CN104245310A - 环保高强度树脂复合材料 - Google Patents
环保高强度树脂复合材料 Download PDFInfo
- Publication number
- CN104245310A CN104245310A CN201280072070.7A CN201280072070A CN104245310A CN 104245310 A CN104245310 A CN 104245310A CN 201280072070 A CN201280072070 A CN 201280072070A CN 104245310 A CN104245310 A CN 104245310A
- Authority
- CN
- China
- Prior art keywords
- resin
- base material
- pla
- composite materials
- resin composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/022—Non-woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/024—Woven fabric
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0253—Polyolefin fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
- B32B2262/0269—Aromatic polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/106—Carbon fibres, e.g. graphite fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/716—Degradable
- B32B2307/7163—Biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/06—Biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31616—Next to polyester [e.g., alkyd]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31725—Of polyamide
- Y10T428/31736—Next to polyester
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
- Y10T428/31797—Next to addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2861—Coated or impregnated synthetic organic fiber fabric
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
公开一种具有高强度及轻量化特性且环保的高强度树脂复合材料。本发明的环保高强度树脂复合材料,其特征在于,包括:第一基材,加强材料层,其形成于上述第一基材上,且包含纤维增强剂,以及第二基材,其形成于上述加强材料层上;上述第一基材和第二基材中的一个以上由包含聚乳酸(PLA)树脂和聚羟基脂肪酸酯(PHA)树脂的生物降解性树脂形成。
Description
技术领域
本发明涉及一种高强度树脂复合材料,更详细地涉及利用混合聚乳酸(PLA,Poly Lactic Acid)树脂和聚羟基脂肪酸酯(PHA,polyhydroxyalkanoate)树脂的混合(blend)树脂作为基材(matrix),从而具有高强度及轻量化,还环保的树脂复合材料。
背景技术
高强度树脂复合材料是指,如在热塑性树脂的树脂中增强纤维的原材料。这种高强度树脂复合材料具有轻量化及高强度特性。
通常,高强度树脂复合材料是指纤维增强塑料(FRP),纤维增强塑料是在树脂内浸渍有如碳纤维的纤维的形态。但是,纤维增强塑料存在随着碳纤维的含量的增加,拉伸强度显著下降且可成型性不好的问题。
并且,高强度树脂复合材料的树脂通常利用如聚丙烯(PP)树脂、尼龙树脂及聚对苯二甲酸乙二醇酯(PET)树脂等常用热塑性树脂。
但是,常用热塑性树脂由于使用后废弃时不能降解,而成为环境污染的要因。
为了解决这些问题,最近试图将生物降解性树脂适用于高强度树脂复合材料。但是,生物降解性树脂存在大体上硬度等物理性质比常用热塑性树脂差的问题。
作为本发明相关的背景技术有韩国专利公开公报第10-2009-0099215号(2009年09月22日公开)中公开的加强连续纤维的高强度热塑性复合材料的制备工序。
发明内容
本发明要解决的技术问题
本发明的目的在于,提供一种与现有的以常用热塑性树脂为基础的树脂复合材料相比,可呈现同等以上的高强度,并且,因能够自然降解而利于环保的高强度树脂复合材料。
技术方案
为了达成上述目的的本发明一实施例的环保高强度树脂复合材料,其特征在于,包括,基材,以及加强材料层,其形成于上述基材的一面或两面,且包含纤维强化剂;上述基材由包含聚乳酸(PLA,Poly Lactic Acid)树脂和聚羟基脂肪酸酯(PHA,polyhydroxyalkanoate)树脂的生物降解性树脂形成。
此时,更优选地,上述生物降解性树脂中,相对于100重量份的上述聚乳酸(PLA)树脂,混合10重量份~50重量份的上述聚羟基脂肪酸酯(PHA)树脂。
并且,上述生物降解性树脂还可以包含离聚物。
另一方面,上述聚羟基脂肪酸酯(PHA)树脂可以包含由以下化学式1表示的重复单元:
化学式1
(上述化学式1中,R1是氢原子或者置换或非置换的碳原子数1~15的烷基,n是1或2)。
为了达成上述目的的本发明再一实施例的环保高强度树脂复合材料,其特征在于,包括:第一基材,加强材料层,其形成于上述第一基材上,且包含纤维增强剂,以及第二基材,其形成于上述加强材料层上;上述第一基材和第二基材中一个以上由包含聚乳酸(PLA)树脂和聚羟基脂肪酸酯(PHA)树脂的生物降解性树脂形成。
此时,优选地,上述第一基材和第二基材均包含生物降解性树脂。
有益效果
本发明的环保高强度树脂复合材料利用混合聚乳酸(PLA)树脂和聚羟基脂肪酸酯(PHA)树脂的混合树脂作为基材,利用纤维增强剂在基材上单独形成加强材料层。
其结果,与以现有的常用热塑性树脂为基础的高强度树脂复合材料相比,能够确保同等以上的物理性质,并且,由于废弃后可进行基材的生物降解,而有利于环保。
附图说明
图1是简要表示本发明实施例的环保高强度树脂复合材料的图,表示在基材的一面形成有加强材料层的例。
图2是简要表示本发明实施例的环保高强度树脂复合材料的图,表示在基材的两面形成有加强材料层的例。
图3是简要表示本发明实施例的环保高强度树脂复合材料的图,表示在第一基材和第二基材之间形成有加强材料层的例。
具体实施方式
参照以下实施例及附图,就能够明确本发明的优点和特征以及实现这些优点和特征的方法。
但是本发明并不限于下面所公开的实施例,而能够通过互不相同的各种方式来实现,本实施例仅仅是为了使本发明的公开更完整并向本发明所属技术领域的普通技术人员准确告知发明的范畴而提供的,本发明仅根据发明要求保护范围的范畴而定义。
以下,对本发明的环保高强度树脂复合材料进行详细的说明。
图1是简要表示本发明实施例的环保高强度树脂复合材料的图,表示在基材一面形成有加强材料层的例。
参照图1,本发明的环保高强度树脂复合材料包括基材110及加强材料层120。
本发明的树脂复合材料的基材110,起到有效地向与树脂复合材料相邻或与树脂复合材料相接的部件等有效传达基于外力的载荷的作用,并且,起到支撑包含于加强材料层120的纤维增强剂的作用。
基材110可以是膜、纺布(Woven Fabric)、无纺布(Nonwoven Fabric)及毛皮(pelt)等的形态。并且,基材110可以是单层或两层以上层压的形态。
此时,基材110包含生物降解性树脂。此时,生物降解性树脂优选地利用混合聚乳酸(PLA,Poly Lactic Acid)树脂和聚羟基脂肪酸酯(PHA,polyhydroxyalkanoate)树脂的混合(blend)树脂。
本发明的发明者认识到,混合聚乳酸(PLA)树脂和聚羟基脂肪酸酯(PHA)树脂的混合树脂与如聚丙烯(Polypropylene)树脂、聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate)树脂等常用热塑性树脂相比,可呈现同等水平的机械物理性质。
因此,本发明的树脂复合材料将混合上述聚乳酸(PLA)树脂和聚羟基脂肪酸酯(PHA)树脂的混合树脂作为基材来利用,从而具有强度等特性非常优秀,并且废弃后可进行生物降解的优点。
聚羟基脂肪酸酯(PHA)树脂可包含由以下化学式1表示的重复单元:
化学式1
(化学式1中,R1是氢原子或者置换或非置换的碳原子数1~15的烷基,n是1或2)。
更加详细地,符合上述化学式1的重复单元可以提出,n为1、R1为甲基的3-羟基丁酸(3-hydroxy butyrate),n为1、R1为乙基的3-羟基戊酸(3-hydroxy valerate),n为1、R1为丙酯的3-羟基己酸(3-hydroxy hexanoate),n为1、R1为戊基的3-羟基辛酸(3-hydroxy octanoate)及n为1、R1为碳原子数15的烷基的3-羟基硬脂酸(3-hydroxy octadecanoate)等。
另一方面,本发明的树脂复合材料中,聚乳酸(PLA)树脂起到确保强度的作用,聚羟基脂肪酸酯(PHA)树脂起到改善聚乳酸(PLA)树脂的脆性的作用。由此,可以认为随着聚乳酸(PLA)树脂的含量比增加强度会提高,随着聚羟基脂肪酸酯(PHA)树脂的含量比增加韧性会增加。
本发明中,聚乳酸(PLA)树脂和聚羟基脂肪酸酯(PHA)树脂的混合比并没有特别限定,只是,实验结果,相对于100重量份的聚乳酸(PLA)树脂混合10重量份~50重量份的聚羟基脂肪酸酯(PHA)树脂的情况下,与其他情况相比,物理性质更优秀。
相反,相对于100重量份的聚乳酸(PLA)树脂包含小于10重量份的聚羟基脂肪酸酯(PHA)树脂的情况下,聚乳酸(PLA)树脂的脆性改善多少可能不充分。并且,相对于100重量份的聚乳酸(PLA)树脂,聚羟基脂肪酸酯(PHA)树脂大于50重量份的情况下,因发生聚羟基脂肪酸酯(PHA)树脂的凝聚,树脂复合材料的硬度多少可能略有下降。
因此,优选地,相对于100重量份的聚乳酸(PLA)树脂,混合10重量份~50重量份的聚羟基脂肪酸酯(PHA)树脂。
并且,上述生物降解性树脂还可以包含离聚物(ionomer)。离聚物可以起到反应性兼容剂的作用。
离聚物只要在非极性的高分子链中含有少量的离子基,就不受特别的限定,例如,可以利用α-烯烃和α,β-不饱和羧酸的共聚物、聚苯乙烯中有导入磺酸基的聚合物、α-烯烃、α,β-不饱和羧酸及能够分别与此进行共聚合的单体间的共聚物或将这些的混合物用1价~4价的金属离子进行中和的混合物。
优选地,相对于合计100重量份的聚乳酸(PLA)树脂和聚羟基脂肪酸酯(PHA)树脂,包含20重量份以下上述离聚物。在离聚物的添加量大于20重量份的情况下,因未反应的离聚物会残留,而会存在耐热性或强度下降的隐患。
加强材料层120形成于基材的一面。并且,加强材料层120包含纤维增强剂。
加强材料层120可通过包含纤维增强剂的薄片粘合或压接于基材110而形成。并且,未制备成薄片的纤维增强剂自身也通过压制等挤压于基材,从而可成为加强材料层120。
本发明的树脂复合材料,包含于加强材料层的纤维增强剂起到支撑基于外力的载荷的作用。这样的纤维增强剂可以包含一种以上碳纤维、玻璃纤维、芳纶纤维(Aramid Fiber)、超高分子量聚乙烯(UHMWPE,Ultra High Molecular WeightPolyethylene)等工业用纤维。
包含于上述加强材料层120的纤维增强剂,相对于100重量份的基材110,可以使用10重量份~100重量份。但是纤维增强剂的使用量不一定局限于此,可根据使用用途有多种变化。
上述图1所示的例中,基材110的一面形成有加强材料层120。但是,如图2所示的例,加强材料层120可形成于基材110的两面。
图3是简要表示本发明实施例的环保高强度树脂复合材料的图,表示在第一基材和第二基材之间形成有加强材料层的例。
参照图3,所示的环保高强度树脂复合材料包含第一基材310、加强材料层320及第二基材330。
图3所示的例,在结构上具有第一基材310和第二基材330之间介有加强材料层320的形态。
第一基材310和第二基材330可以是膜、纺布、无纺布及羊皮中的一种形态或者可以是两种以上层压的形态。
此时,第一基材310或第二基材330,更优选地,第一基材310和第二基材330均包含生物降解性树脂。
如上所述,本发明中作为这样的生物降解性树脂利用混合聚乳酸(PLA)树脂和聚羟基脂肪酸酯(PHA)树脂的混合树脂。并且,生物降解性树脂中可包含有离聚物。
加强材料层320形成于第一基材上,包含纤维增强剂。
纤维增强剂可以包含一种以上碳纤维、玻璃纤维、芳纶纤维及超高分子量聚乙烯(UHMWPE)等工业用纤维。
图3所示的例,因加强材料层320形成于第一基材310和第二基材330之间,从而能够最大限度地抑制加强材料层320从基材脱离。
如上所述,本发明的环保高强度树脂复合材料不仅可以呈现轻量化及高强度特性,由于利用混合聚乳酸(PLA)树脂和聚羟基脂肪酸酯(PHA)树脂的混合树脂,因此因生物降解特性,废弃后能够进行自然降解,从而具有预防环境污染的效果。
并且,本发明的环保高强度树脂复合材料,可以仅利用压接或粘合等方法进行制备。因此,与在基材内部浸渍纤维增强剂的形态的纤维增强塑料(FRP)相比,能够进行制备工序。
并且,就纤维增强塑料而言,在纤维增强剂的含量过高的情况下,存在拉伸强度显著下降,且可成型性不好的问题,但是,本发明的环保高强度树脂复合材料,包含纤维增强剂的加强材料层形成为不是基材的单独的层,因此可以充分提高加强材料层中的纤维增强剂的含量或密度。
实施例
以下,通过本发明的优选实施例对本发明的结构及作用进行更详细的说明。但是,这只是作为优选实例来提出的,任何意义上也不能解释为本发明局限于此。
未记载于此的内容,只要是本发明所属技术领域的普遍技术人员就能够充分地从技术上进行类推,因此省略其说明。
1.树脂复合材料试片的制备
(1)实施例1
在大小为10cm×10cm×0.5mm的膜上排列碳纤维(膜重量的25%)后,通过压制来制备了树脂复合材料试片。此时,利用了相对于100重量份的聚乳酸(PLA)树脂混合有25重量份的聚羟基脂肪酸酯(PHA)树脂的膜。
(2)实施例2
在大小为10cm×10cm×0.5mm的膜上排列碳纤维(膜重量的25%)后,再放上相同的膜,之后通过压制来制备了树脂复合材料试片。此时,两张膜利用了相对于100重量份的聚乳酸(PLA)树脂混合有25重量份的聚羟基脂肪酸酯(PHA)树脂的膜。
(3)实施例3
除了两张膜中相对于100重量份的聚乳酸(PLA)树脂分别还包含10重量份的硒1706(离聚物,杜邦制备)之外,制备了与实施例2相同的树脂复合材料试片。
(4)实施例4
除了碳纤维的使用量为膜重量的100%之外,以与实施例2相同的方法来准备了树脂复合材料试片。
(5)比较例1
除了作为两张膜的原材料利用了聚对苯二甲酸乙二醇酯膜(PET,LG化学制备)之外,以与实施例2相同的方法准备了树脂复合材料试片。
(6)比较例2
在混合100份重量的聚乳酸(PLA)树脂和25重量份的聚羟基脂肪酸酯(PHA)树脂的熔融树脂中搅拌30重量份的碳纤维来进行挤压,之后以与实施例1相同的大小准备了聚乳酸(PLA)树脂中浸渍碳纤维的形态的树脂复合材料试片。
(7)比较例3
除了相对于100重量份的聚乳酸(PLA)树脂使用了100重量份的碳纤维之外,以与比较例2相同的方法准备了树脂复合材料试片。
2.物理性质评价方法
对实施例1至实施例4及比较例1至比较例3的试片测定了拉伸强度及弯曲强度。
借助国际材料试验协会(ASTM,International Association for Testing Materials)的D638测定了拉伸强度(Kgf/cm2)。
借助国际材料试验协会(ASTM,International Association for Testing Materials)的D790测定了弯曲强度(Kgf/cm2)。
3.物理性质评价结果
表1中表示实施例1至实施例4及比较例1至比较例3的试片的物理性质评价结果。
表1
参照表1,与以聚对苯二甲酸乙二醇酯(PET)树脂为基础的比较例1的树脂复合材料试片的物理性质进行比较时,实施例1至实施例4的树脂复合材料试片呈现出同等以上的物理性质。此时,考虑到比较例2的树脂复合材料的基材以不能生物降解的聚对苯二甲酸乙二醇酯(PET)膜为基础,实施例1至实施例4的树脂复合材料具有同等以上的物理性质,同时能够生物降解,从而,可以充分运用为环保材料。尤其,利用聚乳酸(PLA)树脂膜的图3所示的形态的实施例2至实施例4的树脂复合材料试片,强度更加优秀;包含离聚物的实施例3的树脂复合材料试片,物理性质最为优秀。
另一方面,纤维增强塑料(FRP)形态的比较例2的试片,与实施例1相比强度略低;碳纤维含量较高的比较例3的试片,呈现出非常低的拉伸强度。
本发明针对参照附图所示的实施例进行了说明,但这只是例示性的,只要是本发明所属技术领域的普遍技术人员就能够理解可由此进行多种变形及等同的其他实施例。
因此,本发明的真正的技术保护范围应根据所附的发明要求保护范围而定义。
附图标记说明
110:基材
120:加强材料层
310:第一基材
320:加强材料层
330:第二基材
Claims (11)
1.一种环保高强度树脂复合材料,其特征在于,
包括:
基材,以及
加强材料层,其形成于所述基材的一面或两面,且包含纤维增强剂;
所述基材由包含聚乳酸(PLA,Poly Lactic Acid)树脂和聚羟基脂肪酸酯(PHA,polyhydroxyalkanoate)树脂的生物降解性树脂形成。
2.根据权利要求1所述的环保高强度树脂复合材料,其特征在于,所述生物降解性树脂中,相对于100重量份的所述聚乳酸(PLA)树脂,混合有10重量份~50重量份的所述聚羟基脂肪酸酯(PHA)树脂。
3.根据权利要求1所述的环保高强度树脂复合材料,其特征在于,所述生物降解性树脂还包含离聚物。
4.根据权利要求1所述的环保高强度树脂复合材料,其特征在于,所述聚羟基脂肪酸酯(PHA)树脂包含由以下化学式1表示的重复单元:
化学式1
(化学式1中,R1是氢原子或者置换或非置换的碳原子数1~15的烷基,n是1或2)。
5.根据权利要求1所述的环保高强度树脂复合材料,其特征在于,所述基材是膜、纺布(Woven Fabric)、无纺布(Nonwoven Fabric)及毛皮(pelt)中的一种的单层形态或两种以上层压的形态。
6.根据权利要求1所述的环保高强度树脂复合材料,其特征在于,所述纤维增强剂包含碳纤维、玻璃纤维、芳纶纤维(Aramid Fiber)及超高分子量聚乙烯(UHMWPE,Ultra High Molecular Weight Polyethylene)中的一种以上。
7.一种环保高强度树脂复合材料,其特征在于,
包括:
第一基材,
加强材料层,其形成于所述第一基材上,且包含纤维增强剂,以及
第二基材,其形成于所述加强材料层上;
所述第一基材和第二基材中一个以上由包含聚乳酸(PLA)树脂和聚羟基脂肪酸酯(PHA)树脂的生物降解性树脂形成。
8.根据权利要求7所述的环保高强度树脂复合材料,其特征在于,所述生物降解性树脂中,相对于100重量份所述聚乳酸(PLA)树脂,混合有10重量份~50重量份的所述聚羟基脂肪酸酯(PHA)树脂。
9.根据权利要求7所述的环保高强度树脂复合材料,其特征在于,所述生物降解性树脂还包含离聚物。
10.根据权利要求7所述的环保高强度树脂复合材料,其特征在于,所述第一基材及第二基材是膜、纺布、无纺布及毛皮中的一种的单层形态或两种以上层压的形态。
11.根据权利要求7所述的环保高强度树脂复合材料,其特征在于,所述纤维增强剂包含碳纤维、玻璃纤维、芳纶纤维及超高分子量聚乙烯(UHMWPE)中的一种以上。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120036605A KR101456330B1 (ko) | 2012-04-09 | 2012-04-09 | 친환경 고강도 수지 복합재 |
KR10-2012-0036605 | 2012-04-09 | ||
PCT/KR2012/011765 WO2013154256A1 (ko) | 2012-04-09 | 2012-12-28 | 친환경 고강도 수지 복합재 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104245310A true CN104245310A (zh) | 2014-12-24 |
CN104245310B CN104245310B (zh) | 2017-03-22 |
Family
ID=49327792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280072070.7A Active CN104245310B (zh) | 2012-04-09 | 2012-12-28 | 环保高强度树脂复合材料 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150056880A1 (zh) |
JP (1) | JP6239588B2 (zh) |
KR (1) | KR101456330B1 (zh) |
CN (1) | CN104245310B (zh) |
TW (1) | TWI498211B (zh) |
WO (1) | WO2013154256A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115058033A (zh) * | 2022-07-18 | 2022-09-16 | 南通大学 | 一种环保型聚乳酸纺织复合材料及其制备方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3162833A1 (en) | 2015-11-01 | 2017-05-03 | Bio Bond IVS | Bio-based and biodegradable resin suitable for production of composite materials |
PL3325703T3 (pl) | 2016-08-02 | 2020-03-31 | Fitesa Germany Gmbh | Układ i sposób wytwarzania materiałów włókninowych z poli(kwasu mlekowego) |
US11441251B2 (en) | 2016-08-16 | 2022-09-13 | Fitesa Germany Gmbh | Nonwoven fabrics comprising polylactic acid having improved strength and toughness |
CN109294184A (zh) * | 2018-09-05 | 2019-02-01 | 安徽新翔包装材料有限公司 | 一种环保降解塑料袋及其制作工艺 |
CN112300553A (zh) * | 2020-11-17 | 2021-02-02 | 扬州万盛实业有限公司 | 一种轻质高强隔热复合材料板材及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5422398A (en) * | 1993-04-23 | 1995-06-06 | The University Of Connecticut | Compatibilizer for polymer blends and the polymer blends derived therefrom |
JP2005306932A (ja) * | 2004-04-19 | 2005-11-04 | Mitsubishi Heavy Ind Ltd | 生分解性合成紙及びその製造方法 |
CN1898326A (zh) * | 2003-12-22 | 2007-01-17 | 伊斯曼化学公司 | 具有改善流变性的可生物降解聚合物的增容共混物 |
KR20090099215A (ko) * | 2008-03-17 | 2009-09-22 | (주)엘지하우시스 | 연속섬유가 보강된 고강도 열가소성 복합재의 제조공정 |
CN102099186A (zh) * | 2008-03-24 | 2011-06-15 | 拜奥维森有限责任公司 | 生物层压复合组件和相关方法 |
CN102173153A (zh) * | 2010-12-13 | 2011-09-07 | 中国航空工业集团公司北京航空材料研究院 | 一种纤维增强复合材料的制备方法 |
KR20110103898A (ko) * | 2010-03-15 | 2011-09-21 | (주)엘지하우시스 | Pla 및 bio 블렌드 수지를 이용한 바닥재 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3609543B2 (ja) * | 1995-07-13 | 2005-01-12 | トヨタ自動車株式会社 | 脂肪族ポリエステル系ポリマーブレンド体およびその製造方法ならびに脂肪族ポリエステル系ポリマーブレンド体の成形加工方法 |
DE69615763T2 (de) * | 1995-07-13 | 2002-08-08 | Mitsubishi Gas Chemical Co., Inc. | Polymermischungen aliphatischer Polyester auf Basis von Polylactiden, Verfahren zu deren Herstellung und Verfahren zum Formen diese Mischungen |
JP3720916B2 (ja) * | 1996-06-19 | 2005-11-30 | 大日本印刷株式会社 | 生分解性を有する積層体 |
MXPA03008886A (es) * | 2001-03-27 | 2003-12-08 | Procter & Gamble | Composiciones de baja respuesta glicemica. |
US6808795B2 (en) * | 2001-03-27 | 2004-10-26 | The Procter & Gamble Company | Polyhydroxyalkanoate copolymer and polylactic acid polymer compositions for laminates and films |
WO2003082980A1 (en) * | 2002-03-29 | 2003-10-09 | Mitsui Chemicals, Inc. | Lactic acid-based resin composition |
KR100504096B1 (ko) * | 2003-08-08 | 2005-07-27 | 재단법인서울대학교산학협력재단 | 하이브리드 다축섬유구조 복합재료를 이용한 안전모 |
BRPI0600787A (pt) * | 2006-02-24 | 2007-11-20 | Phb Ind Sa | composição polimérica ambientalmente degradável e seu método de obtenção |
US8449986B2 (en) * | 2008-03-05 | 2013-05-28 | Scout Materials Llc | Multifunctional biocomposite additive compositions and methods |
MX2008006155A (es) * | 2008-05-09 | 2009-11-09 | Grupo P I Mabe Sa De C V | Articulo absorbente desechable, amigable con el medio ambiente. |
US20100009104A1 (en) * | 2008-07-11 | 2010-01-14 | Composite America, LLC | Laminate with Natural Fiber Composite |
KR101081636B1 (ko) * | 2009-02-17 | 2011-11-09 | 한일이화주식회사 | 자동차 내장재 |
KR101302335B1 (ko) * | 2009-09-23 | 2013-08-30 | (주)엘지하우시스 | 바닥재 및 그 제조 방법 |
US20110105644A1 (en) * | 2009-11-02 | 2011-05-05 | E. I. Du Pont De Nemours And Company | Toughened poly(trimethylene terephthalate) molding resins and molded articles therefrom |
-
2012
- 2012-04-09 KR KR1020120036605A patent/KR101456330B1/ko active IP Right Grant
- 2012-12-28 CN CN201280072070.7A patent/CN104245310B/zh active Active
- 2012-12-28 US US14/388,426 patent/US20150056880A1/en not_active Abandoned
- 2012-12-28 WO PCT/KR2012/011765 patent/WO2013154256A1/ko active Application Filing
- 2012-12-28 JP JP2015505625A patent/JP6239588B2/ja active Active
-
2013
- 2013-03-06 TW TW102107847A patent/TWI498211B/zh not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5422398A (en) * | 1993-04-23 | 1995-06-06 | The University Of Connecticut | Compatibilizer for polymer blends and the polymer blends derived therefrom |
CN1898326A (zh) * | 2003-12-22 | 2007-01-17 | 伊斯曼化学公司 | 具有改善流变性的可生物降解聚合物的增容共混物 |
JP2005306932A (ja) * | 2004-04-19 | 2005-11-04 | Mitsubishi Heavy Ind Ltd | 生分解性合成紙及びその製造方法 |
KR20090099215A (ko) * | 2008-03-17 | 2009-09-22 | (주)엘지하우시스 | 연속섬유가 보강된 고강도 열가소성 복합재의 제조공정 |
CN102099186A (zh) * | 2008-03-24 | 2011-06-15 | 拜奥维森有限责任公司 | 生物层压复合组件和相关方法 |
KR20110103898A (ko) * | 2010-03-15 | 2011-09-21 | (주)엘지하우시스 | Pla 및 bio 블렌드 수지를 이용한 바닥재 |
CN102173153A (zh) * | 2010-12-13 | 2011-09-07 | 中国航空工业集团公司北京航空材料研究院 | 一种纤维增强复合材料的制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115058033A (zh) * | 2022-07-18 | 2022-09-16 | 南通大学 | 一种环保型聚乳酸纺织复合材料及其制备方法 |
CN115058033B (zh) * | 2022-07-18 | 2024-02-23 | 南通大学 | 一种环保型聚乳酸纺织复合材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101456330B1 (ko) | 2014-11-04 |
JP2015517935A (ja) | 2015-06-25 |
TW201341182A (zh) | 2013-10-16 |
CN104245310B (zh) | 2017-03-22 |
JP6239588B2 (ja) | 2017-11-29 |
WO2013154256A1 (ko) | 2013-10-17 |
KR20130114343A (ko) | 2013-10-18 |
TWI498211B (zh) | 2015-09-01 |
US20150056880A1 (en) | 2015-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mann et al. | Green composites: A review of processing technologies and recent applications | |
CN104245310A (zh) | 环保高强度树脂复合材料 | |
George et al. | Composite materials with bast fibres: Structural, technical, and environmental properties | |
Torres‐Giner et al. | Preparation and characterization of compression‐molded green composite sheets made of poly (3‐hydroxybutyrate) reinforced with long pita fibers | |
Åkesson et al. | Preparation of thermoset composites from natural fibres and acrylate modified soybean oil resins | |
DE112007002973T5 (de) | Polybutylenterephthalatharzzusammensetzung | |
KR20160024184A (ko) | 열접착성이 우수한 저융점 바인더용 공중합 폴리에스테르 및 이를 이용한 폴리에스테르 바인더 복합섬유 | |
NagarajaGanesh et al. | Intrinsic cellulosic fiber architecture and their effect on the mechanical properties of hybrid composites | |
EP4019571B1 (en) | Carbon fiber-reinforced composite material | |
CN103361880A (zh) | 一种可完全降解的高抗冲击复合材料及其制备方法与应用 | |
Sakthivel et al. | Recycled cotton/polyester and polypropylene nonwoven hybrid composite materials for house hold applications | |
Dey et al. | An overview of the recent trends in manufacturing of green composites–considerations and challenges | |
Spiridon et al. | New opportunities to valorize biomass wastes into green materials. II. Behaviour to accelerated weathering | |
Nurul Fazita et al. | Woven natural fiber fabric reinforced biodegradable composite: processing, properties and application | |
Gama et al. | Enhanced compatibility between coconut fibers/PP via chemical modification for 3D printing | |
Sayem et al. | Thermoplastic composites reinforced with multi-layer woven jute fabric: A comparative analysis | |
JP6060256B2 (ja) | 複合材料の製造方法 | |
Preechawattanasakul et al. | Multilayer biocomposites of PLA woven fabric and PBS sheets using compression molding process | |
Lascano et al. | Study of the mechanical properties of polylactide composites with jute reinforcements | |
JPH0925399A (ja) | 樹脂組成物、その製造方法、およびそれからなるホットメルト接着剤 | |
KR101492311B1 (ko) | 바이오 플라스틱 조성물 및 이를 이용한 부직포 | |
Baigh et al. | Integration and mechanical characterization of PALF and jute fibre in epoxy polymer to fabricate structural hybrid biocomposites | |
JP5385734B2 (ja) | 耐衝撃性複合体 | |
CN103087409B (zh) | 浸渍木粉填充聚丙烯复合材料及其制备方法 | |
JP2019123222A (ja) | リサイクル可能な環境にやさしい積層織物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |