茄、高粱、甘蔗、糖甜菜、向日葵、油菜籽、三叶草、烟草、胡萝卜、棉花、苜蓿、稻、马铃薯、茄子、黄瓜、拟南芥(Arabidopsis thaliana)和木本植物,例如针叶树和落叶树。因此,本发明的转基因植物或遗传修饰植物细胞可为被子植物或裸子植物。
根据子叶(其为一般贮藏或吸收养料的种子叶)数,被子植物被分为两大类:具有单个子叶的单子叶被子植物和具有两个子叶的双子叶被子植物。被子植物产生各种有用的产物,包括材料例如木材、橡胶和纸;纤维,例如棉花和亚麻;草药和药物,例如奎宁和长春花碱;观赏花卉,例如玫瑰和包含在本发明范围内的兰花;和食品,例如谷物、油、水果和蔬菜。被子植物包括各种开花植物,包括例如谷类植物、豆科植物、含油种子植物、阔叶树、结果植物和观赏花卉(该一般种类不必为排除性)。产生可食用谷物的谷类植物包括例如玉米、稻、小麦、大麦、燕麦、黑麦、鸭茅、大黍和高粱。豆科植物包括豌豆家族成员(豆科(Fabaceae)),产生被称为豆荚的特征果实。豆科植物的实例包括例如大豆、豌豆、鹰嘴豆、乌头叶菜豆、蚕豆、菜豆、利马豆、扁豆、豇豆、干菜豆和花生,以及苜蓿、牛角花、三叶草和红豆草。具有用作油源的种子的含油种子植物包括大豆、向日葵、油菜籽(卡诺拉)和棉籽。被子植物还包括阔叶树,其为一般具有单干(树干)的多年生木本植物。这种树的实例包括桤木、岑树、白杨、椴木(菩提树)、山毛榉、桦树、樱桃树、美州黑杨、榆树、桉树、山胡桃树、洋槐、枫树、橡树、柿子树、杨树、悬铃木、胡桃树、美洲杉和柳树。这些树例如可用作纸浆、纸、结构材料和燃料的来源。
被子植物产生的种子封闭在成熟子房内。被子植物果实可适于人或动物食用,或适于收集种子来繁殖品系。例如,啤酒花是桑树家族的一员,其价值在于其在麦芽酒中用作调味剂。结果实的被子植物还包括葡萄、橙子、柠檬、柚子、鳄梨、海枣、桃、樱桃、橄榄、李子、椰子、苹果和梨树,以及黑莓、蓝莓、悬钩子、草莓、菠萝、番茄、黄瓜和茄子植物。观赏花卉是为其装饰性花而培养的被子植物。市售重要观赏花卉的实例包括玫瑰、百合、郁金香和菊花、金鱼草、山茶、康乃馨和矮牵牛花植物,并可包括兰花。应当认识到,也可使用在果实中不产生种子的裸子植物实施本发明。
在使用转基因恢复方法时,本发明的某些实施方案克服了保持纯合隐性生殖性状的问题,同时减少了保持具有该性状的植株所需的植株、种植和步骤的数量。
纯合性是相同等位基因位于同源染色体上的对应基因座时存在的遗传状态。杂合性是不同等位基因位于同源染色体上的对应基因座时存在的遗传状态。半合性是姐妹染色体上仅有一个拷贝的基因(或基因组)而没有等位基因对应物时存在的遗传状态。
通过将恢复转基因构建物(其连接至干扰植物雄性配子形成、功能或散播的序列)导入植株中,实现对雄性不育纯合隐性状态的保持,以产生“保持系”或“供体”植株。恢复转基因在导入到雄性不育遗传性状隐性纯合型植物中时,恢复该性状的遗传功能。由于连接的基因受雄性-配子-特异性-启动子驱动,所以使所有含恢复转基因的花粉都没有生命力。产生的所有有生命力的花粉都含隐性等位基因的拷贝,但不含恢复转基因。转基因以半合状态保持在保持系植株中。
保持系的花粉可用于对隐性性状纯合植株受精,子代因此保有其纯合隐性状态。通过自花受精繁殖含恢复转基因构建物的保持系植株,获得的种子一半用于进一步生产为目的基因隐性纯合型和恢复转基因构建物半合型的植株。
保持系植株用作具有纯合隐性性状的植株的花粉供体。保持系最好由具有纯合隐性性状的植株产生,该植株还具有导入其中的核苷酸序列,该序列应恢复由纯合隐性等位基因产生的性状。此外,恢复序列连接至干扰雄性配子功能、形成或散播的核苷酸序列。可利用任何众多周知方式操作该基因,以防止雄性配子形成或防止雄性配子功能的作用,不限于具体的方法学。作为非限制性的实例,所述方式可包括使用一种或多种其表达产物对雄性配子有细胞毒性的基因(参见例如美国专利第5,792,853号和第5,689,049号;PCT/EP89/00495);抑制对雄性配子形成、功能或散播重要的另一种基因的产物形成(参见美国专利第5,859,341号和第6,297,426号);与另一种基因产物组合,以产生防止配子形成、功能或散播的物质(参见美国专利第6,162,964、6,013,859、6,281,348、6,399,856、6,248,935、6,750,868和5,792,853号);为雄性配子形成、功能或散播关键性基因的反义分子或对该关键性基因产生共抑制(参见美国专利第6,184,439、5,728,926、6,191,343、5,728,558和5,741,684)号,等等。
通常,为生产更多的具有隐性状态的植株,人们可使隐性植株与另一个隐性植株杂交,或使隐性植株自花传粉。这对某些隐性性状可能不适当,对于某些影响生殖发育的隐性性状可能是无法实现的。或者,人们可使纯合型植株与第二种具有恢复基因的植株杂交,但这需要进一步杂交,以分离开恢复基因,以再一次达到隐性表型状态。而在本发明的一个实施方案中,提供其中在与保持系植株杂交的同时可保持纯合隐性状态的方法。该方法可用于其中需要延续隐性状态的任何情况。这产生了保持纯合隐性植株群的相对简单、有成本效益的系统。
当纯合隐性状态是产生雄性不育的状态时,保持系植株不可避免地必须包含能够互补突变并使纯合隐性植株能够产生有生命力的花粉的功能性恢复转基因构建物。将此雄性育性恢复基因和第二功能核苷酸序列(其干扰植株雄性配子的形成、功能或散播)连接,产生保持系植株,由于第二核苷酸序列的花粉特异性细胞毒性作用,该保持系植株产生的花粉在其天然基因座中仅含恢复基因的隐性等位基因。此有生命力的花粉部分就恢复基因构建物而言是非转基因的。
例如,在杂合体生产过程中需要生产雄性不育雌性植株,其由于是MS45基因(雄性育性必需的基因)突变纯合型而不育。这种突变MS45等位基因被称为ms45。ms45纯合型植株(以符号ms45/ms45表示)表现出纯合隐性雄性不育表型,并产生无功能花粉。参见美国专利第5,478,369、5,850,014、6,265,640和5,824,524号。在近交系和杂合体二者的生产过程中,高度需要保持此纯合隐性状态。当将MS45基因编码序列导入到具有纯合状态的植株中时,发生雄性育性的孢子体恢复(Cigan等,(2001)Sex.Plant Repro.14:135-142)。利用本发明的方法,ms45/ms45纯合隐性植株可具有已导入其中的功能性MS45基因,因此恢复雄性育性。此基因可连接至第二基因,此第二基因起使花粉无功能的作用或防止花粉形成,或在花粉中产生致死产物,并可连接至引导其在雄性配子中表达的启动子。这样获得的植株产生含ms45但没有恢复基因构建物的有生命力花粉。
一个实例是含MS45基因的构建物,其中MS45基因有效连接至雄性组织优选启动子5126启动子(参见美国专利第5,837,851号),并进一步连接至处于PG47启动子控制之下的细胞毒性DAM甲基化酶基因(参见美国专利第5,792,853号、第5,689,049号)。获得的植株产生花粉,但只有有生命力的花粉才含ms45基因。因此,其可用作使纯合隐性植株(ms45/ms45)受精的传粉者,产生的子代由于保持了ms45纯合性而100%将保持为雄性不育。子代将不含有导入的恢复转基因构建物。
显然,由于涉及雄性不育,所以可获得对该方法的多种变化。对雄性育性关键的任何其它基因都可用于该系统。例如而非限制性的,这种基因可包括描述于WO 02/26789的SBMu200基因(也叫做SB200或MS26);描述于WO 02/063021的BS92-7基因(也叫做BS7);描述于Albertsen和Phillips,“Developmental Cytology of 13 Genetic MaleSterile Loci in Maize”Canadian Journal of Genetics&Cytology23:195-208(1981年1月)的MS2基因;或描述于Aarts等,“TransposonTagging of a Male Sterility Gene in Arabidopsis”,Nature,363:715-717(1993年6月24日)的拟南芥MS2基因;和描述于Wilson等,“TheArabidopsis MALE STERILITY1(MS1)gene is a transcriptionalregulator of male gametogenesis,with homology to the PHD-finger familyof transcription factors”,Plant J.,1:27-39(2001年10月28日)的拟南芥基因MS1。
本发明方法的理想结果是,具有恢复核苷酸序列的植株可自花受精;即,植株花粉被转移至同一植株的花,以实现恢复系植株的繁殖。(注意:“自花受精”既包括用相同花粉对产生花粉的植株受精的情况,也包括其中植株花粉或遗传相同植株组的花粉对遗传相同个体或遗传相同植株组的植株授粉的情况)。恢复转基因构建物在花粉中不存在,但其包含在50%的胚珠(雌性配子)中。可种植由自花受精产生的种子,选择具有恢复基因构建物的种子。选择方法可通过众多已知方法中的任何一种或多种进行,最常见的是其中恢复核苷酸序列连接至标记基因的方法。标记可为可记分的或可选择的,使得可以鉴别含恢复序列的种子和/或由具有恢复序列的种子产生的植株。
在本发明的一个实施方案中,有可能规定驱动恢复基因的启动子为诱导型启动子。因此允许在方法中进行另外的控制,假如具有恢复核苷酸序列的植株为组成型雄性不育时就有这种需要。该类型的雄性不育性由美国专利第5,859,341号提出。为了使植株变成可育的,必须提供诱导物,植株才能变成可育的。再者,当与如上所述的本发明方法组合时,只有产生的花粉才不含恢复核苷酸序列。
在本发明的再另一个实施方案中,控制恢复核苷酸序列传递的配子可为雌性配子,而不是雄性配子。方法和上述方法相同,例外之处是人们还期望通过自花受精保持具有恢复核苷酸序列的植株的情况。在该情况下,规定驱动恢复基因表达的启动子是诱导型启动子将是有用的,使得可通过接触诱导物触发雌性育性,并可形成种子。以此方式控制雌性育性描述于美国专利第6,297,426号。影响雌性育性的基因实例包括墨西哥类蜀黍分枝1(Tb1)基因,其增加顶端优势,产生多个雄穗和雌性组织抑制。Hubbard等,(2002)Genetics 162:1927-1935;Doebley等,(1997)Nature 386:485-488(1997)。另一个实例是所谓的“无花穗3”或“ba3”。此突变体分离自用小麦线条花叶病毒感染的突变玉米植株,描述于Pan和Peterson,J.Genet.And Breed.46:291-294(1992)。植株发育出正常雄穗,但沿着茎没有任何幼雌穗。无花穗密直枝(barren-stalk fastigiate)描述于Coe和Beckett,Maize Genet.Coop.Newslett.61:46-47(1987)。其它实例包括无花穗枝1(barren stalk1)基因(Gallavotti等,Nature432:630-635(2004));致死胚珠突变体(Vollbrecht,Maize Genetics Cooperation Newsletter 68:2-3(1994));和缺陷型雌蕊突变体(Miku和Mustyatsa,Genetika 14(2):365-368(1978))。
任何植物相容性启动子元件都可用于控制编码特定蛋白和功能的恢复转基因构建物区的表达。这些启动子可为植物基因启动子,例如遍在蛋白启动子、核酮糖-1,5-二磷酸羧化酶小亚单位启动子,或根癌土壤杆菌(Agrobacterium tumefaciens)的肿瘤诱导质粒的启动子,例如胭脂碱合酶启动子和章鱼碱合酶启动子,或病毒启动子,例如花椰菜花叶病毒(CaMV)19S和35S启动子或玄参花叶病毒35S启动子。参见Kay等,(1987)Science 236:1299和欧洲专利申请第0 342 926号。参见国际专利申请WO 91/19806关于适用于本发明的示例性植物启动子的综述。可利用的植物适合启动子的范围包括组织特异性启动子和诱导性启动子。
本发明设想了提供组织优选表达的启动子的用途,包括优先在植株的雄性或雌性配子组织表达的启动子。本发明不需要在方法中使用任何特定的配子组织优选启动子,可使用任何本领域技术人员已知的众多这种启动子。作为非限制性实例,一种这样的启动子为5126启动子,其优选引导其连接的基因在植物的雄性组织中表达,如美国专利第5,837,851和5,689,051号所述。其它实例包括描述于美国专利第6,037,523号的MS45启动子;描述于美国专利第6,452,069号的SF3启动子;描述于WO 02/063021的BS92-7或BS7启动子;描述于WO02/26789的SBMu200启动子;描述于美国专利第5,470,359号的SGB6调节元件,和TA39(Koltunow等,(1990)“Different temporal and spatialgene expression patterns occur during anther development.”Plant Cell2:1201-1224;Goldberg等,(1993)Anther development:basic principlesand practical applications.Plant Cell 5:1217-1229;和美国专利第6,399,856号。另参见Nadeau等,Plant Cell 8(2):213-39(1996);和Lu等,Plant Cell 8(12):2155-68(1996)。
在SEQ ID NO:1中列出的P67启动子长1112个核苷酸。该启动子分离自对应于玉米EST序列的基因组克隆。该序列显示出与推定的果胶甲酯酶的有限同源性。
通过对不同组织(包括叶、根、花药/成熟花粉粒、处于空泡期的雄穗、小穗、穗轴、荚、穗丝和胚)的RNA样品进行RT-PCR和RNA印迹分析,证实P67表达的花粉特异性。结果表明其在发育的花粉中(具体地说是在单核中期)高水平特异性表达。
DNA印迹分析表明,该克隆在玉米基因组中表现为单拷贝或低拷贝基因。使用燕麦染色体取代系进行染色体作图揭示,该序列位于玉米的染色体1。
使用该克隆筛选玉米BAC文库。已发现阳性BAC克隆,将其亚克隆入pBluescript KS中。鉴别和测序对应于cDNA序列的亚克隆。使用RNA连接酶介导的快速扩增5′末端法确定转录起始位点。启动子区命名为P67。
列于SEQ ID NO:2的P95启动子是长1092个核苷酸的启动子。该启动子分离自对应于玉米ETS序列的基因组克隆。选列显示出与推定的L-抗坏血酸盐氧化酶的有限同源性。
通过对不同组织(包括叶、根、花药/成熟花粉粒、处于空泡期的雄穗、小穗、穗轴、荚、穗丝和胚)的RNA样品进行RT-PCR和RNA印迹分析,证实P95表达的花粉特异性。结果表明其在发育的花粉中(具体地说是在单核中期)高水平特异性表达。
DNA印迹分析表明,该克隆在玉米基因组中表现为单拷贝或低拷贝基因。使用燕麦染色体取代系进行染色体作图揭示,该序列位于玉米的染色体6和8。
使用该克隆筛选玉米BAC文库。已发现阳性BAC克隆,将其亚克隆入pBluescript KS中。鉴别和测序对应于cDNA序列的亚克隆。已使用RNA连接酶介导的快速扩增5′末端法确定转录起始位点。启动子区命名为P95。
使用众所周知的技术,根据其序列与SEQ ID NO:1或SEQ ID NO:2的同源性,可分离另外的启动子序列。在这些技术中,使用全部或部分已知启动子序列作为探针,该探针与选定生物的克隆基因组DNA片段群(即基因组文库)中存在的其它序列选择性杂交。可使用在本领域容易获得的核酸序列杂交方法获得对应于物种中的这些启动子序列的序列,其中所述物种包括但不限于玉米(Zea mays)、卡诺拉(Brassica napus,Brassica rapa ssp.)、苜蓿(Medicago sativa)、稻(Oryzasativa)、黑麦(Secale cereale)、高粱(Sorghum bicolor,Sorghum vulgare)、向日葵(Helianthus annuus)、小麦(Triticum aestivum)、大豆(Glycinemax)、烟草(Nicotiana tabacum)、马铃薯(Solanum tuberosum)、花生(Arachis hypogaea)、棉花(Gossypium hirsutum)、甘薯(Ipomoea batatus)、木薯(Manihot esculenta)、咖啡(Cofea spp.)、椰子(Cocos nucifera)、菠萝(Ananas comosus)、柑橘树(Citrus spp.)、可可(Theobroma cacao)、茶(Camellia sinensis)、香蕉(Musa spp.)、鳄梨(Persea americana)、无花果(Ficus casica)、番石榴(Psidium guajava)、芒果(Mangifera indica)、橄榄(Olea europaea)、燕麦、大麦、蔬菜、观赏植物和针叶树。植物优选包括玉米、大豆、向日葵、红花、卡诺拉、小麦、大麦、黑麦、苜蓿和高粱。
完整的启动子序列或其部分可用作能够与对应的启动子序列特异性杂交的探针。为实现在各种条件下的特异性杂交,这种探针包含特有的序列,优选至少约10个核苷酸长,最优选至少约20个核苷酸长。可通过众所周知的聚合酶链反应(PCR)法,使用这种探针扩增选定生物的对应启动子序列。此技术可用于分离目的生物另外的启动子序列,或用作测定生物中启动子序列存在情况的诊断检测。实例包括杂交筛选平板DNA文库(或噬菌斑或菌落;参见例如Innis等,(1990)PCR Protocols,A Guide to Methods and Applications,eds.,AcademicPress)。
一般来说,对应于本发明启动子序列并与本文公开的启动子序列杂交的序列与公开序列至少50%同源、55%同源、60%同源、65%同源、70%同源、75%同源、80%同源、85%同源、90%同源、95%同源,甚至98%或98%以上同源。
本文公开的特定启动子序列的片段可起促进有效连接的分离核苷酸序列花粉优选表达的作用。这些片段含本文公开的特定启动子核苷酸序列的至少约20个连续核苷酸,优选至少约50个连续核苷酸,更优选约至少75个连续核苷酸,再更优选至少约100个连续核苷酸。这种片段的核苷酸通常含特定启动子序列的TATA识别序列。可通过使用限制酶切割本文公开的天然启动子序列、由天然DNA序列合成核苷酸序列或通过使用PCR技术,获得这些片段。具体参见Mullis等,(1987)Methods Enzymol.155:335-350,和Erlich编辑,(1989)PCRTechnology(Stockton Press,New York)。此外,本发明组合物包含这些片段的变体,例如由定点诱变获得的变体。
因此,包括含SEQ ID NO:1或SEQ ID NO:2列出序列的至少约20个连续核苷酸的核苷酸序列。这些序列可通过杂交、PCR等分离。这种序列包括能够驱动花粉优选表达的片段、用作鉴别相似序列的探针的片段以及负责时序或组织特异性表达的元件。
启动子序列的生物活性变体也包含在本发明的组合物中。调节“变体”是其中一个或多个碱基已被修饰的修饰形式启动子。例如,去除部分DNA序列的常规方法是使用外切核酸酶与DNA扩增的组合,以生产双链DNA克隆的单向嵌套缺失。用于该用途的商品试剂盒以商标名Exo-SizeTM(New England Biolabs,Beverly,Mass)销售。简而言之,该方法需要将外切核酸酶III与DNA温育,以逐步以3′-5′方向去除在DNA模板的5′突出端、平端或切口处的核苷酸。但是,外切核酸酶III不能去除3'的四碱基突出端的核苷酸。用该酶时控消化克隆产生单向嵌套缺失。
调节序列变体的一个实例是通过在较大启动子中产生一个或多个缺失而形成的启动子。如Zhu等,The Plant Cell 7:1681-89(1995)所述,可实现启动子5′部分直至转录起始位点附近TATA盒的缺失,而不破坏启动子活性。这种变体应保有启动子活性,具体地说是驱动在特定组织中表达的能力。生物活性变体包括例如具有一个或多个核苷酸置换、缺失或插入的本发明天然调节序列。可通过RNA印迹分析、报告基因活性检测(使用转录融合物时)等检测活性。参见例如Sambrook等,(1989)Molecular Cloning:A Laboratory Manual(第2版,Cold Spring Harbor Laboratory,Cold Spring Harbor,N.Y.),其通过引用结合到本文中。
在本发明中公开的花粉优选启动子的核苷酸序列,以及其变体和片段,当与分离核苷酸序列(其表达将受控,以获得目的表型反应)有效连接时,可用于遗传操作任何植物。
有效连接至本文公开的调节元件的核苷酸序列可为靶基因的反义序列。所述“反义DNA核苷酸序列”意指与该核苷酸序列的5′-3′正常方向相反方向的序列。当传递至植物细胞中时,反义DNA序列的表达阻止靶基因DNA核苷酸序列的正常表达。反义核苷酸序列编码的RNA转录物与靶基因DNA核苷酸序列转录产生的内源信使RNA(mRNA)互补,并能够与其杂交。在此情况下,靶基因编码的天然蛋白的生产受到抑制,由此实现目的表型反应。因此,本文要求保护的调节序列可有效连接至反义DNA序列,以降低或抑制植物中天然或外源蛋白的表达。
已知许多核苷酸序列抑制花粉形成或功能或散播,实现此抑制的任何序列都满足要求。可影响正常发育或功能的基因的论述包含在美国专利第6,399,856号中,包括显性阴性基因,例如细胞毒性基因、甲基化酶基因和生长抑制基因。显性阴性基因包括白喉毒素A-链基因(Czako和An(1991)Plant Physiol.95 687-692);细胞周期分裂突变体,例如玉米中的CDC(Colasanti等,(1991)Proc.Natl.Acad.Sci.USA 88,3377-3381);WT基因(Farmer等,Hum.Mol.Genet.3,723-728,1994);和P68(Chen等,Proc.Natl.Acad.Sci.USA 88,315-319,1991)。合适的基因还可编码参与抑制雌蕊发育、花粉柱头相互作用、花粉管生长或受精或其组合的蛋白。另外,干扰花粉中淀粉正常累积或影响花粉中渗透平衡的基因也是适合的。这些基因可包括例如玉米α-淀粉酶基因、玉米β-淀粉酶基因、脱支酶如Sugary1和支链淀粉酶、葡聚糖酶和SacB。
在示例性实施方案中,使用DAM-甲基化酶基因,其表达产物催化植物DNA中的腺嘌呤残基甲基化。甲基化腺嘌呤不影响细胞生存力,仅存在于表达DAM-甲基化酶基因的组织中,因为这种甲基化残基未内源性存在于植物DNA中。所谓的“细胞毒性”基因的实例如上论述,可包括但不限于菊欧文氏菌(Erwinia chrysanthermi)果胶酸裂合酶基因pelE(Kenn等,(1986)J.Bacteriol 168:595);白喉毒素A-链基因(Greenfield等,(1983)Proc.Natl.Acad.Sci.USA 80:6853,Palmiter等,(1987)Cell 50:435);cms-T玉米线粒体基因组的T-urf13基因(Braun等,(1990)Plant Cell 2:153;Dewey等,(1987)Proc.Natl.Acad.Sci.USA84:5374);引起细胞膜破裂的苏云金芽孢杆菌以色列亚种(Bacillusthuringiensis Israeliensis)CytA毒素基因(McLean等,(1987)J.Bacteriol169:1017,美国专利第4,918,006号);DNA酶、RNA酶(美国专利第5,633,441号);蛋白酶或表达反义RNA的基因。
此外,本发明的方法用于保留影响植物育性的性状以外的纯合隐性状态性状。应将恢复所述状态的目的基因导入到植株中,该基因连接至抑制花粉形成、功能或散播的核苷酸序列,该核苷酸序列可进一步连接至雄性配子组织优选的启动子和标记(例如种子特异性标记)编码基因。构建物导入其中的植株产生的有生命力花粉仅含有目的基因的隐性等位基因,不含恢复转基因序列。半合转基因植株的一半雌性配子含转基因,并可自花传粉,或由含隐性等位基因的植株授粉。产生的种子有一半携带转基因,可利用连接的标记鉴别。半合状态可通过使半合植株自交保持;一半的后代含转基因,因此含目的性状。
目的基因是商品市场的反映,而商品市场的兴趣在于开发作物。作物和目标市场是变化的,随着发展中国家打开国际市场,新作物和技术也将涌现出来。另外,随着我们对农艺学性状和特征(例如产量和杂合体优势)的理解增加,对用于转化的基因的选择将相应改变。
雄性育性的调节必须按照其对单个细胞的作用进行检测。例如,为达到商业用途的可信赖不育性,要求抑制99.99%的花粉粒。但是,可以较低的严格性实现对其它性状表达的成功抑制或恢复。例如,在特定组织中,在98%、95%、90%、80%或更少的细胞中表达可产生需要的表型。
本发明对各种隐性基因有用,所述隐性基因不限于纯合隐性性状的表达威胁到植物保持其全部生殖能力的隐性基因。目的基因的一般分类包括例如涉及信息的基因,例如锌指结构;涉及通讯的基因,例如激酶;以及涉及看家的基因,例如热激蛋白。转基因的更具体分类例如包括编码重要农艺性状、昆虫抗性、疾病抗性、除莠剂抗性、不育性、颗粒特征和商业产物的基因。目的基因一般包括涉及油、淀粉、碳水化合物或营养物代谢的基因,以及影响种仁大小、蔗糖含量等的基因。除使用传统育种方法以外,还可遗传改变农艺学重要的性状,如油、淀粉和蛋白含量。修饰包括增加油酸、饱和和不饱和油含量;增加赖氨酸和硫水平;提供必需氨基酸以及淀粉修饰。Hordothionin蛋白修饰描述于美国专利第5,703,049、5,885,801、5,885,802和5,990,389号。另一个实例是由大豆2S清蛋白编码的富赖氨酸和/或硫的种子蛋白,其描述于美国专利第5,850,016号,大麦的胰凝乳蛋白酶抑制剂描述于Williamson等,Eur.J.Biochem.165:99-106(1987)。其它重要的基因编码生长因子和转录因子。
农艺性状可通过改变影响生长和发育(尤其是在环境应激过程中)的基因表达来改良。这些基因包括例如编码细胞分裂素生物合成酶(例如异戊烯基转移酶)的基因;编码细胞分裂素分解代谢酶(例如细胞分裂素氧化酶)的基因;编码参与调节细胞周期的多肽(例如CyclinD或cdc25)的基因;编码细胞分裂素受体或传感器(例如CRE1、CKI1和CKI2)、组氨酸磷酸递质或细胞分裂素反应调节物的基因。
昆虫抗性基因可编码对使产量大幅下滑的害虫(例如食虫、切根虫、欧洲玉米螟等)的抗性。这种基因包括例如:苏云金芽孢杆菌(Bacillus thuringiensis)内毒素基因,美国专利第5,366,892、5,747,450、5,737,514、5,723,756、5,593,881号;Geiser等,(1986)Gene48:109;凝集素,Van Damme等,(1994)Plant Mol.Biol.24:825;等等。
编码疾病抗性性状的基因包括:解毒基因,例如抗串珠镰孢菌素的基因(1995年6月7日提交的WO 9606175);无毒性(avr)和疾病抗性(R)基因,Jones等,(1994)Science 266:789;Martin等,(1993)Science262:1432;Mindrinos等,(1994)Cell 78:1089;等等。
基因上也可编码商业性状,该基因例如可改变或增加用于纸张、纺织品和乙醇生产的淀粉,或提供具有其它商业用途的蛋白的表达。转化植物的另一个重要商业用途是生产聚合物和生物塑料,例如描述于1997年2月11日授权的美国专利第5,602,321号。B-酮硫解酶、PHB酶(聚羟基丁酸酯合酶)和乙酰乙酰辅酶A还原酶(参见Schubert等,(1988)J.Bacteriol 170(12):5837-5847)之类的基因利于聚羟基链烷酸酯(PHA)的表达。
外源产物包括植物酶和产物以及其它来源(包括原核生物和其它真核生物)的产物。这种产物包括酶、辅因子、激素等。可增加种子蛋白的水平,具体的说是具有改良的氨基酸分布以提升种子营养价值的修饰种子蛋白。这可通过表达具有增强的氨基酸含量的这种蛋白实现。
含启动子和目的分离核苷酸序列的本发明表达盒还可在目的分离核苷酸序列的3′末端包含在植物中有功能的转录和翻译终止区。终止区可与表达盒的启动子核苷酸序列是天然的,或者可与目的DNA序列是天然的,或者可来自另一来源。
其它方便的终止区可得自根癌土壤杆菌(A.tumefaciens)的Ti-质粒,例如章鱼碱合酶和胭脂碱合酶终止区。另参见:Guerineau等,(1991)Mol.Gen.Genet.262:141-144;Proudfoot(1991)Cell 64:671-674;Sanfacon等,(1991)Genes Dev.5:141-149;Mogen等,(1990)Plant Cell2:1261-1272;Munroe等,(1990)Gene 91:151-158;Ballas等,1989)Nucleic Acids Res.17:7891-7903;Joshi等,(1987)Nucleic Acid Res.15:9627-9639。
表达盒可另外含有5′前导序列。这种前导序列可起增强翻译的作用。翻译前导序列在本领域是已知的,包括:小RANA病毒前导序列,例如:EMCV前导序列(脑心肌炎5′非编码区),Elroy-Stein等,(1989)Proc.Nat.Acad.Sci.USA 86:6126-6130;马铃薯Y病毒组前导序列,例如TEV前导序列(烟草蚀刻病毒),Allison等,(1986);MDMV前导序列(玉米矮花叶病毒),Virology 154:9-20;人免疫球蛋白重链结合蛋白(BiP),Macejak等,(1991)Nature 353:90-94;苜蓿花叶病毒外壳蛋白mRNA的非翻译前导序列(AMV RNA 4),Jobling等,(1987)Nature325:622-625);烟草花叶病毒前导序列(TMV),Gallie等,(1989)Molecular Biology of RNA,237-256页;和玉米褪绿斑驳病毒前导序列(MCMV)Lommel等,(1991)Virology 81:382-385。另参见Della-Cioppa等,(1987)Plant Physiology 84:965-968。表达盒还可含增强翻译和/或mRNA稳定性的序列,例如内含子。
在需要将分离的核苷酸序列表达产物引导至特定细胞器(具体地说是质体、淀粉体)或引导至内质网或分泌在细胞表面或胞外的情况下,表达盒可进一步含有转运肽编码序列。这种转运肽在本领域众所周知,包括但不限于:用于酰基载体蛋白的转运肽、RUBISCO的小亚单位、植物EPSP合酶等。
在制备表达盒时,可操作各种DNA片段,以便以正确方向和正确读框(合适时)提供DNA序列。为此,可使用连接物或接头连接DNA片段,或可包括其它操作,以提供便利的限制位点、去除多余的DNA、去除限制性位点等。为此,可包括体外诱变、引物修补、限制消化、退火和再替换(例如转换和颠换)。
以下的术语用于描述两个或更多个核酸或多核苷酸之间的序列关系:(a)“参比序列”,(b)“对比窗”,(c)“序列同一性百分率”,和(d)“基本同一性”。
(a)本文使用的“参比序列”是用作序列对比基础的限定序列。参比序列可为特定序列的一部分或全部;例如全长启动子序列的节段或完整启动子序列。
(b)本文使用的“对比窗”指多核苷酸序列的连续特定节段,其中多核苷酸序列可与参比序列对比,其中为使两个序列的比对最佳,和参比序列(其不含添加或缺失)相比,在对比窗中的多核苷酸序列部分可包含添加和缺失(即空位)。一般来说,对比窗为至少20个连续核苷酸长,任选可为30、40、50、100或更多个连续核苷酸长。本领域技术人员理解:为避免由于在多核苷酸序列中包含空位而与参比序列具有高相似性,通常引入空位罚分,并由匹配数中扣除。
(c)本文使用的“序列同一性百分率”指在对比窗内通过比较两个最佳比对序列所测定的值,其中为使两个序列的比对最佳,和参比序列(其不含添加或缺失)相比,在对比窗中的多核苷酸部分可包含添加和缺失(即空位)。如下计算百分率:测定在两个序列中出现相同核酸碱基的位置数量,获得匹配位置数,将匹配位置数除以对比窗中的总位置数,再将结果乘以100,获得同一性百分率。
(d)术语多核苷酸序列的“基本同一性”指使用所述的比对程序中的一种,使用标准参数,多核苷酸含有的序列与参比序列相比具有至少70%的序列同一性,优选至少80%,更优选至少90%,最优选至少95%。
比对待比较序列的方法在本领域众所周知。可在默认参数下,对BLAST“GENEMBL”数据库中包含的序列进行BLAST(Basic LocalAlignment Search Tool;Altschul,S.F等,(1993)J.Mol.Biol.215:403-410;另参见www.ncbi.nlm.nih.gov/BLAST/)检索同一性,测定基因比对情况。可使用默认参数下的BLASTN算法,分析序列对GENEMBL数据库中包含的所有公众可获得DNA序列的同一性。
为了明确本发明目的,使用GAP(Global Alignment Program)。GAP使用Needleman和Wunsch算法(J.Mol.Biol.48:443-453,1970)研究两个完整序列比对情况,该算法使匹配数最大,使空位数最小。在第10版Wisconsin(Accelrys,Inc.,San Diego,CA)中,蛋白序列的默认空位开放罚分值和空位延伸罚分值分别为8和2。对于核苷酸序列,默认空位开放罚分为50,而默认空位延伸罚分为3。相似性百分率是相似字符的百分率。忽略空位对面的字符。当一对字符的记分矩阵值大于或等于0.50的相似性阈值时,记录相似性。在第10版Wisconsin(Accelrys,Inc.,San Diego,CA)中使用的记分矩阵为BLOSUM62(参见Henikoff&Henikoff(1989)Proc.Natl.Acad.Sci.USA89:10915)。
可通过在合适的宿主细胞中复制生产大量本发明的核酸。将编码所需片段的天然或合成核酸片段掺入到重组核酸构建物(其能够导入到原核或真核细胞中,并能在其中复制)中,通常为DNA构建物。通常,核酸构建物适于在单细胞宿主(例如酵母和细菌)中复制,但也计划导入到(有和没有整合在基因组中)培养的哺乳动物或植物或其它真核细胞系中。通过本发明方法生产的核酸的纯化描述于例如Sambrook等,Molecular Cloning.A Laboratory Manual,第2版,(Cold SpringHarbor Laboratory,Cold Spring Harbor,N.Y.(1989)或Ausubel等,Current Protocols in Molecular Biology,J.Wiley and Sons,NY(1992)。
制备用于导入到原核或真核宿主中的核酸构建物可包含宿主可识别的复制系统,包括编码所需蛋白的预期核酸片段,优选还包含有效连接至蛋白编码节段的转录和翻译起始调节序列。表达载体可包括例如复制起点或自主复制序列(ARS)和表达控制序列、启动子、增强子和必需的加工信息位点(例如核糖体结合位点、RNA剪接位点、聚腺苷酸化位点)、转录终止序列和mRNA稳定序列。合适时还可包含分泌信号。这种载体可利用本领域众所周知的标准重组技术制备,例如论述于Sambrook等,Molecular Cloning.A Laboratory Manual,第2版,(Cold Spring Harbor Laboratory,Cold Spring Harbor,N.Y.(1989)或Ausubel等,Current Protocols in Molecular Biology,J.Wiley and Sons,NY(1992)。
用于导入重组和染色体外维持基因的载体是本领域已知的,可使用任何合适的载体。将DNA导入到细胞中的方法,例如电穿孔、磷酸钙共沉淀和病毒转导,是本领域已知的,方法的选择在本领域技术人员的能力范围内(Robbins编辑,Gene Therapy Protocols,Human Press,NJ(1997))。
本领域已知的基因转移系统可用于实施本发明。这些系统包括病毒和非病毒转移方法。许多病毒已用作基因转移载体,包括多瘤病毒,即SV40(Madzak等,J.Gen.Virol.,73:1533-1536(1992));腺病毒(Berkner,Curr.Top.Microbiol.Immunol.,158:39-61(1992);Berkner等,Bio Techniques,6:616-629(1988);Gorziglia等,J.Virol.,66:4407-4412(1992);Quantin等,Proc.Natl.Acad.Sci.USA,89:2581-2584(1992);Rosenfeld等,Cell,68:143-155(1992);Wilkinson等,Nucl.AcidsRes.,20:2233-2239(1992);Stratford-Perricaudet等,Hum.Gene Ther.,1:241-256(1990));痘苗病毒(Mackett等,Biotechnology,24:495499(1992));腺相关病毒(Muzyczka,Curr.Top.Microbiol.Immunol.,158:91-123(1992);Ohi等,Gene,89:279-282(1990));疱疹病毒,包括HSV和EBV(Margolskee,Curr.Top.Microbiol.Immunol.,158:67-90(1992);Johnson等,J.Virol.,66:2952-2965(1992);Fink等,Hum.GeneTher.,3:11-19(1992);Breakfield等,Mol.Neurobiol.,1:337-371(1987);Fresse等,Biochem.Pharmacol.,40:2189-2199(1990));和鸟逆转录病毒(Brandyopadhyay等,Mol.Cell Biol.,4:749-754(1984);Petropouplos等,J.Virol.,66:3391-3397(1992));鼠逆转录病毒(Miller,Curr.Top.Microbiol.Immunol.,158:1-24(1992);Miller等,Mol.CellBiol.,5:431-437(1985);Sorge等,Mol.Cell Biol.,4:1730-1737(1984);Mann等,J.Virol.,54:401-407(1985));和人源逆转录病毒(Page等,J.Virol.,64:5370-5276(1990);Buchschalcher等,J.Virol.,66:2731-2739(1992))。
本领域已知的非病毒基因转移法包括化学技术,例如磷酸钙共沉淀(Graham等,Virology,52:456-467(1973);Pellicer等,Science,209:1414-1422(1980));机械技术,例如微注射(Anderson等,Proc.Natl.Acad.Sci.USA,77:5399-5403(1980);Gordon等,Proc.Natl.Acad.Sci.USA,77:7380-7384(1980);Brinster等,Cell,27:223-231(1981);Constantini等,Nature,294:92-94(1981));经脂质体的膜融合介导的转移(Felgner等,Proc.Natl.Acad.Sci.USA,84:7413-7417(1987);Wang等,Biochemistry,28:9508-9514(1989);Kaneda等,J.Biol.Chem.,264:12126-12129(1989);Stewart等,Hum.Gene Ther.,3:267-275(1992);Nabel等,Science,249:1285-1288(1990);Lim等,Circulation,83:2007-2011(1992)),和直接DNA摄取和受体介导的DNA转移(Wolff等,Science,247:1465-1468(1990);Wu等,BioTechniques,11:474-485(1991);Zenke等,Proc.Natl.Acad.Sci.USA,87:3655-3659(1990);Wu等,J.Biol.Chem.,264:16985-16987(1989);Wolff等,BioTechniques,11:474485(1991);Wagner等,1990;Wagner等,Proc.Natl.Acad.Sci.USA,88:42554259(1991);Cotten等,Proc.Natl.Acad.Sci.USA,87:4033-4037(1990);Curiel等,Proc.Natl.Acad.Sci.USA,88:8850-8854(1991);Curiel等,Hum.GeneTher.,3:147-154(1991))。
本领域技术人员容易认识到,本文公开的方法可应用于未具体示例的其它物种,包括植物和其它非人生物。以下的实施例意在阐述本发明,而无意限制本发明。
实施例1
启动子发夹RNA表达影响植物育性
本实施例表明,可通过表达基因启动子特异性的发夹RNA(hpRNA)分子改变植物育性或育性潜能,其中所述基因编码涉及雄性育性通路的蛋白。
通过将遍在蛋白启动子连接至目的启动子的反向重复序列,包括反向重复序列之间的NOS启动子节段,产生启动子hpRNA构建物。每个构建物的表达都产生以下一种启动子的特异性hpRNA:MS45、5126、BS7、SB200和PG47。先前描述了制备构建物和转化玉米的核酸分子和方法(Cigan等,(2001)Sex Plant Reprod.14:135-142)。分析转化(T0)植株的子代(T1代)。
在32个含MS45基因启动子特异性hpRNA的转化事件中,29个产生为雄性不育的T1植株。
在32个含5126基因启动子特异性hpRNA的转化事件中,29个产生为雄性不育的T1植株。
在32个含BS7基因启动子特异性hpRNA的转化事件中,23个产生的T1植株或者产生少量的无生命力花粉(“breaker”表型),或者为雄性可育,但仅产生少量的有生命力花粉(“shedder”表型)。
在31个含SB200基因启动子特异性hpRNA的转化事件中,13个产生或者为breaker表型或者为shedder表型的T1植株。
在24个含PG47基因启动子(其连接至除莠剂抗性构建物)特异性hpRNA的转化事件中,当使用初始转化体花粉时,15个表现出未将除莠剂抗性传递给T1秧苗。这与预期的PG47减数分裂后表达相一致。
通过RNA印迹分析表达各种hpRNA的花药RNA。对于每种靶,分析T1代的6个独立事件,以确定hpRNA表达是否降低了靶基因的稳态RNA水平。将花药停止(stage)在小孢子发育的四分体释放期至单核早期。分离PolyA+RNA,通过电泳分离,转移至膜,依序与MS45、5126、BS7、SB200、NOS和肌动蛋白(RNA载荷对照)特异性探针杂交。在表达这些内源启动子特异性hpRNA的植株中未检测到MS45、5126或BS7转录物。在表达SB200 hpRNA的植株中观察到SB200RNA仅稍微减少。
基本如前所述(Cigan等,Sex Plant Reprod.14:135-142,2001)还对花药蛋白进行蛋白免疫印迹分析。对于每种靶,分析T1代的6个独立事件,以确定启动子hpRNA表达是否降低了靶基因的稳态蛋白水平。花药如上停止,在Laemelli缓冲液中研磨,通过电泳分离,依序与MS45、BS7、SB200或5126蛋白特异性抗体反应。与RNA印迹结果相似,在表达这些内源启动子特异性hpRNA的植株中未检测到MS45、5126或BS7蛋白,在含hpSB200的事件中观察到SB200蛋白仅稍微减少。
这些结果表明,启动子hpRNA的表达可在植物细胞中选择性抑制内源基因表达。另外,这些结果表明,抑制涉及植物雄性不育的不同基因可以多种方式影响植物表型,包括雄性育性程度。
实施例2
表达外源MS45基因产物恢复育性
本实施例表明,可通过表达外源MS45基因构建物使植株(通过表达MS45启动子发夹构建物使其雄性不育)恢复育性。
制备含MS45编码序列的构建物,MS45编码序列有效连接至异源遍在蛋白(UBI)、5126、SB200或BS7启动子;将这些构建物导入ms45ms45植株细胞中。再生的植株及其子代是可育的,这表明可用组成型或花药优选启动子置换MS45天然启动子,以赋予突变ms45玉米雄性育性表型。(另参见Cigan等,Sex Plant Reprod.14:135-142,2001)。
此外,含UBI:MS45或5126:MS45构建物的植株与由于表达MS45基因启动子hpRNA而雄性不育的植株杂交。通过PCR检测子代是否存在hp构建物以及UBI:MS45或5126:MS45。进行RNA杂交分析,并记录育性表型。
对由子代植株叶获得的RNA进行RNA印迹分析,结果揭示在由UBI:MS45杂交获得的12个含hp子代中有7个由遍在蛋白启动子表达MS45。此外,由UBI启动子表达MS45与子代植株中观察到的育性相关。这些结果表明,MS45由组成型遍在蛋白启动子表达,MS45基因产物的组成型表达赋予子代植株雄性育性。
此外,分析含5126:MS45、BS7:MS45或UBI:MS45的这些MS45hp玉米植株的花药RNA。将花药停止在小孢子发育的四分体释放期至单核早期,收集Poly A+ RNA,电泳,依序与MS45、SB200和BS7探针杂交。无论是由组成型UBI启动子驱动,还是由花药特异性5126或BS7启动子驱动,MS45都在雄性育性子代植株花药中表达,花药收集的时间选择似乎影响信号强度。在仅含发夹的雄性不育植株中未观测MS45RNA。这些结果表明,通过由异源启动子(至少在花药细胞中驱动表达)表达MS45可以克服源于MS45 hpRNA的MS45表达抑制。
表达MS45基因的启动子可来自非玉米源,例如可为能够转录MS45使得转录单位的表达能使植株雄性可育的任何植物启动子。例如,已分离和鉴别了玉米MS45、5126、BS7和MS26基因的稻和拟南芥同系物。总地来说,编码区之间存在显著相似性,内含子区保守。重要的是,稻和玉米的对应启动子约50-60%相同,这提示这些启动子足以在玉米绒毡层中起转录MS45基因的作用。为测试这一点,将稻MS45、稻BS7、稻MS26和拟南芥5126启动子各自融合至玉米MS45编码区,并测试构建物转化入ms45ms45突变体中时赋予育性的能力。使用此测试系统,对所有4种构建物都观测到高频率雄性育性植株。
在某些方面,使用非玉米启动子表达MS45基因是有利的。例如,当相同物种的启动子hpRNA降低靶基因功能使得植株无生命力或不能繁殖时,可使用不同物种的启动子以转录表达互补基因功能(例如MS45),由此避开了此潜在的问题。而且,可产生靶向非玉米启动子的hpRNA构建物,以抑制MS45基因表达,以此作为一种手段,通过靶向在MS45表达盒中使用的非玉米启动子,降低或消除功能,使植株雄性不育。例如,可用驱动MS45基因表达的MS45稻启动子同系物(MS45r::MS45)转化ms45纯合隐性植株,使植株雄性可育。为抑制此MS45r::MS45表达盒表达,可产生为玉米MS45突变杂合型并表达MS45r启动子hpRNA的第二玉米植株。由于在该玉米植株中没有等同的内源MS45稻启动子靶序列,所以该植株应是雄性可育的。此第二植株可与含MS45r::MS45构建物的纯合ms45植株杂交,根据MS45r::MS45和MS45r hpRNA构建物筛选子代。在此情况下,MS45r::MS45基因功能受到MS45rHP存在和表达的抑制,产生雄性不育植株。
这种构建物的用途得到以下观察结果的支持:稻5126启动子hp在玉米中的表达不产生雄性不育植株。这与使用玉米5126启动子hp(参见实施例1)获得的结果相反,提示稻5126启动子发夹的表达不能抑制内源玉米5126基因。
总之,本实施例表明,可使用hpRNA介导的抑制使内源植物育性基因失活,育性表型可在表型不育的植株中恢复。
实施例3
启动子特异性发夹RNA抑制转基因介导的除莠剂抗性传递
本实施例表明,当除莠剂抗性基因连接至PG47发夹构建物时,根据除莠剂抗性未传递至T1远交系的测定,UBI:PG47发夹构建物半合型植株的花粉无生命力。
含PG47基因启动子反向重复序列的PG47基因启动子特异性hpRNA由遍在蛋白启动子驱动(UBI:PG47hp),连接至35S:PAT构建物,将其导入到植物细胞中。将代表24个低拷贝或单拷贝转化事件、表达转基因的植株花粉传送至野生型玉米植株的雌穗。在雌穗上产生的种子非常好,和使用野生型花粉观察到的种子相当。对于每个事件,将32种种子种植在土壤中,在发芽后用2X LIBERTY除莠剂喷雾秧苗5天,以检测连接至35S:PAT的UBI:PG47hp的传递。
预期如果PG47-特异性hpRNA在小孢子减数分裂后有功能,则生存力应当是正常的,50%的花粉应携带转基因,在50%的子代中提供除莠剂抗性。但是,如果PG47功能是花粉生存力所需要的,而发夹构建物可抑制PG47基因产物表达,则50%的花粉粒应无生命力;所有有生命力的花粉都没有转基因,不能传递除莠剂抗性。通过除莠剂抗性植株的存在可检测无功能UBI:PG47hp构建物。
测试的24个事件中有15个是除莠剂敏感的。此结果表明,UBI:PG47hp构建物在花粉中抑制PG47基因表达,使50%的花粉无生命力,并防止有效连接至抑制构建物的除莠剂抗性传递。
实施例4
含多个启动子特异性发夹RNA的植株抑制多个靶启动子
含5126HP(即编码5126启动子hpRNA的转基因)的植株用作BS7HP表达植株花粉的花粉受者。在同时含5126HP和BS7HP的植株中,5126和BS7的内源表达受到抑制,导致不育表型比任一种单独的构建物观察到的不育表型强。选择含5126HP或BS7HP或二者的植株,并催熟,测定这些所获植株的育性表型。
除杂交作为组合发夹构建物的手段以外或作为其替代,可将一种所述构建物(例如5126HP)置于诱导型启动子转录控制之下。在没有诱导时,这些含BS7HP的植株能够产生对自身足够的花粉。但是,在诱导5126HP时,这些植株是雄性不育的,并可在杂合体生产过程中用作母本。该方法取决于使植株不育的发夹构建物(HP)的组合表达,而仅有一种HP表达不会赋予不育性。
在某些实施方案中,两种hpRNA的表达都可置于单个启动子转录控制之下。在此情况下,可将hpRNA设计成在同一编码RNA中含多个靶启动子。例如,5126启动子区可毗邻BS7启动子区,并处于单个遍在蛋白启动子获其它组成型、发育或组织优选启动子转录控制之下,导致含5126和BS7杂合体发夹的RNA表达,该RNA负责抑制5126和BS7两个内源基因。靶向多个和不同启动子的任意组合和数量的各种启动子都可用在该方案中。例如,调节植株高度基因的启动子和对生殖过程重要的启动子可以组合,产生具有短株型的不育植株。
实施例5
含抑制靶启动子的启动子特异性发夹RNA和互补构建物的植株的近交系保持和杂合体生产
本实施例论述了如何可以保持含两种构建物(启动子特异性的显性发夹RNA(hpRNA)构建物和由组织特异性启动子表达的MS45基因)的近交系植株并使用其生产用于杂合体生产的雄性不育母本。
近交系植株A1和A2都是ms45ms45隐性纯合型。通过导入使用5126启动子表达MS45编码区的转基因,恢复近交系A1植株的育性。A1近交系植株还包含BS7HP表达构建物。这些植株可自交并保持,与近交系A2无关。在近交系A2植株中,通过使用BS7启动子表达MS45编码区恢复育性。A2近交系植株还包含5126HP表达构建物。这些植株可自交并保持,与近交系A1植株无关。
为产生用于杂合体生产的母本近交系的种子,对近交系A1去雄,并使用近交系A2的花粉受精。种植由该杂交获得的种子,所有的子代植株都是雄性不育的,原因是存在纯合ms45等位基因以及分别抑制育性恢复基因5126-MS45和BS7-MS45的5126HP和BS7HP。这些植株在杂合体生产中用作母本,用具有野生型MS45基因的植株授粉,获得杂合体F1种子。所有源自该种子的植株都是MS45基因杂合型,因此是雄性可育的。
本实施例表明,同时含显性抑制和恢复构建物的植株可被保持,并用于杂合体种子生产策略,以产生不育母本近交系和育性杂交植株。
实施例6
含抑制靶花粉特异性启动子的启动子特异性发夹RNA和MS45互补构建物的植株用于杂合体生产和近交系保持的用途
本实施例阐述了包括使用两种构建物(花粉特异性启动子特异性的显性发夹RNA(hpRNA)构建物和恢复转基因)的方法如何允许具有纯合隐性繁殖性状的植株繁殖,而在产生的子代中不失去纯合隐性状态,如何用于生产用于杂合体生产的不育植株。这可如下实现:将至少一种恢复转基因构建物导入到植株中,恢复转基因构建物有效连接至含基因(其互补由纯合隐性状态产生的突变表型性状)功能拷贝的第一核苷酸序列和干扰植株雄性配子形成、功能或散播的第二功能核苷酸序列。此构建物以半合状态保持,含这种构建物的植株被称为保持系。可通过将干扰雄性配子形成、功能或散播的序列与配子-组织-优选启动子连接,实现对雄性配子形成、功能或散播的干扰。因为转基因为半合状态,所以产生的花粉粒仅有一半含恢复转基因构建物,这些花粉粒均无生命力,原因是第二个基因起阻止有生命力花粉形成的作用。因此,当含此连接构建物的保持系植株用作使纯合隐性植株受精的花粉供体时,提供给纯合隐性植株的唯一有生命力的雄性配子是含隐性等位基因但不含转基因构建物任何组分的配子。由这种有性杂交产生的子代对此转基因构建物而言是非转基因的。
尽管由保持系产生的有生命力花粉不含恢复转基因构建物,但50%的胚珠(雌性配子)含恢复转基因构建物。因此,保持系可通过自花受精繁殖,同时恢复转基因构建物分离,使得其包含在50%的自花受精保持系种子中。通过将恢复转基因构建物与选择标记连接,可分离50%的含转基因的种子,以繁殖保持系群,该保持系群对隐性基因而言保持为纯合型,对恢复转基因构建物而言保持为半合型。在此情况下,可保持单个近交系。
近交系A1是育性基因ms45隐性纯合型。近交系A1植株含其中通过使用组织特异性启动子(例如天然MS45启动子)表达MS45编码区恢复雄性育性的构建物。近交系A1植株还含有靶向抑制花粉表达的启动子的发夹构建物,在本实施例中,PG47HP表达构建物有效连接至MS45恢复构建物和可选择或可筛选标记,例如赋予除莠剂抗性的标记和/或用作植株和/或种子筛选的目测或可检测标记的构建物。这些植株是可育的,可自交并保持。这些植株上的种子50:50分离转基因,因为仅有非转基因花粉有生命力并能够实现胚珠受精,所以50%的胚珠含该构建物。
为产生用作杂合体生产母本近交系的种子,在一条垄上仅保持近交系A1的非转基因植株;这些植株是ms45隐性纯合型和雄性不育的。在相邻垄上,同时培育近交系A1的转基因植株和非转基因植株。该垄上的育性1:1(可育:不育)分离;使用育性植株对相邻垄上的不育植株授粉。该杂交的种子对有效连接的恢复基因、hpRNA和可筛选标记构建物而言是非转基因的,所有的子代由于存在纯合型ms45等位基因而都是雄性不育的。这些植株在杂合体生产中用作母本,用具有野生型MS45基因的植株授粉,产生杂合体F1种子。所有源自该种子的植株都是MS45基因杂合型,因此是雄性可育的。
本实施例表明,含显性花粉抑制性发夹构建物和育性恢复构建物的植株可保持为近交系,并在杂合体种子生产策略中用于产生不育母本近交系和育性杂合体植株。
实施例7
组合
本文描述的两种或多种构建物组分可以各种方式组合,以创建控制基因表达的系统。这种组合可如下实行:将所述组分连接在单个载体中、在同时或序贯转化中使用多个载体和/或育种含一个或多个组分的植株。可能的组分描述于下文和表1。表2提供了对用于控制雄性育性的组合的示例性但非穷尽性说明。
例如,组分可包含列出实例以外的启动子或编码区,构建物中组分的顺序可与所示实例不同。此外,构建物可包含单个启动子/编码序列组合,或一个驱动多个编码序列组分转录的启动子。作为后者的实例,构建物可包含驱动MS45编码序列以及编码基因产物(其参与可筛选标记(例如色素)的生产或调节)的多核苷酸转录的组成型启动子,以创建融合产物。这使得可以使用植物的任意组织筛选转化体,同时MS45的表达产生雄性育性。
在任何构建物中,例如在任何编码基因的内含子中,或在5′或3′非编码区中,或作为起点或末端延伸,可包含一个或多个启动子发夹组分。发夹可靶向单个启动子,或靶向单个转录RNA中的两个或更多个启动子。花粉启动子发夹构型和/或编码花粉破坏性多肽的多核苷酸可用于阻止转基因通过雄性配子传递。
花粉优选或花粉特异性启动子(“Poll-P”)包括例如PG47、P95(在单核中期和后期之间开始起作用;见SEQ ID NO:2)和P67(模式类似于P95,在单核中期更高表达;见SEQ ID NO:1)。
绒毡层特异性(“Tisp-P”)或绒毡层优选(“Tap-P”)启动子包括例如MS45(美国专利第6,037,523号)、5126(美国专利第5,837,851号)、Bs7(WO 02/063021)和SB200(WO 02/26789)。
其它用于本发明的组织特异性或组织优选启动子包括例如Br2(Science 302(5642):71-2,2003)、CesA8和LTP2(Plant J 6:849-860,1994)。
组成型启动子(“ConstP”)包括例如CaMV 35S启动子(WO91/04036和WO 84/02913)和玉米遍在蛋白启动子。
用于本发明的雄性育性基因(“MF”)包括例如MS45(Cigan等,Sex.Plant Repro.14:135-142(2001)、美国专利第5,478,369号)和MS26(美国专利公开20030182689)。
用于本发明的花粉败育(pollen ablation)基因(“Cytotox”)包括DAM(GenBank J01600,Nucleic Acids Res.11:837-851(1983)、α-淀粉酶(GenBank L25805,Plant Physiol.105(2):759-760(1994))、D8(Physiol.Plant.100(3):550-560(1997))、SacB(Plant Physiol.110(2):355-363(1996))、脂酶和核糖核酸酶。在这点上,设想了单一多肽,或两个或更多个多肽融合以产生融合产物。用于实施本发明的选择标记系统包括例如PAT或MoPAT赋予的除莠剂抗性。
用于实施本发明的可筛选标记系统,例如用于在自交保持系的子代中鉴别转基因种子的可筛选标记系统,包括GFP(Gerdes(1996)FEBS Lett.389:44-47;Chalfie等,(1994)Science263:802)、RFP、DSred(Dietrich等,(2002)Biotechniques 2(2):286-293)、KN1(Smith等,(1995)Dev.Genetics 16(4):344-348)、CRC、P(Bruce等,(2000)Plant Cell12(1):65-79,和Sugary1(Rahman等,(1998)Plant Physiol.117:425-435;James等,(1995)Plant Cell 7:417-429;U18908)。
发夹构型可包括例如PG47hp、P95hp或P67hp。发夹可靶向单个启动子,或者可依靠单个转录RNA靶向两个或多个启动子。发夹可定位在构建物中的任意合适位置,例如在任何编码基因的内含子中,或在5′或3′非编码区中。
表1
代号 | 描述 | 实例 |
Poll-P | 花粉启动子 | PG47、P95、P67 |
Tisp-P | 组织特异性启动子 | Br2、CesA8、LTP2 |
Tap-P | 绒毡层启动子 | Ms45、5126、Bs7、Sb200 |
ConstP | 组成型启动子 | 35S、Ubi |
MF | 育性基因 | Ms45、Ms26 |
Cytotox | 细胞毒性基因 | DAM、α-淀粉酶、D8、SacB |
Herb R | 除莠剂抗性 | PAT、MoPAT |
Screen | 可筛选标记 | RFP、GFP、KN1、CRC、Su1 |
HP | 发夹 | PG47hp、P95hp、P67hp |
表2
实施例8
基于目测标记的选择
以下描述的实验设计用于探询当由各种非p1启动子表达玉米p1基因时,其是否可用作携带连接转基因的种子的目测标记。作为实验设计的一部分,检验转化植株的种子颜色,以及通过使转化植株的花粉远交产生的种子颜色,以考察母本和父本p1基因表达的遗传。
玉米p1基因是Myb-相关的转录活化剂,其表现出调节a1和c2基因,以产生3-脱氧类黄酮,例如C-糖基类黄酮、3-脱氧花色素苷、黄烷-4-醇和鞣红(Grotewold等,PNAS88:4587-4591(1991))。这些化合物和相关化合物的合成导致花器官(包括果皮、穗轴、穗丝、荚和雄穗颖)显色(Cocciolone等,Plant J 27(5):467-478(2001))。通常,该基因的表达是母本的;即p1基因的远交不赋予生殖性部分颜色,直至由种子培育出下一代。由于已表明p1基因通过在BMS(Black MexicanSweet)细胞中组成型表达赋予非生殖性玉米组织颜色(Grotewold等,PICell 1998),所以通过将p1基因置于玉米种子优选启动子END2和LTP2转录控制之下,研究p1基因的表达。还使用稻肌动蛋白和玉米遍在蛋白的组成型启动子转录调节p1基因。这些载体应能测试p1基因的表达是否赋予足以用作目测标记的色差。
通过土壤杆菌转化将以下的载体导入到玉米中,并测试转化植株和用转化植株花粉授粉的雌穗二者的种子颜色。
用PHP23030和PHP23069转化产生的植株在初始转化植株雌穗和用这些转化植株花粉授粉的雌穗上都呈现出颜色分离的种子。对于PHP23030,14个用于远交的独立事件中有12个表现出褐色种仁,以接近1:1的分离率与黄色种仁分离。用未转化植株花粉对初始转化植株上的雌穗授粉,这些雌穗上的种仁也以接近1:1的比率分离褐色:黄色种仁。用PHP23069产生的4个事件中有3个观察到相同的结果。
分选并种植5个单拷贝PHP23030事件的褐色和黄色种子,以测试褐色种子发芽以及连接的除莠剂抗性标记35SPAT和褐色种仁的共分离。在此小测试中,大部分(>95%)褐色种子产生除莠剂抗性植株,而黄色种子发芽的40株秧苗中有39株是除莠剂敏感的。
PHP23030褐色种子的封闭检查揭示,糊粉层发绿色荧光,而和来源于相同雌穗的黄色分离种子相比,PHP23069褐色种子的胚乳显示出强烈的绿色荧光。这与在用35S:P1轰击的BMS细胞中观测到的绿色荧光观察结果(Grotewold等,Plant Cell 10(5):721-740(1998))一致。而且,用PHP23528(End2:P1-35SPAT)和PHP23535(LTP2:P1-35S:PAT)转化的愈伤组织的检查结果揭示,和未转化的GS3愈伤组织相反,含PHP23528和PHP23535的愈伤组织都发绿色荧光。在这些转化愈伤组织中观测到的绿色荧光和在转化植株中褐色种仁与除莠剂选择标记共分离表明,由至少种子优选启动子表达p1可用作鉴别转化玉米组织的目测标记。
实施例9
花粉细胞毒性的替代方案
如表1和2所示,花粉功能的破坏可通过任何众多方法实现,包括靶向降解花粉粒中的淀粉或干扰正在发育的花粉中的淀粉累积。例如,将含α-淀粉酶编码区的构建物与花粉特异性启动子有效连接。天然分泌性信号肽区可存在、可去除或可用靶向造粉粒的信号肽取代。在其它实施方案中,构建物可包含花粉特异性启动子,其与β-淀粉酶或脱支酶(例如Sugary1)(Rahman等,(1998)Plant Physiol.117:425-435;James等,(1995)Plant Cell7:417-429;U18908)或支链淀粉酶(Dinges等,(2003)Plant Cell 15(3):666-680;Wu等,(2002)Archives Biochem.Biophys.406(1):21-32)编码区有效连接。
例如,创建靶向玉米Sugary1基因启动子的发夹构建物。由于失去淀粉脱支酶活性,所以sugary1突变体长出皱粒。该启动子反向重复序列的组成型表达应引起Su1启动子活性丧失,产生遗传改变的种仁形态。
尽管已参照上述实施例描述了本发明,但要理解的是,修改和变化包含在本发明的精神和范围内。因此,本发明仅受权利要求书的限制。
本文引用的所有出版物和专利都通过引用结合到本文中,其程度如同各出版物和专利单独通过引用结合到本文中。
Claims (3)
1.一种鉴别在细胞中表达的目的基因产物功能的方法,所述方法包括:
(a) 将第一外源核酸分子导入到所述细胞中,第一外源核酸分子包含有效连接至第一启动子的hpRNA分子编码核苷酸序列,其中hpRNA含所述目的基因启动子核苷酸序列,其中hpRNA在表达时抑制所述基因的表达;和
(b) 与不表达hpRNA的对应细胞或生物相比,在hpRNA表达时检测细胞或由所述细胞再生的生物的表型变化,
借此表型变化鉴别目的基因产物功能。
2.权利要求1的方法,所述方法进一步包括将第二外源核酸分子导入到所述细胞中,第二外源核酸分子包含有效连接至第二启动子的所述目的基因编码多肽的编码核苷酸序列,其中所述第二异源核酸分子在表达时恢复原始表型。
3.权利要求1的方法,其中所述细胞是植物细胞。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53047803P | 2003-12-16 | 2003-12-16 | |
US60/530,478 | 2003-12-16 | ||
US59197504P | 2004-07-29 | 2004-07-29 | |
US60/591,975 | 2004-07-29 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2004800416115A Division CN1913772B (zh) | 2003-12-16 | 2004-12-16 | 显性基因抑制性转基因及其使用方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104293912A true CN104293912A (zh) | 2015-01-21 |
Family
ID=34704296
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410397301.2A Pending CN104293912A (zh) | 2003-12-16 | 2004-12-16 | 显性基因抑制性转基因及其使用方法 |
CN201410397304.6A Pending CN104293826A (zh) | 2003-12-16 | 2004-12-16 | 显性基因抑制性转基因及其使用方法 |
CN201410398170.XA Pending CN104313049A (zh) | 2003-12-16 | 2004-12-16 | 显性基因抑制性转基因及其使用方法 |
CN200910004758.1A Expired - Fee Related CN101545006B (zh) | 2003-12-16 | 2004-12-16 | 显性基因抑制性转基因及其使用方法 |
CN2004800416115A Expired - Fee Related CN1913772B (zh) | 2003-12-16 | 2004-12-16 | 显性基因抑制性转基因及其使用方法 |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410397304.6A Pending CN104293826A (zh) | 2003-12-16 | 2004-12-16 | 显性基因抑制性转基因及其使用方法 |
CN201410398170.XA Pending CN104313049A (zh) | 2003-12-16 | 2004-12-16 | 显性基因抑制性转基因及其使用方法 |
CN200910004758.1A Expired - Fee Related CN101545006B (zh) | 2003-12-16 | 2004-12-16 | 显性基因抑制性转基因及其使用方法 |
CN2004800416115A Expired - Fee Related CN1913772B (zh) | 2003-12-16 | 2004-12-16 | 显性基因抑制性转基因及其使用方法 |
Country Status (16)
Country | Link |
---|---|
US (10) | US7696405B2 (zh) |
EP (6) | EP2333085A1 (zh) |
CN (5) | CN104293912A (zh) |
AR (2) | AR047149A1 (zh) |
AT (1) | ATE457635T1 (zh) |
AU (3) | AU2004298624B2 (zh) |
BR (1) | BRPI0417742A (zh) |
CA (3) | CA2971538A1 (zh) |
CL (1) | CL2009001745A1 (zh) |
DE (1) | DE602004025613D1 (zh) |
ES (2) | ES2422354T3 (zh) |
MX (1) | MXPA06006846A (zh) |
NZ (3) | NZ578703A (zh) |
PL (2) | PL1696721T3 (zh) |
PT (1) | PT1696721E (zh) |
WO (1) | WO2005059121A2 (zh) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7612251B2 (en) * | 2000-09-26 | 2009-11-03 | Pioneer Hi-Bred International, Inc. | Nucleotide sequences mediating male fertility and method of using same |
US20070169227A1 (en) * | 2003-12-16 | 2007-07-19 | Pioneer Hi-Bred International Inc. | Dominant Gene Suppression Transgenes and Methods of Using Same |
CN104293912A (zh) * | 2003-12-16 | 2015-01-21 | 先锋高级育种国际公司 | 显性基因抑制性转基因及其使用方法 |
US20080244765A1 (en) * | 2004-12-16 | 2008-10-02 | Pioneer Hi-Bred International, Inc. | Methods and compositions for pollination disruption |
EP2405009B1 (en) * | 2007-03-29 | 2016-08-03 | Futuragene Israel Ltd. | Transgenic plants containing soluble cell wall polysaccharides |
US7910802B2 (en) * | 2007-08-03 | 2011-03-22 | Pioneer Hi-Bred International, Inc. | MSCA1 nucleotide sequences impacting plant male fertility and method of using same |
US7919676B2 (en) * | 2007-08-03 | 2011-04-05 | Pioneer Hi-Bred International, Inc. | Msca1 nucleotide sequences impacting plant male fertility and method of using same |
US7915478B2 (en) | 2007-08-03 | 2011-03-29 | Pioneer Hi-Bred International, Inc. | Msca1 nucleotide sequences impacting plant male fertility and method of using same |
KR101114918B1 (ko) * | 2007-08-09 | 2012-02-15 | 주식회사 엘지화학 | 재조합 미생물을 이용한 광학활성(s)-3-하이드록시부탄산 및(s)-3-하이드록시부티레이트 에스테르의 제조방법 |
WO2009103049A2 (en) * | 2008-02-14 | 2009-08-20 | Pioneer Hi-Bred International, Inc. | Plant genomic dna flanking spt event and methods for identifying spt event |
CN101379946B (zh) * | 2008-10-27 | 2010-12-01 | 江苏省农业科学院 | 美洲狼尾草不育系和保持系提纯方法 |
EP2257076B1 (en) * | 2009-05-28 | 2015-02-25 | Advanced Digital Broadcast S.A. | Video data signal, system and method for controlling shutter glasses |
EP2499252A4 (en) * | 2009-11-11 | 2013-04-10 | Univ Trobe | MALE STERILITY OF TRANSGENER PLANTS |
CN104080914A (zh) | 2011-06-21 | 2014-10-01 | 先锋国际良种公司 | 产生雄性不育植物的组合物和方法 |
US20130180005A1 (en) | 2012-01-06 | 2013-07-11 | Pioneer Hi Bred International Inc | Method to Screen Plants for Genetic Elements Inducing Parthenogenesis in Plants |
US9006515B2 (en) | 2012-01-06 | 2015-04-14 | Pioneer Hi Bred International Inc | Pollen preferred promoters and methods of use |
CN104703998B (zh) | 2012-03-13 | 2020-08-21 | 先锋国际良种公司 | 植物中雄性育性的遗传减少 |
EA201491673A1 (ru) * | 2012-03-13 | 2015-07-30 | Пайонир Хай-Бред Интернэшнл, Инк. | Генетическое снижение мужской репродуктивной функции у растений |
WO2013138309A1 (en) | 2012-03-13 | 2013-09-19 | Pioneer Hi-Bred International, Inc. | Genetic reduction of male fertility in plants |
CN103525809A (zh) * | 2012-07-02 | 2014-01-22 | 北京大北农科技集团股份有限公司 | 介导植物生育力的构建体及其应用 |
CN102965391B (zh) * | 2012-10-23 | 2014-09-24 | 中国农业大学 | 扩繁植物雄性不育系的高效种子标记方法 |
US10246723B2 (en) | 2012-10-23 | 2019-04-02 | China Agricultural University | Method for propagating sterile male plant line |
CN102960234B (zh) * | 2012-10-23 | 2014-08-20 | 中国农业大学 | 扩繁植物雄性不育系的高效种子标记方法 |
US9803214B2 (en) | 2013-03-12 | 2017-10-31 | Pioneer Hi-Bred International, Inc. | Breeding pair of wheat plants comprising an MS45 promoter inverted repeat that confers male sterility and a construct that restores fertility |
CA2923469A1 (en) * | 2013-09-06 | 2015-03-12 | Pioneer Hi-Bred International, Inc. | Wheat fertility gene promoters and methods of use |
CN109355293B (zh) * | 2013-09-16 | 2021-06-01 | 未名兴旺系统作物设计前沿实验室(北京)有限公司 | 雄性核不育基因及其突变体在杂交育种上的应用 |
US10767188B2 (en) | 2013-09-25 | 2020-09-08 | Nutech Ventures | Methods and compositions for obtaining useful plant traits |
US20150135346A1 (en) * | 2013-11-09 | 2015-05-14 | Mice With Horns, Llc | Materials and methods for making a recessive gene dominant |
UY35928A (es) | 2013-12-31 | 2015-07-31 | Dow Agrosciences Llc | ?GEN Rf3 RESTAURADOR DE LA ANDROESTERILIDAD CITOPLASMÁTICA (CMS) TIPO S?. |
US20150259695A1 (en) * | 2014-03-12 | 2015-09-17 | Pioneer Hi-Bred International Inc. | Expression systems using paired promoter inverted repeats |
US11015209B2 (en) | 2014-09-26 | 2021-05-25 | Pioneer Hi-Bred International, Inc. | Wheat MS1 polynucleotides, polypeptides, and methods of use |
CA2971425A1 (en) | 2014-12-16 | 2016-06-23 | Pioneer Hi-Bred International, Inc. | Restoration of male fertility in wheat |
US11203752B2 (en) | 2017-12-11 | 2021-12-21 | Pioneer Hi-Bred International, Inc. | Compositions and methods of modifying a plant genome to produce a MS9, MS22, MS26, or MS45 male-sterile plant |
US12054732B2 (en) | 2017-12-11 | 2024-08-06 | Pioneer Hi-Bred International, Inc. | Compositions and methods of modifying a plant genome to produce a MS1 or MS5 male-sterile plant |
CN113412333A (zh) | 2019-03-11 | 2021-09-17 | 先锋国际良种公司 | 用于克隆植物生产的方法 |
CN116724886B (zh) * | 2023-08-08 | 2023-11-10 | 四川天能璟秀生物科技有限公司 | 颜色标记扩繁玉米细胞核雄性不育系的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1383451A (zh) * | 2000-06-15 | 2002-12-04 | 钟渊化学工业株式会社 | 诱导植物中基因表达的方法及用其处理的植物 |
CN1447856A (zh) * | 2000-06-20 | 2003-10-08 | 吉尼西斯研究及发展有限公司 | 用于改进植物基因表达的核酸序列和方法 |
US20030221211A1 (en) * | 2002-01-30 | 2003-11-27 | Arborgen, Llc | Methods of suppressing gene expression |
Family Cites Families (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3710511A (en) | 1971-04-21 | 1973-01-16 | Univ Illinois | Procedures for use of genic male sterility in production of commercial hybrid maize |
US3861709A (en) | 1973-07-12 | 1975-01-21 | Amsted Ind Inc | Shiftable fifth wheel construction |
JPH0714349B2 (ja) | 1983-01-17 | 1995-02-22 | モンサント カンパニ− | 植物細胞での発現に適したキメラ遺伝子 |
NL8300698A (nl) | 1983-02-24 | 1984-09-17 | Univ Leiden | Werkwijze voor het inbouwen van vreemd dna in het genoom van tweezaadlobbige planten; agrobacterium tumefaciens bacterien en werkwijze voor het produceren daarvan; planten en plantecellen met gewijzigde genetische eigenschappen; werkwijze voor het bereiden van chemische en/of farmaceutische produkten. |
ATE204017T1 (de) | 1984-05-11 | 2001-08-15 | Syngenta Participations Ag | Transformation von pflanzenerbgut |
US4945050A (en) | 1984-11-13 | 1990-07-31 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues and apparatus therefor |
US5180873A (en) * | 1985-04-16 | 1993-01-19 | Dna Plant Technology Corporation | Transformation of plants to introduce closely linked markers |
US4918006A (en) | 1985-07-01 | 1990-04-17 | E. I. Du Pont De Nemours And Company | Gene coding for insecticidal crystal protein |
US4654465A (en) | 1985-07-18 | 1987-03-31 | Agracetus | Genic male-sterile maize |
US4727219A (en) * | 1986-11-28 | 1988-02-23 | Agracetus | Genic male-sterile maize using a linked marker gene |
US5741684A (en) | 1988-02-03 | 1998-04-21 | Pioneer Hi-Bred International, Inc. | Molecular methods of hybrid seed production |
US5728926A (en) | 1988-02-03 | 1998-03-17 | Pioneer Hi-Bred International, Inc. | Antisense gene systems of pollination control for hybrid seed production |
US5356799A (en) | 1988-02-03 | 1994-10-18 | Pioneer Hi-Bred International, Inc. | Antisense gene systems of pollination control for hybrid seed production |
NZ227835A (en) | 1988-02-03 | 1992-09-25 | Paladin Hybrids Inc | Antisense gene systems of pollination control for hybrid seed production |
US6198026B1 (en) | 1988-02-03 | 2001-03-06 | Pioneer Hi-Bred International, Inc. | Molecular methods of hybrid seed production |
GB8810120D0 (en) | 1988-04-28 | 1988-06-02 | Plant Genetic Systems Nv | Transgenic nuclear male sterile plants |
CA1339684C (en) | 1988-05-17 | 1998-02-24 | Peter H. Quail | Plant ubquitin promoter system |
GB8901674D0 (en) | 1989-01-26 | 1989-03-15 | Ici Plc | Regulation of plant gene expression |
EP0456706B1 (en) | 1989-02-02 | 2005-05-04 | Pioneer Hi-Bred International, Inc. | Molecular methods of hybrid seed production |
US5633441A (en) | 1989-08-04 | 1997-05-27 | Plant Genetic Systems, N.V. | Plants with genetic female sterility |
EP0491859A4 (en) | 1989-09-13 | 1992-10-07 | Ml Technology Ventures, L.P. | Treponema hyodysenteriae antigens having a molecular weight of 39kda and dna encoding therefor |
US5641876A (en) | 1990-01-05 | 1997-06-24 | Cornell Research Foundation, Inc. | Rice actin gene and promoter |
DE69132913T2 (de) | 1990-04-26 | 2002-08-29 | Aventis Cropscience N.V., Gent | Neuer bacillusthuringsiensis stamm und sein für insektentoxin kodierendes gen |
US5451513A (en) | 1990-05-01 | 1995-09-19 | The State University of New Jersey Rutgers | Method for stably transforming plastids of multicellular plants |
US5824524A (en) | 1990-06-12 | 1998-10-20 | Pioneer Hi-Bred International, Inc. | Nucleotide sequences mediating fertility and method of using same |
US5432068A (en) | 1990-06-12 | 1995-07-11 | Pioneer Hi-Bred International, Inc. | Control of male fertility using externally inducible promoter sequences |
US6297426B1 (en) | 1990-06-12 | 2001-10-02 | Pioneer Hi-Bred International, Inc. | Methods of mediating female fertility in plants |
US5478369A (en) | 1990-06-12 | 1995-12-26 | Pioneer Hi-Bred International, Inc. | Nucleotide sequences mediating male fertility and method of using same |
JP3325022B2 (ja) | 1990-06-18 | 2002-09-17 | モンサント カンパニー | 植物中の増加された澱粉含量 |
GB9015671D0 (en) | 1990-07-17 | 1990-09-05 | Pacific Seeds Pty Limited | Production of hybrid cereal crops |
US5277905A (en) | 1991-01-16 | 1994-01-11 | Mycogen Corporation | Coleopteran-active bacillus thuringiensis isolate |
EP0570422B1 (en) | 1991-02-07 | 2007-12-19 | Bayer BioScience N.V. | Stamen-specific promoters from corn |
KR100241117B1 (ko) | 1991-08-02 | 2000-02-01 | 코헤이 미쯔이 | 신규한 미생물 및 살충제 |
GB9304200D0 (en) | 1993-03-02 | 1993-04-21 | Sandoz Ltd | Improvements in or relating to organic compounds |
DE4204581A1 (de) * | 1992-02-15 | 1993-08-19 | Basf Lacke & Farben | Verfahren zum lackieren elektrisch leitfaehiger substrate, waessrige elektrotauchlacke, verfahren zur herstellung einer waessrigen dispersion vernetzter polymermikroteilchen und nach diesem verfahren hergestellte dispersionen |
US5750867A (en) * | 1992-06-12 | 1998-05-12 | Plant Genetic Systems, N.V. | Maintenance of male-sterile plants |
DE69333880T2 (de) | 1992-06-12 | 2006-06-22 | Bayer Bioscience N.V. | Erhaltung von männlichen sterilen pflanzen |
US5591616A (en) | 1992-07-07 | 1997-01-07 | Japan Tobacco, Inc. | Method for transforming monocotyledons |
DK0651814T3 (da) | 1992-07-09 | 1997-06-30 | Pioneer Hi Bred Int | Majspollenspecifikt polygalacturonasegen |
WO1994002620A2 (en) | 1992-07-27 | 1994-02-03 | Pioneer Hi-Bred International, Inc. | An improved method of agrobacterium-mediated transformation of cultured soybean cells |
US5332808A (en) | 1992-09-08 | 1994-07-26 | North Carolina State University | DNA encoding a ribosome inactivating protein |
US5409823A (en) | 1992-09-24 | 1995-04-25 | Ciba-Geigy Corporation | Methods for the production of hybrid seed |
US6288302B1 (en) * | 1992-11-04 | 2001-09-11 | National Science Council Of R.O.C. | Application of α-amylase gene promoter and signal sequence in the production of recombinant proteins in transgenic plants and transgenic plant seeds |
WO1994012014A1 (en) | 1992-11-20 | 1994-06-09 | Agracetus, Inc. | Transgenic cotton plants producing heterologous bioplastic |
ATE205533T1 (de) | 1993-01-13 | 2001-09-15 | Pioneer Hi Bred Int | Derivate von alpha-hordothionin mit höherem behalt an lysin |
CA2156720A1 (en) | 1993-02-26 | 1994-09-01 | Jean C. Kridl | Geminivirus-based gene expression system |
US5576198A (en) | 1993-12-14 | 1996-11-19 | Calgene, Inc. | Controlled expression of transgenic constructs in plant plastids |
US5545817A (en) | 1994-03-11 | 1996-08-13 | Calgene, Inc. | Enhanced expression in a plant plastid |
US5545818A (en) | 1994-03-11 | 1996-08-13 | Calgene Inc. | Expression of Bacillus thuringiensis cry proteins in plant plastids |
US5837850A (en) | 1994-04-21 | 1998-11-17 | Pioneer Hi-Bred International, Inc. | Regulatory element conferring tapetum specificity |
US5470359A (en) | 1994-04-21 | 1995-11-28 | Pioneer Hi-Bred Internation, Inc. | Regulatory element conferring tapetum specificity |
US5593881A (en) | 1994-05-06 | 1997-01-14 | Mycogen Corporation | Bacillus thuringiensis delta-endotoxin |
JPH10504706A (ja) | 1994-06-06 | 1998-05-12 | プラント・ジェネティック・システムズ・エヌ・ブイ | 雄性不稔植物の維持のためのアントシアニン遺伝子の使用 |
US5767373A (en) | 1994-06-16 | 1998-06-16 | Novartis Finance Corporation | Manipulation of protoporphyrinogen oxidase enzyme activity in eukaryotic organisms |
US6013859A (en) | 1994-07-14 | 2000-01-11 | Pioneer Hi-Bred International, Inc. | Molecular methods of hybrid seed production |
US5608144A (en) | 1994-08-12 | 1997-03-04 | Dna Plant Technology Corp. | Plant group 2 promoters and uses thereof |
US5792931A (en) | 1994-08-12 | 1998-08-11 | Pioneer Hi-Bred International, Inc. | Fumonisin detoxification compositions and methods |
US5631152A (en) | 1994-10-26 | 1997-05-20 | Monsanto Company | Rapid and efficient regeneration of transgenic plants |
JPH10509023A (ja) * | 1994-10-28 | 1998-09-08 | パイオニア ハイ−ブレッド インターナショナル,インコーポレイテッド | 雄性稔性を仲介するヌクレオチド配列およびその使用方法 |
US5750868A (en) | 1994-12-08 | 1998-05-12 | Pioneer Hi-Bred International, Inc. | Reversible nuclear genetic system for male sterility in transgenic plants |
US5837851A (en) | 1994-12-08 | 1998-11-17 | Pioneer Hi-Bred International, Inc. | DNA promoter 5126 and constructs useful in a reversible nuclear genetic system for male sterility in transgenic plants |
US5659026A (en) | 1995-03-24 | 1997-08-19 | Pioneer Hi-Bred International | ALS3 promoter |
BR9609200A (pt) | 1995-06-02 | 1999-05-11 | Pioneer Hi Bred Int | Derivados de alta treonina de alpha-hordotionina |
CN1192239A (zh) | 1995-06-02 | 1998-09-02 | 先锋高级育种国际公司 | α-hordothionin的高甲硫氨酸衍生物 |
US6008437A (en) * | 1995-06-06 | 1999-12-28 | Plant Genetic Systems | Use of anthocyanin genes to maintain male sterile plants |
US5962769A (en) * | 1995-06-07 | 1999-10-05 | Pioneer Hi-Bred International, Inc. | Induction of male sterility in plants by expression of high levels of avidin |
ATE329047T1 (de) | 1995-08-30 | 2006-06-15 | Basf Plant Science Gmbh | Stimulierung der homologen rekombination in pflanzlichen organismen mittels rekombinations fördernder enzyme |
US5737514A (en) | 1995-11-29 | 1998-04-07 | Texas Micro, Inc. | Remote checkpoint memory system and protocol for fault-tolerant computer system |
US5703049A (en) | 1996-02-29 | 1997-12-30 | Pioneer Hi-Bred Int'l, Inc. | High methionine derivatives of α-hordothionin for pathogen-control |
US5850016A (en) | 1996-03-20 | 1998-12-15 | Pioneer Hi-Bred International, Inc. | Alteration of amino acid compositions in seeds |
US6072050A (en) | 1996-06-11 | 2000-06-06 | Pioneer Hi-Bred International, Inc. | Synthetic promoters |
US6096947A (en) | 1997-01-14 | 2000-08-01 | Pioneer Hi-Bred International, Inc. | Methods for improving transformation efficiency |
GB9710475D0 (en) | 1997-05-21 | 1997-07-16 | Zeneca Ltd | Gene silencing |
CN1058133C (zh) * | 1997-06-13 | 2000-11-08 | 吉林省农业科学院 | 质核互作雄性不育大豆及生产大豆杂交种的方法 |
US6037523A (en) * | 1997-06-23 | 2000-03-14 | Pioneer Hi-Bred International | Male tissue-preferred regulatory region and method of using same |
PT1054985E (pt) * | 1998-02-20 | 2012-07-03 | Syngenta Ltd | Produção de semente híbrida |
WO1999043797A2 (en) | 1998-02-26 | 1999-09-02 | Pioneer Hi-Bred International, Inc. | Constitutive maize promoters |
PL343599A1 (en) | 1998-03-17 | 2001-08-27 | Novartis Ag | Genes controlling diseases |
ES2252964T3 (es) | 1998-08-20 | 2006-05-16 | Pioneer Hi-Bred International, Inc. | Promotores preferidos de semillas. |
WO2000012733A1 (en) | 1998-08-28 | 2000-03-09 | Pioneer Hi-Bred International, Inc. | Seed-preferred promoters from end genes |
HUP0103993A3 (en) | 1998-09-10 | 2003-10-28 | Pioneer Hi Bred Internat Inc D | Ecdysone receptors and methods for their use |
WO2000055315A1 (en) | 1999-03-16 | 2000-09-21 | Pioneer Hi-Bred International, Inc. | Sf3 promoter and methods of use |
US6429357B1 (en) * | 1999-05-14 | 2002-08-06 | Dekalb Genetics Corp. | Rice actin 2 promoter and intron and methods for use thereof |
GB9925459D0 (en) | 1999-10-27 | 1999-12-29 | Plant Bioscience Ltd | Gene silencing |
JP2004512007A (ja) | 2000-02-28 | 2004-04-22 | エール ユニヴァーシティ | トランス遺伝子の伝達を削減または排除する方法および組成物 |
US7612251B2 (en) | 2000-09-26 | 2009-11-03 | Pioneer Hi-Bred International, Inc. | Nucleotide sequences mediating male fertility and method of using same |
AU2001291228B2 (en) | 2000-09-26 | 2007-01-11 | Pioneer Hi-Bred International, Inc. | Nucleotide sequences mediating male fertility and method of using same |
WO2002052924A2 (en) * | 2001-01-04 | 2002-07-11 | Yeda Research And Development Co. Ltd. | Method to maintain a genic male-sterile female parental lines for the production of hybrid wheat |
US6956118B2 (en) | 2001-02-08 | 2005-10-18 | Pioneer Hi-Bred International, Inc. | Promoter sequences providing male tissue-preferred expression in plants |
TW525063B (en) | 2001-09-03 | 2003-03-21 | Via Tech Inc | General accelerated graphic port interface system and the operation method thereof |
WO2003057848A2 (en) * | 2001-12-31 | 2003-07-17 | Yeda Research And Development Co., Ltd | A method to maintain a genic male-sterile female parental line of wheat through selfing of the maintainer line |
US7074985B2 (en) | 2002-02-15 | 2006-07-11 | Pioneer Hi-Bred International, Inc. | Development of a stress-responsive promoter from maize |
FR2836782B1 (fr) | 2002-03-08 | 2004-06-04 | Biogemma Fr | Nouveau procede de production de semences hybrides de mais |
DE10224889A1 (de) | 2002-06-04 | 2003-12-18 | Metanomics Gmbh & Co Kgaa | Verfahren zur stabilen Expression von Nukleinsäuren in transgenen Pflanzen |
JP4015911B2 (ja) * | 2002-09-20 | 2007-11-28 | 独立行政法人農業生物資源研究所 | ブラシノステロイドの生合成に関与しているシトクロムp450モノオキシゲナーゼ遺伝子の改変および/または過剰発現による単子葉植物の形質の制御方法およびこの遺伝子を用いて改変された単子葉植物 |
CN104293912A (zh) * | 2003-12-16 | 2015-01-21 | 先锋高级育种国际公司 | 显性基因抑制性转基因及其使用方法 |
-
2004
- 2004-12-16 CN CN201410397301.2A patent/CN104293912A/zh active Pending
- 2004-12-16 DE DE602004025613T patent/DE602004025613D1/de active Active
- 2004-12-16 PL PL04814790T patent/PL1696721T3/pl unknown
- 2004-12-16 BR BRPI0417742-8A patent/BRPI0417742A/pt not_active Application Discontinuation
- 2004-12-16 EP EP10011111A patent/EP2333085A1/en not_active Withdrawn
- 2004-12-16 PT PT04814790T patent/PT1696721E/pt unknown
- 2004-12-16 WO PCT/US2004/042649 patent/WO2005059121A2/en active Application Filing
- 2004-12-16 CN CN201410397304.6A patent/CN104293826A/zh active Pending
- 2004-12-16 CN CN201410398170.XA patent/CN104313049A/zh active Pending
- 2004-12-16 CA CA2971538A patent/CA2971538A1/en not_active Abandoned
- 2004-12-16 AT AT04814790T patent/ATE457635T1/de active
- 2004-12-16 EP EP09010538.8A patent/EP2141239B1/en not_active Not-in-force
- 2004-12-16 EP EP10011110A patent/EP2333084A1/en not_active Withdrawn
- 2004-12-16 EP EP20100011112 patent/EP2333051A1/en not_active Withdrawn
- 2004-12-16 US US11/014,071 patent/US7696405B2/en active Active
- 2004-12-16 NZ NZ578703A patent/NZ578703A/en unknown
- 2004-12-16 PL PL09010538T patent/PL2141239T3/pl unknown
- 2004-12-16 AR ARP040104699A patent/AR047149A1/es not_active Application Discontinuation
- 2004-12-16 AU AU2004298624A patent/AU2004298624B2/en not_active Ceased
- 2004-12-16 ES ES09010538T patent/ES2422354T3/es active Active
- 2004-12-16 ES ES04814790T patent/ES2339559T3/es active Active
- 2004-12-16 EP EP10011113.7A patent/EP2333075B1/en not_active Not-in-force
- 2004-12-16 NZ NZ547957A patent/NZ547957A/en unknown
- 2004-12-16 CN CN200910004758.1A patent/CN101545006B/zh not_active Expired - Fee Related
- 2004-12-16 CA CA2871472A patent/CA2871472C/en not_active Expired - Fee Related
- 2004-12-16 NZ NZ571825A patent/NZ571825A/en unknown
- 2004-12-16 EP EP04814790A patent/EP1696721B1/en not_active Revoked
- 2004-12-16 CN CN2004800416115A patent/CN1913772B/zh not_active Expired - Fee Related
- 2004-12-16 CA CA2549936A patent/CA2549936C/en active Active
-
2006
- 2006-06-15 MX MXPA06006846 patent/MXPA06006846A/es active IP Right Grant
-
2008
- 2008-03-28 US US12/057,862 patent/US7915398B2/en not_active Expired - Fee Related
- 2008-03-31 US US12/059,044 patent/US7790951B2/en not_active Expired - Fee Related
- 2008-04-03 US US12/061,834 patent/US8293975B2/en active Active
-
2009
- 2009-08-19 CL CL2009001745A patent/CL2009001745A1/es unknown
- 2009-10-14 AR ARP090103943A patent/AR073857A2/es not_active Application Discontinuation
- 2009-12-21 AU AU2009251060A patent/AU2009251060B2/en not_active Ceased
-
2010
- 2010-01-18 US US12/688,960 patent/US8067667B2/en active Active
- 2010-09-03 US US12/875,267 patent/US20100333231A1/en not_active Abandoned
-
2011
- 2011-03-14 US US13/047,081 patent/US20110166337A1/en not_active Abandoned
- 2011-09-20 US US13/237,575 patent/US8933296B2/en active Active
-
2012
- 2012-01-06 AU AU2012200082A patent/AU2012200082B2/en not_active Ceased
-
2014
- 2014-11-17 US US14/542,928 patent/US20150067913A1/en not_active Abandoned
-
2017
- 2017-08-10 US US15/674,142 patent/US20170342430A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1383451A (zh) * | 2000-06-15 | 2002-12-04 | 钟渊化学工业株式会社 | 诱导植物中基因表达的方法及用其处理的植物 |
CN1447856A (zh) * | 2000-06-20 | 2003-10-08 | 吉尼西斯研究及发展有限公司 | 用于改进植物基因表达的核酸序列和方法 |
US20030221211A1 (en) * | 2002-01-30 | 2003-11-27 | Arborgen, Llc | Methods of suppressing gene expression |
Non-Patent Citations (2)
Title |
---|
S. VARSHA WESLEY, ET AL.: "Construct design for ef®cient, effective and highthroughput gene silencing in plants", 《THE PLANT JOURNAL》 * |
刘敏 等: "利用RNAi技术大规模分析基因功能的研究", 《植物学通报》 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101545006B (zh) | 显性基因抑制性转基因及其使用方法 | |
US20180201946A1 (en) | Dominant gene suppression transgenes and methods of using same | |
AU2012227186B2 (en) | Dominant gene suppression transgenes and methods of using same | |
AU2011265403B2 (en) | Dominant gene suppression transgenes and methods of using same | |
AU2017202125A1 (en) | Dominant gene suppression transgenes and methods of using same | |
AU2012227302A1 (en) | Dominant gene suppression transgenes and methods of using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150121 |
|
RJ01 | Rejection of invention patent application after publication |