CN104242924A - 具有自动频率校准功能的多频带电感-电容压控振荡器 - Google Patents

具有自动频率校准功能的多频带电感-电容压控振荡器 Download PDF

Info

Publication number
CN104242924A
CN104242924A CN201310320684.9A CN201310320684A CN104242924A CN 104242924 A CN104242924 A CN 104242924A CN 201310320684 A CN201310320684 A CN 201310320684A CN 104242924 A CN104242924 A CN 104242924A
Authority
CN
China
Prior art keywords
voltage
controlled oscillator
grid
transistor
pmos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310320684.9A
Other languages
English (en)
Other versions
CN104242924B (zh
Inventor
朱樟明
丁昊宇
刘马良
杨银堂
刘帘曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201310320684.9A priority Critical patent/CN104242924B/zh
Publication of CN104242924A publication Critical patent/CN104242924A/zh
Application granted granted Critical
Publication of CN104242924B publication Critical patent/CN104242924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

本发明提供了一种具有自动频率校准功能的电感-电容压控振荡器,包括压控振荡器和自动频率校准单元;压控振荡器包括输入晶体管、负阻互耦对和电感-电容谐振单元;输入电流通过输入晶体管接入负阻互耦对的两输入端;电感-电容谐振单元连接于压控振荡器的第一输出端和压控振荡器的第二输出端之间,受控制电压控制而调节输出谐振频率;自动频率校准单元检测控制电压和输出谐振频率,当判断到输出谐振频率不在预先设定的范围内时,根据控制电压和输出谐振频率产生控制信号;电感-电容谐振单元根据该控制信号调整输出谐振频率。本发明自动选择压控振荡器的最优频带,使其输出正确的频率。

Description

具有自动频率校准功能的多频带电感-电容压控振荡器
技术领域
本发明涉及一种压控振荡器,尤其涉及一种具有自动频率校准功能的多频带电感-电容压控振荡器。
背景技术
振荡器是许多电子系统的主要部分,通常工作在锁相环系统中,应用范围从微处理器中的时钟产生到无线收发机系统中的载波合成,要求的结构和性能参数差别很大。相位噪声,功耗和频率调谐范围是振荡器的主要性能参数。电感-电容压控振荡器相比与环形振荡器,具有更低的相位噪声,更纯净的输出频谱和更高的振荡频率。随着CMOS(Complementary Metal OxideSemiconductor,互补金属氧化物半导体)工艺技术的不断进步,电感-电容压控振荡器得到了越来越广泛的应用。
现代通信和网络技术的快速发展以及芯片集成度的降低,要求无线通信系统能够支持多种制式的通信标准和和网络协议,同时采用尽量少的电路元件。这意味着单个锁相环系统必须工作在较宽的频率范围内,对压控振荡器的频率调谐范围提出了很高的要求。随着工艺尺寸的不断降低,控制电压的范围也随之减小,而频率调谐范围变得很大,这使得压控振荡器的增益变得很大,显著得恶化了锁相环系统的相位噪声。因此压控振荡器中采用数字控制的开关电容单元来改变谐振回路中的总电容值,实现了频率的分立调谐,实质上是将一条调谐曲线分成多条调谐曲线,在达到相同频率调谐范围的情况下减小了压控振荡器的增益,提高了相位噪声性能。
使压控振荡器输出某一特定频率,必须要选择一条合适的调谐曲线。由于工艺,温度,供电电压的影响,压控振荡器的每个分立的频带可能上移或下降。例如MIM(金属-绝缘介质-金属)电容的最大偏差可以达到15%,连线与MOS的寄生电容的偏差可以达到10%。这使得从外部选择压控振荡器中一个合理的频带变得难以实现。
发明内容
本发明的主要目的在于提供一种具有自动频率校准功能的电感-电容压控振荡器,在保证锁相环系统工作稳定的情况下,自动选择压控振荡器的最优频带,使其输出正确的频率。
为了达到上述目的,本发明提供了一种具有自动频率校准功能的电感-电容压控振荡器,包括压控振荡器和自动频率校准单元;
所述压控振荡器包括输入晶体管、负阻互耦对和电感-电容谐振单元;
输入电流通过所述输入晶体管接入所述负阻互耦对的两输入端;
所述负阻互耦对的第一输出端为所述压控振荡器的第一输出端;
所述负阻互耦对的第二输出端为所述压控振荡器的第二输出端;
所述电感-电容谐振单元,连接于所述压控振荡器的第一输出端和所述压控振荡器的第二输出端之间,用于受控制电压控制而调节输出谐振频率;
所述自动频率校准单元,用于检测所述控制电压和所述输出谐振频率,当判断到所述输出谐振频率不在预先设定的范围内时,根据所述控制电压和所述输出谐振频率产生控制信号;
所述电感-电容谐振单元,进一步用于根据该控制信号调整所述输出谐振频率。
实施时,所述电感-电容谐振单元包括第一电感、第二电感、第一电容、第二电容、第一变容管、第二变容管和开关电容单元;
所述控制电压接入所述第一变容管的第一端和所述第二变容管的第一端;
所述第一变容管的第二端与所述压控振荡器的第一输出端连接;
所述第二变容管的第二端与所述压控振荡器的第二输出端连接;
相互串联的所述第一电容和所述第二电容连接于所述压控振荡器的第一输出端和所述压控振荡器的第二输出端之间;
所述开关电容单元连接于所述压控振荡器的第一输出端和所述压控振荡器的第二输出端之间;
所述压控振荡器的第一输出端通过所述第一电感接地;
所述压控振荡器的第二输出端通过所述第二电感接地;
所述控制信号为数字控制信号;
所述开关电容单元,用于根据该数字控制信号而分立调节所述输出谐振频率。
实施时,所述数字控制信号包括n位数字控制字;n为大于1的正整数;
所述开关电容单元包括n级开关电容模块;
第i级所述开关电容模块包括第一开关晶体管、第二开关晶体管、第三开关晶体管、第一开关电容和第二开关电容;i为大于等于1而小于等于n的正整数;
所述第一开关晶体管,栅极接入所述数字控制信号的第i位数字控制字,漏极与所述第二开关电容的第一端连接,源极与所述第一开关电容的第一端连接;
所述第二开关晶体管,栅极与所述第一开关晶体管的栅极连接,漏极接地,源极与所述第一开关晶体管的源极连接;
所述第三开关晶体管,栅极与所述第一开关晶体管的栅极连接,漏极接地,源极与所述第一开关晶体管的漏极连接;
所述第一开关电容的第二端与所述压控振荡器的第一输出端连接;
所述第二开关电容的第二端与所述压控振荡器的第二输出端连接;
所述第一开关晶体管、所述第二开关晶体管和所述第三开关晶体管是NMOS晶体管;所述第一开关电容和所述第二开关电容为二进制电容。
实施时,所述自动频率校准单元包括第一比较器、第二比较器和数字控制逻辑电路,其中,
所述控制电压接入所述第一比较器的正输入端和所述第二比较器的正输入端;
所述第一比较器的负输入端接入第一参考电压;
所述第二比较器的负输入端接入第二参考电压;
所述第一参考电压是预先设定的最大控制电压;
所述第二参考电压是预先设定的最小控制电压;
所述第一比较器的输出端和所述第二比较器的输出端分别与所述数字控制逻辑电路的输入端连接;
所述数字控制逻辑电路输出所述数字控制信号。
实施时,所述第一比较器包括第一NMOS晶体管、第二NMOS晶体管、第三NMOS晶体管、第四NMOS晶体管、第五NMOS晶体管、第一PMOS晶体管、第二PMOS晶体管、第三PMOS晶体管和第四PMOS晶体管,其中,
所述第一NMOS晶体管,栅极接入所述控制电压,漏极与所述第二PMOS晶体管的漏极连接,源极与所述第四NMOS晶体管的漏极连接;
所述第二NMOS晶体管,栅极接入所述第一参考电压,漏极与所述第三PMOS晶体管的漏极连接,源极与所述第四NMOS晶体管的漏极连接;
所述第三NMOS晶体管,栅极接入电流源偏置电压,漏极与所述第一PMOS晶体管的漏极连接,源极接地;
所述第四NMOS晶体管,栅极接入电流源偏置电压,源极接地;
所述第五NMOS晶体管,栅极接入电流源偏置电压,源极接地,漏极与所述第四PMOS晶体管的漏极连接;
所述第一PMOS晶体管,栅极与所述第二PMOS晶体管的栅极连接,源极接入电源电压;
所述第二PMOS晶体管,栅极与所述第二PMOS晶体管的漏极连接,源极接入电源电压;
所述第三PMOS晶体管,栅极与所述第三PMOS晶体管的漏极连接,源极接入电源电压;
所述第四PMOS晶体管,栅极与所述第三PMOS晶体管的栅极连接,源极接入电源电压。
实施时,所述第二比较器包括第六NMOS晶体管、第七NMOS晶体管、第八NMOS晶体管、第九NMOS晶体管、第五PMOS晶体管、第六PMOS晶体管、第七PMOS晶体管、第八PMOS晶体管和第九PMOS晶体管;
所述第六NMOS晶体管,栅极与所述第七NMOS晶体管的栅极连接,漏极与所述第七PMOS晶体管的漏极连接,源极接地;
所述第七NMOS晶体管,栅极与所述第七NMOS晶体管的漏极连接,漏极与所述第五PMOS晶体管的漏极连接,源极接地;
所述第八NOMS晶体管,栅极与所述第九NMOS晶体管的栅极连接,漏极分别与所述第六PMOS晶体管的漏极和所述第八NMOS晶体管的栅极连接,源极接地;
所述第九NMOS晶体管,栅极与所述第八NMOS晶体管的栅极连接,漏极与所述第九PMOS晶体管的漏极连接,源极接地;
所述第五PMOS晶体管,栅极接入所述控制电压,源极与所述第八PMOS晶体管的漏极连接;
所述第六PMOS晶体管,栅极接入所述第二参考电压,源极与所述第八PMOS晶体管的漏极连接;
所述第七PMOS晶体管,栅极接入所述电流源偏置电压,源极接入电源电压;
所述第八PMOS晶体管,栅极接入所述电流源偏置电压,源极接入电源电压;
所述第九PMOS晶体管,栅极接入所述电流源偏置电压,源极接入电源电压。
实施时,当所述控制电压大于所述第一参考电压时,所述数字控制逻辑电路输出的数字控制信号减1;
当所述控制电压小于所述第二参考电压时,所述数字控制逻辑电路输出的数字控制信号加1。
实施时,所述负阻互耦对包括第一负阻晶体管和第二负阻晶体管;
所述压控振荡器还包括第一电阻、第二电阻、第一隔离电容和第二隔离电容;
所述输入晶体管,栅极接入电流源偏置电压,源极接入电源电压;
所述第一负阻晶体管,栅极通过所述第一隔离电容与所述第二负阻晶体管的漏极连接,源极与所述输入晶体管的漏极连接,漏极通过依次串联的所述第二隔离电容和所述第一电阻接入偏置电压;
所述第二负阻晶体管,栅极通过所述第二隔离电容与所述第一负阻晶体管的漏极连接,源极与所述输入晶体管的漏极连接,漏极通过依次连接的所述第一隔离电容和所述第二电阻接入偏置电压。
实施时,所述输入晶体管、所述第一负阻晶体管和所述第二负阻晶体管是PMOS晶体管。
与现有技术相比,本发明所述的具有自动频率校准功能的电感-电容压控振荡器,采用所述自动频率校准单元检测压控振荡器的控制电压的变化,判断该控制电压是否使压控振荡器工作在合理范围内,并根据判断结果产生合理的控制信号来选择压控振荡器的最优工作频带,从而产生正确的输出频率。
附图说明
图1是本发明实施例所述的具有自动频率校准功能的电感-电容压控振荡器的电路图;
图2是本发明实施例所述的具有自动频率校准功能的电感-电容压控振荡器包括的开关电容单元的第i级开关电容模块的电路图;
图2A是本发明实施例所述的具有自动频率校准功能的电感-电容压控振荡器的输出频带示意图;
图3是本发明实施例所述的具有自动频率校准功能的电感-电容压控振荡器包括的自动频率校准单元的结构框图;
图4A是本发明实施例所述的具有自动频率校准功能的电感-电容压控振荡器包括的自动频率校准单元的第一比较器的电路图;
图4B是本发明实施例所述的具有自动频率校准功能的电感-电容压控振荡器包括的自动频率校准单元的第二比较器的电路图;
具体实施方式
本发明实施例所述的具有自动频率校准功能的电感-电容压控振荡器,在保证锁相环系统工作稳定的情况下,自动选择压控振荡器的最优频带,使其输出正确的频率。
如图1所示,本发明实施例所述的具有自动频率校准功能的电感-电容压控振荡器,包括压控振荡器和自动频率校准单元11;
所述压控振荡器包括输入晶体管PI、负阻互耦对和电感-电容谐振单元;
输入电流通过所述输入晶体管PI接入所述负阻互耦对的两输入端;
所述负阻互耦对的第一输出端为所述压控振荡器的第一输出端OUTPUT1;
所述负阻互耦对的第二输出端为所述压控振荡器的第二输出端OUTPUT2;
所述电感-电容谐振单元,连接于所述压控振荡器的第一输出端OUTPUT1和所述压控振荡器的第二输出端OUTPUT2之间,用于受控制电压Vctrl控制而调节输出谐振频率;
所述自动频率校准单元11,用于检测所述控制电压和所述输出谐振频率,当判断到所述输出谐振频率不在预先设定的范围内时,根据所述控制电压Vctrl和所述输出谐振频率产生控制信号;
所述电感-电容谐振单元,进一步用于根据该控制信号调整所述输出谐振频率。
在本发明实施例所述的具有自动频率校准功能的电感-电容压控振荡器中,所述压控振荡器和所述自动频率校准单元都工作在锁相环系统中。
本发明实施例所述的具有自动频率校准功能的电感-电容压控振荡器,采用所述自动频率校准单元检测压控振荡器的控制电压的变化,判断该控制电压是否使压控振荡器工作在合理范围内,并根据判断结果产生合理的控制信号来选择压控振荡器的最优工作频带,从而产生正确的输出频率。
如图1所示,在具体实施时,所述负阻互耦对包括第一负阻晶体管PR1和第二负阻晶体管PR2;
所述压控振荡器还包括第一电阻R1、第二电阻R2、第一隔离电容Cb1和第二隔离电容Cb2;
所述输入晶体管PI,栅极接入电流源偏置电压Vbias,源极接入电源电压VDD;
所述第一负阻晶体管PR1,栅极通过所述第一隔离电容Cb1与所述第二负阻晶体管PR2的漏极连接,源极与所述输入晶体管PI的漏极连接,漏极通过依次串联的所述第二隔离电容Cb2和所述第一电阻R1接入偏置电压V;
所述第二负阻晶体管PR2,栅极通过所述第二隔离电容Cb2与所述第一负阻晶体管PR1的漏极连接,源极与所述输入晶体管PI的漏极连接,漏极通过依次连接的所述第一隔离电容Cb1和所述第二电阻R2接入偏置电压V。
优选的,所述输入晶体管PI、所述第一负阻晶体管PR1和所述第二负阻晶体管PR2是PMOS晶体管。
如图1所示,在具体实施时,所述电感-电容谐振单元包括第一电感L1、第二电感L2、第一电容C1、第二电容C2、第一变容管Var1、第二变容管Var2和开关电容单元12;
所述控制电压Vctrl接入所述第一变容管Var1的第一端和所述第二变容管Var2的第一端;
所述第一变容管Var1的第二端与所述压控振荡器的第一输出端OUTPUT1连接;
所述第二变容管Var2的第二端与所述压控振荡器的第二输出端OUTPUT2连接;
相互串联的所述第一电容C1和所述第二电容C2连接于所述压控振荡器的第一输出端OUTPUT1和所述压控振荡器的第二输出端OUTPUT2之间;
所述开关电容单元12连接于所述压控振荡器的第一输出端OUTPUT1和所述压控振荡器的第二输出端OUTPUT2之间;
所述压控振荡器的第一输出端OUTPUT1通过所述第一电感L1接地端GND;
所述压控振荡器的第二输出端OUTPUT2通过所述第二电感L2接地端GND;
所述控制信号Vctrl为数字控制信号;
所述开关电容单元12,用于根据该数字控制信号而分立调节所述输出谐振频率。
在本发明实施例所述的具有自动频率校准功能的电感-电容压控振荡器中,压控振荡器采用电感-电容谐振单元和负阻互耦对来产生输出谐振频率。频率的调谐通过改变电感-电容谐振单元中的电容值来实现,所述电感-电容谐振单元包括变容管和由数字控制信号控制的开关电容单元。变容管实现所述输出谐振频率的连续变化,而数字信号控制的开关电容单元实现所述输出谐振频率的分立调节,以实现多频带压控振荡器。其中数字控制信号控制的开关电容单元中的开关电容为二进制电容,使得压控振荡器的频带的数量为2n,n为所述数字控制信号的位数。多频带压控振荡器的优点是实现了更宽的频率范围,并减小了压控振荡器的控制电压增益,从而降低了相位噪声。
在具体实施时,如图2所示,所述数字控制信号包括n位数字控制字,该n位数字控制字的标号分别为b1至bn;n为大于1的正整数;
所述开关电容单元包括n级开关电容模块;
第i级所述开关电容模块包括第一开关晶体管N1、第二开关晶体管N2、第三开关晶体管N3、第一开关电容Cs1和第二开关电容Cs2;i为大于等于1而小于等于n的正整数;
所述第一开关晶体管N1,栅极接入所述数字控制信号的第i位数字控制字bi,漏极与所述第二开关电容Cs2的第一端连接,源极与所述第一开关电容Cs1的第一端连接;
所述第二开关晶体管N2,栅极与所述第一开关晶体管N1的栅极连接,漏极接地端GND,源极与所述第一开关晶体管N1的源极连接;
所述第三开关晶体管N3,栅极与所述第一开关晶体管N1的栅极连接,漏极接地端GND,源极与所述第一开关晶体管N1的漏极连接;
所述第一开关电容Cs1的第二端与所述压控振荡器的第一输出端OUTPUT1连接;
所述第二开关电容Cs2的第二端与所述压控振荡器的第二输出端OUTPUT2连接;
所述第一开关晶体管N1、所述第二开关晶体管N2和所述第三开关晶体管N3是NMOS晶体管;所述第一开关电容Cs1和所述第二开关电容Cs2为二进制电容。
所述开关电容单元包括n级相同的开关电容模块,n为所述数字控制信号的位数。每个开关电容模块均为差分形式,提高了所述电感-电容谐振单元的Q值(品质因素)。当所述数字控制信号的各位数字控制字都为0时,所有的开关电容都没有加到所述电感-电容谐振单元中,此时的输出频带最高;当所述数字控制信号的各位数字控制字都为1时,所有的开关电容都加到谐振单元中,此时的输出频带最低。
本发明中所采用的压控振荡器为电感-电容压控振荡器,其中电感和电容构成谐振单元,两个PMOS管形成互耦对,具有负阻特性,用来提供振荡回路所消耗的能量并产生正反馈。PR1和PR2的栅极通过交流耦合到压控振荡器的输出端,Vbias用来提供这两个PMOS晶体管的直流偏置。频率的调谐通过改变谐振单元中的电容值来实现,由变容管和数字信号控制的开关电容构成。变容管实现频率的连续变化,而数字信号控制的开关电容单元实现频率的分立调节,以实现多频带压控振荡器,从而拓宽了压控振荡器的频率工作范围。当数字控制字bi(i=0,1,2,…,n)为0时,电容没有加到压控振荡器的谐振单元中,此时频率的连续变化由变容管实现;当数字控制字bi(i=0,1,2,…,n)为1时,电容加到谐振单元中,压控振荡器的频率下降,下移到较低的频带中,此时频率的连续变化依然由变容管实现。压控振荡器的输出频带如图2A所示,图2A的纵轴表示的是压控振荡器的输出谐振频率,其单位为Hz(赫兹),横轴表示的是控制电压Vctrl,其单位为V(伏),标号b标识数字控制信号。
如图3所示,所述自动频率校准单元包括第一比较器31、第二比较器32和数字控制逻辑电路33,其中,
所述控制电压Vctrl接入所述第一比较器31的正输入端和所述第二比较器32的正输入端;
所述第一比较器31的负输入端接入第一参考电压Vhigh
所述第二比较器的负输入端接入第二参考电压Vlow
所述第一参考电压Vhigh是预先设定的最大控制电压;
所述第二参考电压Vlow是预先设定的最小控制电压;
所述第一比较器31的输出端和所述第二比较器32的输出端分别与所述数字控制逻辑电路33的输入端连接;
所述数字控制逻辑电路33输出所述数字控制信号。
所述数字控制逻辑电路33在锁相环回路稳定后,根据此时第一比较器31的输出信号H和第二比较器32的输出信号L进行判断。Vhigh和Vlow为事先设定好的参考电压。由于控制电压Vctrl不能达到满摆幅,因此,0<Vlow<Vhigh<VDD。如果H和L都为二进制数1,表示Vctrl>Vhigh>Vlow,则数字控制字减1,上移一个频带;如果H和L都为二进制数0,表示Vctrl<Vlow<Vhigh,则数字控制字加1,下降一个频带;如果H为二进制数0,L为二进制1,表示Vlow<Vctrl<Vhigh,即控制电压处在合理范围内,则数字控制字不变。输出锁定信号,此时压控振荡器输出正确频率。由于控制电压不可能既大于Vhigh,又小于Vlow,因此不会出现H为二进制数1,L为二进制1这种情况。
值得注意的是,压控振荡器相邻频带之间应保持适当重叠,以实现整体输出频率的连续变化。
在本发明实施例所述的具有自动频率校准功能的电感-电容压控振荡器中,
如图4A所示,所述第一比较器包括第一NMOS晶体管N1、第二NMOS晶体管N2、第三NMOS晶体管N3、第四NMOS晶体管N4、第五NMOS晶体管N5、第一PMOS晶体管P1、第二PMOS晶体管P2、第三PMOS晶体管P3和第四PMOS晶体管P4,其中,
所述第一NMOS晶体管N1,栅极接入所述控制电压Vctrl,漏极与所述第二PMOS晶体管P2的漏极连接,源极与所述第四NMOS晶体管N4的漏极连接;
所述第二NMOS晶体管N2,栅极接入所述第一参考电压Vhigh,漏极与所述第三PMOS晶体管P3的漏极连接,源极与所述第四NMOS晶体管N4的漏极连接;
所述第三NMOS晶体管N3,栅极接入电流源偏置电压Vbias,漏极与所述第一PMOS晶体管P1的漏极连接,源极接地端GND;
所述第四NMOS晶体管N4,栅极接入电流源偏置电压Vbias,源极接地端GND;
所述第五NMOS晶体管N5,栅极接入电流源偏置电压Vbias,源极接地端GND,漏极与所述第四PMOS晶体管P4的漏极连接;
所述第一PMOS晶体管P1,栅极与所述第二PMOS晶体管P2的栅极连接,源极接入电源电压VDD;
所述第二PMOS晶体管P2,栅极与所述第二PMOS晶体管P2的漏极连接,源极接入电源电压VDD;
所述第三PMOS晶体管,栅极与所述第三PMOS晶体管P3的漏极连接,源极接入电源电压VDD;
所述第四PMOS晶体管,栅极与所述第三PMOS晶体管P3的栅极连接,源极接入电源电压VDD。
如图4A所示,第一比较器采用NMOS晶体管为输入对管,输入信号分别为控制电压Vctrl和第一参考电压Vhigh,Vhigh为事先设定的控制电压范围的上限。所述第一比较器的输出分别为H和Hn,H和Hn反相。H为0表示Vctrl小于Vhigh,即控制电压小于上限。
在本发明实施例所述的具有自动频率校准功能的电感-电容压控振荡器中,
如图4B所示,所述第二比较器包括第六NMOS晶体管N6、第七NMOS晶体管N7、第八NMOS晶体管N8、第九NMOS晶体管N9、第五PMOS晶体管P5、第六PMOS晶体管P6、第七PMOS晶体管P7、第八PMOS晶体管P8和第九PMOS晶体管P9;
所述第六NMOS晶体管N6,栅极与所述第七NMOS晶体管N7的栅极连接,漏极与所述第七PMOS晶体管P7的漏极连接,源极接地端GND;
所述第七NMOS晶体管N7,栅极与所述第七NMOS晶体管N7的漏极连接,漏极与所述第五PMOS晶体管P5的漏极连接,源极接地端GND;
所述第八NOMS晶体管N8,栅极与所述第九NMOS晶体管N9的栅极连接,漏极分别与所述第六PMOS晶体管P6的漏极和所述第八NMOS晶体管N8的栅极连接,源极接地端GND;
所述第九NMOS晶体管N9,栅极与所述第八NMOS晶体管N8的栅极连接,漏极与所述第九PMOS晶体管P9的漏极连接,源极接地端GND;
所述第五PMOS晶体管P5,栅极接入所述控制电压Vctrl,源极与所述第八PMOS晶体管P8的漏极连接;
所述第六PMOS晶体管P6,栅极接入所述第二参考电压Vlow,源极与所述第八PMOS晶体管P8的漏极连接;
所述第七PMOS晶体管P7,栅极接入所述电流源偏置电压Vbias,源极接入电源电压VDD;
所述第八PMOS晶体管,栅极接入所述电流源偏置电压Vbias,源极接入电源电压VDD;
所述第九PMOS晶体管,栅极接入所述电流源偏置电压Vbias,源极接入电源电压VDD。
在具体实施时,当所述控制电压大于Vctrl所述第一参考电压Vhigh时,所述数字控制逻辑电路输出的数字控制信号减1;
当所述控制电压Vctrl小于所述第二参考电压Vlow时,所述数字控制逻辑电路输出的数字控制信号加1。
第二比较器采用PMOS晶体管为输入对管,输入信号分别为控制电压Vctrl和Vlow,Vlow为事先设定的控制电压范围的下限。所述第二比较器的输出分别为L和Ln,L和Ln反相。L为1表示Vctrl大于Vlow,即控制电压大于下限。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种具有自动频率校准功能的电感-电容压控振荡器,其特征在于,包括压控振荡器和自动频率校准单元;
所述压控振荡器包括输入晶体管、负阻互耦对和电感-电容谐振单元;
输入电流通过所述输入晶体管接入所述负阻互耦对的两输入端;
所述负阻互耦对的第一输出端为所述压控振荡器的第一输出端;
所述负阻互耦对的第二输出端为所述压控振荡器的第二输出端;
所述电感-电容谐振单元,连接于所述压控振荡器的第一输出端和所述压控振荡器的第二输出端之间,用于受控制电压控制而调节输出谐振频率;
所述自动频率校准单元,用于检测所述控制电压和所述输出谐振频率,当判断到所述输出谐振频率不在预先设定的范围内时,根据所述控制电压和所述输出谐振频率产生控制信号;
所述电感-电容谐振单元,进一步用于根据该控制信号调整所述输出谐振频率。
2.如权利要求1所述的具有自动频率校准功能的电感-电容压控振荡器,其特征在于,
所述电感-电容谐振单元包括第一电感、第二电感、第一电容、第二电容、第一变容管、第二变容管和开关电容单元;
所述控制电压接入所述第一变容管的第一端和所述第二变容管的第一端;
所述第一变容管的第二端与所述压控振荡器的第一输出端连接;
所述第二变容管的第二端与所述压控振荡器的第二输出端连接;
相互串联的所述第一电容和所述第二电容连接于所述压控振荡器的第一输出端和所述压控振荡器的第二输出端之间;
所述开关电容单元连接于所述压控振荡器的第一输出端和所述压控振荡器的第二输出端之间;
所述压控振荡器的第一输出端通过所述第一电感接地;
所述压控振荡器的第二输出端通过所述第二电感接地;
所述控制信号为数字控制信号;
所述开关电容单元,用于根据该数字控制信号而分立调节所述输出谐振频率。
3.如权利要求2所述的具有自动频率校准功能的电感-电容压控振荡器,其特征在于,
所述数字控制信号包括n位数字控制字;n为大于1的正整数;
所述开关电容单元包括n级开关电容模块;
第i级所述开关电容模块包括第一开关晶体管、第二开关晶体管、第三开关晶体管、第一开关电容和第二开关电容;i为大于等于1而小于等于n的正整数;
所述第一开关晶体管,栅极接入所述数字控制信号的第i位数字控制字,漏极与所述第二开关电容的第一端连接,源极与所述第一开关电容的第一端连接;
所述第二开关晶体管,栅极与所述第一开关晶体管的栅极连接,漏极接地,源极与所述第一开关晶体管的源极连接;
所述第三开关晶体管,栅极与所述第一开关晶体管的栅极连接,漏极接地,源极与所述第一开关晶体管的漏极连接;
所述第一开关电容的第二端与所述压控振荡器的第一输出端连接;
所述第二开关电容的第二端与所述压控振荡器的第二输出端连接;
所述第一开关晶体管、所述第二开关晶体管和所述第三开关晶体管是NMOS晶体管;所述第一开关电容和所述第二开关电容为二进制电容。
4.如权利要求3所述的具有自动频率校准功能的电感-电容压控振荡器,其特征在于,所述自动频率校准单元包括第一比较器、第二比较器和数字控制逻辑电路,其中,
所述控制电压接入所述第一比较器的正输入端和所述第二比较器的正输入端;
所述第一比较器的负输入端接入第一参考电压;
所述第二比较器的负输入端接入第二参考电压;
所述第一参考电压是预先设定的最大控制电压;
所述第二参考电压是预先设定的最小控制电压;
所述第一比较器的输出端和所述第二比较器的输出端分别与所述数字控制逻辑电路的输入端连接;
所述数字控制逻辑电路输出所述数字控制信号。
5.如权利要求4所述的具有自动频率校准功能的电感-电容压控振荡器,其特征在于,
所述第一比较器包括第一NMOS晶体管、第二NMOS晶体管、第三NMOS晶体管、第四NMOS晶体管、第五NMOS晶体管、第一PMOS晶体管、第二PMOS晶体管、第三PMOS晶体管和第四PMOS晶体管,其中,
所述第一NMOS晶体管,栅极接入所述控制电压,漏极与所述第二PMOS晶体管的漏极连接,源极与所述第四NMOS晶体管的漏极连接;
所述第二NMOS晶体管,栅极接入所述第一参考电压,漏极与所述第三PMOS晶体管的漏极连接,源极与所述第四NMOS晶体管的漏极连接;
所述第三NMOS晶体管,栅极接入电流源偏置电压,漏极与所述第一PMOS晶体管的漏极连接,源极接地;
所述第四NMOS晶体管,栅极接入电流源偏置电压,源极接地;
所述第五NMOS晶体管,栅极接入电流源偏置电压,源极接地,漏极与所述第四PMOS晶体管的漏极连接;
所述第一PMOS晶体管,栅极与所述第二PMOS晶体管的栅极连接,源极接入电源电压;
所述第二PMOS晶体管,栅极与所述第二PMOS晶体管的漏极连接,源极接入电源电压;
所述第三PMOS晶体管,栅极与所述第三PMOS晶体管的漏极连接,源极接入电源电压;
所述第四PMOS晶体管,栅极与所述第三PMOS晶体管的栅极连接,源极接入电源电压。
6.如权利要求5所述的具有自动频率校准功能的电感-电容压控振荡器,其特征在于,所述第二比较器包括第六NMOS晶体管、第七NMOS晶体管、第八NMOS晶体管、第九NMOS晶体管、第五PMOS晶体管、第六PMOS晶体管、第七PMOS晶体管、第八PMOS晶体管和第九PMOS晶体管;
所述第六NMOS晶体管,栅极与所述第七NMOS晶体管的栅极连接,漏极与所述第七PMOS晶体管的漏极连接,源极接地;
所述第七NMOS晶体管,栅极与所述第七NMOS晶体管的漏极连接,漏极与所述第五PMOS晶体管的漏极连接,源极接地;
所述第八NOMS晶体管,栅极与所述第九NMOS晶体管的栅极连接,漏极分别与所述第六PMOS晶体管的漏极和所述第八NMOS晶体管的栅极连接,源极接地;
所述第九NMOS晶体管,栅极与所述第八NMOS晶体管的栅极连接,漏极与所述第九PMOS晶体管的漏极连接,源极接地;
所述第五PMOS晶体管,栅极接入所述控制电压,源极与所述第八PMOS晶体管的漏极连接;
所述第六PMOS晶体管,栅极接入所述第二参考电压,源极与所述第八PMOS晶体管的漏极连接;
所述第七PMOS晶体管,栅极接入所述电流源偏置电压,源极接入电源电压;
所述第八PMOS晶体管,栅极接入所述电流源偏置电压,源极接入电源电压;
所述第九PMOS晶体管,栅极接入所述电流源偏置电压,源极接入电源电压。
7.如权利要求4所述的具有自动频率校准功能的电感-电容压控振荡器,其特征在于,
当所述控制电压大于所述第一参考电压时,所述数字控制逻辑电路输出的数字控制信号减1;
当所述控制电压小于所述第二参考电压时,所述数字控制逻辑电路输出的数字控制信号加1。
8.如权利要求1至7中任一权利要求所述的具有自动频率校准功能的电感-电容压控振荡器,其特征在于,所述负阻互耦对包括第一负阻晶体管和第二负阻晶体管;
所述压控振荡器还包括第一电阻、第二电阻、第一隔离电容和第二隔离电容;
所述输入晶体管,栅极接入电流源偏置电压,源极接入电源电压;
所述第一负阻晶体管,栅极通过所述第一隔离电容与所述第二负阻晶体管的漏极连接,源极与所述输入晶体管的漏极连接,漏极通过依次串联的所述第二隔离电容和所述第一电阻接入偏置电压;
所述第二负阻晶体管,栅极通过所述第二隔离电容与所述第一负阻晶体管的漏极连接,源极与所述输入晶体管的漏极连接,漏极通过依次连接的所述第一隔离电容和所述第二电阻接入偏置电压。
9.如权利要求8所述的具有自动频率校准功能的电感-电容压控振荡器,其特征在于,所述输入晶体管、所述第一负阻晶体管和所述第二负阻晶体管是PMOS晶体管。
CN201310320684.9A 2013-07-26 2013-07-26 具有自动频率校准功能的多频带电感‑电容压控振荡器 Active CN104242924B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310320684.9A CN104242924B (zh) 2013-07-26 2013-07-26 具有自动频率校准功能的多频带电感‑电容压控振荡器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310320684.9A CN104242924B (zh) 2013-07-26 2013-07-26 具有自动频率校准功能的多频带电感‑电容压控振荡器

Publications (2)

Publication Number Publication Date
CN104242924A true CN104242924A (zh) 2014-12-24
CN104242924B CN104242924B (zh) 2017-09-22

Family

ID=52230387

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310320684.9A Active CN104242924B (zh) 2013-07-26 2013-07-26 具有自动频率校准功能的多频带电感‑电容压控振荡器

Country Status (1)

Country Link
CN (1) CN104242924B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796139A (zh) * 2015-04-22 2015-07-22 西安电子科技大学 一种快速频率稳定压控振荡器
CN104993822A (zh) * 2015-07-24 2015-10-21 北京中科汉天下电子技术有限公司 压控振荡器的温度补偿方法及压控振荡器
WO2018010180A1 (zh) * 2016-07-15 2018-01-18 华为技术有限公司 一种振荡器
CN108233923A (zh) * 2018-01-09 2018-06-29 上海顺久电子科技有限公司 Vco及其频率校准方法、电子设备及计算机存储介质
CN109495117A (zh) * 2018-12-18 2019-03-19 北京品驰医疗设备有限公司 无线能量传输频率校准方法及装置
CN109660253A (zh) * 2018-11-05 2019-04-19 西安电子科技大学 一种数字振幅控制电路及其压控振荡器
CN109818611A (zh) * 2018-12-27 2019-05-28 西安电子科技大学 一种应用于全数字锁相环的数字控制振荡器
CN110719070A (zh) * 2019-09-29 2020-01-21 天津大学 一种基于动态阈值技术的低功耗压控振荡器
CN112290937A (zh) * 2020-09-16 2021-01-29 海能达通信股份有限公司 一种压控振荡器和频率发生器
CN112737578A (zh) * 2020-12-25 2021-04-30 广州辰创科技发展有限公司 一种高相噪宽带微波产生方法、装置及电路
CN113615080A (zh) * 2019-04-04 2021-11-05 华为技术有限公司 一种振荡器及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257302A (zh) * 2007-02-27 2008-09-03 北京朗波芯微技术有限公司 振荡器的频率调节方法及小数分频锁相环频率合成器
CN101814917A (zh) * 2009-02-19 2010-08-25 中国科学院微电子研究所 可实现频段选择的自校正锁相环频率综合器
CN101951259A (zh) * 2010-08-26 2011-01-19 上海南麟电子有限公司 锁相环及其自动频率校准电路、锁相环自调谐锁定方法
US8008956B1 (en) * 2010-05-18 2011-08-30 Kwangwoon University Industry-Academic Collaboration Foundation Frequency synthesizer and high-speed automatic calibration device therefor
CN102195645A (zh) * 2011-03-31 2011-09-21 复旦大学 一种适用于软件无线电系统的频率综合器
CN202524376U (zh) * 2011-12-23 2012-11-07 国民技术股份有限公司 一种压控振荡器
KR101209030B1 (ko) * 2010-05-18 2012-12-06 광운대학교 산학협력단 주파수합성기 및 이를 위한 고속 자동 보정장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257302A (zh) * 2007-02-27 2008-09-03 北京朗波芯微技术有限公司 振荡器的频率调节方法及小数分频锁相环频率合成器
CN101814917A (zh) * 2009-02-19 2010-08-25 中国科学院微电子研究所 可实现频段选择的自校正锁相环频率综合器
US8008956B1 (en) * 2010-05-18 2011-08-30 Kwangwoon University Industry-Academic Collaboration Foundation Frequency synthesizer and high-speed automatic calibration device therefor
KR101209030B1 (ko) * 2010-05-18 2012-12-06 광운대학교 산학협력단 주파수합성기 및 이를 위한 고속 자동 보정장치
CN101951259A (zh) * 2010-08-26 2011-01-19 上海南麟电子有限公司 锁相环及其自动频率校准电路、锁相环自调谐锁定方法
CN102195645A (zh) * 2011-03-31 2011-09-21 复旦大学 一种适用于软件无线电系统的频率综合器
CN202524376U (zh) * 2011-12-23 2012-11-07 国民技术股份有限公司 一种压控振荡器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUI DONG LEE: "A 2.9-GHz LC-VCO based PLL with a fast automatic frequency control", 《2012 INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS)》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796139B (zh) * 2015-04-22 2017-12-26 西安电子科技大学 一种快速频率稳定压控振荡器
CN104796139A (zh) * 2015-04-22 2015-07-22 西安电子科技大学 一种快速频率稳定压控振荡器
CN104993822A (zh) * 2015-07-24 2015-10-21 北京中科汉天下电子技术有限公司 压控振荡器的温度补偿方法及压控振荡器
CN104993822B (zh) * 2015-07-24 2018-09-11 北京中科汉天下电子技术有限公司 压控振荡器的温度补偿方法及压控振荡器
US10622943B2 (en) 2016-07-15 2020-04-14 Huawei Technologies Co., Ltd. Oscillator
WO2018010180A1 (zh) * 2016-07-15 2018-01-18 华为技术有限公司 一种振荡器
CN108141177A (zh) * 2016-07-15 2018-06-08 华为技术有限公司 一种振荡器
CN108233923B (zh) * 2018-01-09 2021-09-14 上海顺久电子科技有限公司 Vco及其频率校准方法、电子设备及计算机存储介质
CN108233923A (zh) * 2018-01-09 2018-06-29 上海顺久电子科技有限公司 Vco及其频率校准方法、电子设备及计算机存储介质
CN109660253A (zh) * 2018-11-05 2019-04-19 西安电子科技大学 一种数字振幅控制电路及其压控振荡器
CN109660253B (zh) * 2018-11-05 2022-11-25 西安电子科技大学 一种数字振幅控制的压控振荡器
CN109495117A (zh) * 2018-12-18 2019-03-19 北京品驰医疗设备有限公司 无线能量传输频率校准方法及装置
CN109818611A (zh) * 2018-12-27 2019-05-28 西安电子科技大学 一种应用于全数字锁相环的数字控制振荡器
CN109818611B (zh) * 2018-12-27 2020-12-01 西安电子科技大学 一种应用于全数字锁相环的数字控制振荡器
CN113615080A (zh) * 2019-04-04 2021-11-05 华为技术有限公司 一种振荡器及设备
CN110719070A (zh) * 2019-09-29 2020-01-21 天津大学 一种基于动态阈值技术的低功耗压控振荡器
CN110719070B (zh) * 2019-09-29 2023-05-12 天津大学 一种基于动态阈值技术的低功耗压控振荡器
CN112290937A (zh) * 2020-09-16 2021-01-29 海能达通信股份有限公司 一种压控振荡器和频率发生器
CN112290937B (zh) * 2020-09-16 2024-01-12 海能达通信股份有限公司 一种压控振荡器和频率发生器
CN112737578A (zh) * 2020-12-25 2021-04-30 广州辰创科技发展有限公司 一种高相噪宽带微波产生方法、装置及电路

Also Published As

Publication number Publication date
CN104242924B (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
CN104242924A (zh) 具有自动频率校准功能的多频带电感-电容压控振荡器
CN100514840C (zh) 对称化线性压控振荡器
US8253506B2 (en) Wideband temperature compensated resonator and wideband VCO
RU2404505C2 (ru) Настраиваемый генератор с последовательно и параллельно настроенными резонансными контурами
CN101944880B (zh) 一种采用调谐曲线补偿vco的方法及其电路模块
CN101483434A (zh) 一种低调谐增益变化的压控振荡器
US20080104435A1 (en) Clock Generator, Timing and Frequency Reference with Crystal-Compatible Power Management
US20050212611A1 (en) Feedback loop for LC VCO
US20080012654A1 (en) Linearized variable-capacitance module and lc resonance circuit using the same
US20040251975A1 (en) Unilateral coupling for a quadrature voltage controlled oscillator
Tohidian et al. Dual-core high-swing class-C oscillator with ultra-low phase noise
CN105978561A (zh) 一种宽带压控振荡器
CN102195639A (zh) 低噪声偏置电路及宽带压控振荡电路
US20090189704A1 (en) Voltage controlled oscillator with multi-tap inductor
US7126435B2 (en) Voltage controlled oscillator amplitude control circuit
EP2403134B1 (en) Apparatus and method for digitally controlling capacitance
US9287825B2 (en) Inductive-capacitive (LC) voltage controlled oscillator (VCO) having tuning range controlled by a digital-to-analog converter (DAC) with programmable tail current
CN112242841A (zh) 一种具有高电源噪声抑制比的锁相环电路
US8098111B2 (en) Reduced phase noise multi-band VCO
CN102142811A (zh) 基于低压差调压器的低噪声cmos压控振荡电路
US11817865B2 (en) Oscillator
KR20010070998A (ko) 전력 보존 모드를 가진 발진기
CN102142837A (zh) 降低载波附近相位噪声的电感电容压控振荡器
CN102098046B (zh) 共模点可控电感-电容压控振荡器
CN110277991A (zh) 一种支持低增益变化的宽带压控振荡器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant