CN104233468A - Li4Sr(BO3)2化合物、Li4Sr(BO3)2非线性光学晶体及其制法和用途 - Google Patents

Li4Sr(BO3)2化合物、Li4Sr(BO3)2非线性光学晶体及其制法和用途 Download PDF

Info

Publication number
CN104233468A
CN104233468A CN201310247500.0A CN201310247500A CN104233468A CN 104233468 A CN104233468 A CN 104233468A CN 201310247500 A CN201310247500 A CN 201310247500A CN 104233468 A CN104233468 A CN 104233468A
Authority
CN
China
Prior art keywords
crystal
li4sr
nonlinear optical
melt
linear optic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310247500.0A
Other languages
English (en)
Other versions
CN104233468B (zh
Inventor
张国春
罗军华
夏明军
赵三根
吴以成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS, Technical Institute of Physics and Chemistry of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN201310247500.0A priority Critical patent/CN104233468B/zh
Publication of CN104233468A publication Critical patent/CN104233468A/zh
Application granted granted Critical
Publication of CN104233468B publication Critical patent/CN104233468B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供Li4Sr(BO3)2化学物、Li4Sr(BO3)2非线性光学晶体及其制备方法和用途,涉及非线性光学晶体材料领域;Li4Sr(BO3)2非线性光学晶体在1064nm处的倍频转换效率约为KH2PO4(KDP)晶体的2倍,其紫外吸收截止边短于190nm,且不吸潮;采用助熔剂法,以Li2O、Li2O-B2O3和Li2O-B2O3-LiF作助熔剂可以分别生长出大尺寸透明Li4Sr(BO3)2非线性光学晶体;Li4Sr(BO3)2晶体物理化学性质稳定、硬度适中,易于切割、加工、保存和使用,可用于制作非线性光学器件,开拓紫外与深紫外波段的非线性光学应用。

Description

Li4Sr(BO3)2化合物、Li4Sr(BO3)2非线性光学晶体及其制法和用途
技术领域
本发明涉及一种Li4Sr(BO3)2化合物、Li4Sr(BO3)2非线性光学晶体、该Li4Sr(BO3)2晶体的制备方法和该晶体用于制作非线性光学器件的用途。
技术背景
晶体的非线性光学效应是指这样一种效应:当一束具有某种偏振方向的激光按一定方向通过一块非线性光学晶体时,该光束的频率将发生变化。具有非线性光学效应的晶体称为非线性光学晶体。利用晶体的非线性光学效应,可以制成二次谐波发生器和上、下频率转换器以及光参量振荡器等非线性光学器件。利用非线性光学晶体进行频率变换的全固态激光器是未来激光器的一个发展方向,而其关键在于获得优秀的非线性光学晶体。
目前,应用于紫外波段的非线性光学晶体主要有β-BaB2O4(BBO)、LiB3O5(LBO)、CsLiB6O10(CLBO)和K2Be2BO3F2(KBBF)等,但它们都存在各自的不足之处。例如,LBO的双折射率都比较小,不能实现1064nm波长激光的四倍频输出;BBO的双折射率偏大,用于1064nm波长激光的四倍频输出时存在光折变效应,限制了其输出功率和光束质量;而CLBO极易潮解,难以实现商业化应用;KBBF则由于其严重的层状生长习性,导致其难以获得c向厚度大的晶体。因此,探索综合性能优异的新型紫外非线性光学晶体仍然是迫切而必要的。
根据阴离子基团理论,含共轭π键的(BO3)3-基团具有相对较大的微观倍频系数,当这些(BO3)3-基团排列方向一致时会产生大的宏观倍频系数;同时,其平面构型有利于产生较大的双折射以实现紫外波段的相位匹配;另外,(BO3)3-基团具有较宽的带隙,有利于紫外光的透过和抗激光损伤阈值的提高。因此,(BO3)3-基团被认为是设计合成紫外和深紫外非线性光学晶体的最佳基团之一。目前唯一能够直接倍频输出深紫外激光的晶体KBBF,其基本结构基元即是(BO3)3-基团。在KBBF晶体结构中,由(BO3)3-与(BeO3F)5-构筑的平面层之间通过K+–F-离子键连接,连接力较弱,这导致KBBF晶体呈现出严重的层状生长习性。
因此,发明人设计合成一种新型紫外非线性光学材料:在该材料中,(BO3)3-基团既充当平面层的结构基元,又充当平面层与层之间的连接媒介。这样一来,一方面由于(BO3)3-基团的密度增大,所得新材料可能具有更大的倍频效应和更大的双折射率;另一方面,层与层之间依靠(BO3)3-基团作为连接媒介,层间连接更紧密,所得新材料将不具有层状生长习性。基于此,本发明人在大量探索的基础上,完成了本发明。晶体结构分析和粉末倍频测试等都表明这种设计是切实可行的。
发明内容
本发明的目的之一在于提供一种化学式为Li4Sr(BO3)2的化合物。
本发明的目的之一在于提供一种Li4Sr(BO3)2非线性光学晶体。
本发明的目的之一在于提供Li4Sr(BO3)2晶体的制备方法。
本发明的目的之一在于提供Li4Sr(BO3)2非线性光学晶体的用途。
本发明的技术方案如下:
(1)一种化学式为Li4Sr(BO3)2的化合物。
(2)一种Li4Sr(BO3)2非线性光学晶体,其化学式为Li4Sr(BO3)2,该晶体不含对称中心,属于单斜晶系Cc空间群,晶胞参数为 β=105.22(1)°,Z=4。
(3)一种制备Li4Sr(BO3)2非线性光学晶体的方法,其特征在于,采用助熔剂法生长Li4Sr(BO3)2非线性光学晶体,所述助熔剂选自Li2O、Li2O-B2O3或Li2O-B2O3-LiF。
(4)根据(3)的方法,其特征在于,所述方法包括如下步骤:
将Li2O、SrO、B2O3以摩尔比4–8:1:1–3(相当于摩尔比Li4Sr(BO3)2:Li2O:B2O3=1:2–6:0–2)(优选4–7:1:1–2)或Li2O、SrO、B2O3、LiF以摩尔比4–8:1:1–3:1–3(相当于摩尔比Li4Sr(BO3)2:Li2O:B2O3:LiF=1:2–6:0–2:1–3)(优选4–6:1:1–2:1–2)混合并研磨均匀后并融化(优选在坩埚中融化),在高温熔体表面或熔体中生长晶体。
根据本发明,所述生长晶体的条件为,降温速率:0.1℃~5℃/天,优选0.2~1℃/天;转速:0~50转/分,优选10~40转/分;旋转方向:单向旋转或双向旋转(如可逆双向旋转)。
根据本发明,待晶体生长到所需尺度后,提升籽晶杆,使晶体脱离液面,以不大于100℃/小时(优选小于50℃/小时)的速率降温至室温,即可得Li4Sr(BO3)2非线性光学晶体。
(5)根据(3)或(4)的方法,其特征在于,所述助熔剂为Li2O或Li2O-B2O3,其步骤为:将Li2O、SrO、B2O3按摩尔比为4–8:1:1–3(相当于摩尔比Li4Sr(BO3)2:Li2O:B2O3=1:2–6:0–2)(优选4–7:1:1–2)混合并研磨均匀后融化(优选放入坩埚内),在高温熔体表面或熔体中生长晶体。
所述条件为:降温速率0.1℃~5℃/天,优选0.2~1℃/天;转速为0~50转/分,优选10~40转/分;旋转方向为单向旋转或可逆双向旋转;待晶体生长到所需尺度后,提升籽晶杆,使晶体脱离液面,以不大于100℃/小时(优选小于50℃/小时)的速率降温至室温,即可得Li4Sr(BO3)2非线性光学晶体。
根据本发明,其中部分Li2O或Li2O-B2O3还作为助溶剂。
(6)根据(3)或(4)的方法,其特征在于,所述助熔剂为Li2O-B2O3-LiF助熔剂体系,其步骤为:将Li2O、SrO、B2O3、LiF按摩尔比为4–8:1:1–3:1–3(相当于摩尔比Li4Sr(BO3)2:Li2O:B2O3=1:2–6:0–2:1–3)(优选4–6:1:1–2:1–2)混合并研磨均匀后融化(优选放入坩埚内融化),在高温熔体表面或熔体中生长晶体。
所述条件为:降温速率0.1℃~5℃/天,优选0.2~1℃/天;转速为0~50转/分,优选10~40转/分;旋转方向为单向旋转或可逆双向旋转;待晶体生长到所需尺度后,提升籽晶杆,使晶体脱离液面,以不大于100℃/小时(优选小于50℃/小时)的速率降温至室温,即可得Li4Sr(BO3)2非线性光学晶体。
根据本发明,其中部分Li2O-B2O3-LiF还作为助溶剂。
(7)根据(3)或(4)的方法,其特征在于,所述方法还包括对Li4Sr(BO3)2非线性光学晶体的后处理:晶体生长结束后,仍将晶体留在生长炉中进行退火,以不大于100℃/小时(优选小于50℃/小时)的速率降至室温。
(8)根据前述任一项的方法,其特征在于,其中所述Li2O选自锂的氢氧化物或氧化物或碳酸盐或硝酸盐或草酸盐。所述SrO选自锶的氢氧化物或氧化物或碳酸盐或硝酸盐或草酸盐。所述B2O3选自硼酸或氧化硼。
(9)一种(2)所述的Li4Sr(BO3)2非线性光学晶体作为非线性光学器件的用途。
优选地,所制备的非线性光学器件包含将至少一束入射电磁辐射通过至少一块该Li4Sr(BO3)2非线性光学晶体后,产生至少一束频率不同于入射电磁辐射的输出辐射的装置。
优选地,所述应用包括利用该晶体将532nm波长激光转换成266nm波长的紫外激光。
根据晶体的结晶学数据,将晶体毛坯定向,按所需角度、厚度和截面尺寸切割晶体,将晶体通光面抛光,即可作为非线性光学器件使用。
本发明中,所述Li2O、SrO、B2O3各物质以氧化物形式予以表示,其来源可以为相应的氧化物、氢氧化物、碳酸盐、硝酸盐或草酸盐等形式。优选地,所述Li2O来自锂的氢氧化物或氧化物或碳酸盐或硝酸盐或草酸盐。所述SrO来自锶的氢氧化物或氧化物或碳酸盐或硝酸盐或草酸盐。所述B2O3来自硼酸或氧化硼。
该Li4Sr(BO3)2非线性光学晶体具有物理化学性能稳定、不易潮解、硬度适中、机械性能好、不易碎裂、易于加工和保存等优点;所以该发明还进一步提供Li4Sr(BO3)2非线性光学晶体的用途,其为该Li4Sr(BO3)2非线性光学晶体用于制备非线性光学器件,
本发明的Li4Sr(BO3)2化合物、该化合物的非线性光学晶体及其制备方法和用途有如下有益效果:
在该Li4Sr(BO3)2非线性光学晶体的生长中晶体易长大且透明无包裹体,具有生长速度较快、成本低、易于获得较大尺寸晶体等优点;所获得的Li4Sr(BO3)2非线性光学晶体具有很短的紫外吸收截止边、较大的非线性光学效应、物理化学性能稳定、不易潮解、机械性能好、易于加工和保存等优点;该Li4Sr(BO3)2非线性光学晶体可用于制作非线性光学器件;本发明非线性光学晶体制作的非线性光学器件可用于若干军事和民用高科技领域中,例如激光致盲武器、光盘记录、激光投影电视、光计算和光纤通讯等。
附图说明
图1是用Li4Sr(BO3)2晶体制成的一种典型的非线性光学器件的工作原理图。
图2为本发明的Li4Sr(BO3)2多晶粉末X射线衍射图谱与基于Li4Sr(BO3)2晶体结构模拟的X射线衍射图谱。
图3为本发明的Li4Sr(BO3)2晶体结构图。
其中:1是激光器,2是入射激光束,3是经晶体后处理和光学加工的Li4Sr(BO3)2晶体,4是所产生的激光束,5是滤光片。
下面结合附图1来对本发明采用Li4Sr(BO3)2晶体制作的非线性光学器件作详细说明。由激光器1发出光束2射入Li4Sr(BO3)2晶体3,所产生的出射光束4通过滤波片5,从而获得所需要的激光束。该非线性光学激光器可以是倍频发生器或上、下频率转换器或光参量振荡器等。
具体实施方式
下面结合实施例及附图进一步描述本发明。本领域技术人员知晓,下述实施例不是对本发明保护范围的限制,任何在本发明基础上做出的改进和变化都在本发明的保护范围之内。
实施例1
采用助熔剂法,以Li2O-B2O3助熔剂体系生长Li4Sr(BO3)2晶体。
称取160.1克(2.167mol)Li2CO3、49.2克(0.333mol)SrCO3和61.8克(1.000mol)H3BO3(其中有1.500mol Li2CO3和0.333mol H3BO3作为助熔剂),混合研磨均匀后,分批装入的开口坩埚中,并在750℃的马弗炉中融化。然后在竖直式晶体生长炉中快速升温至750℃,恒温24小时,再以20℃/天的速率降温至550℃,Li4Sr(BO3)2晶体在熔体表面析出。最后以50℃/天的速率降温至室温。挑选出透明的Li4Sr(BO3)2晶体并对其进行粉末X射线衍射分析,其图谱与我们基于单晶X射线衍射分析结果模拟出的谱图一致,如图2所示。这说明所得晶体即为Li4Sr(BO3)2晶体。
切取所得晶体质量较好部分作为籽晶,重新将原料升温融化,然后快速冷却到饱和温度以上10℃。缓慢地把装有籽晶的籽晶杆伸入坩埚的熔体中,并启动籽晶杆上端的转动装置,转动速率为25转/分。恒温半小时后,快速降温到饱和温度,然后以0.5℃/天的速率降温。待晶体生长到所需尺寸后,提升籽晶杆,使晶体脱离液面,仍将晶体留在炉子中退火并以30℃/小时的速率降温至室温,即可得厘米级的Li4Sr(BO3)2晶体。
实施例2
采用助熔剂法,以Li2O-B2O3-LiF助熔剂体系生长Li4Sr(BO3)2晶体。
称取135.5克(1.833mol)Li2CO3、49.2克(0.333mol)SrCO3、61.8克(1.000mol)H3BO3和8.6克(0.333mol)LiF(其中有1.167mol Li2CO3、0.333mol H3BO3和0.333mol LiF作为助熔剂),混合研磨均匀后,分批装入的开口坩埚中,并在750℃的马弗炉中融化。然后在竖直式晶体生长炉中快速升温至750℃,恒温24小时,然后快速冷却到饱和温度以上10℃。缓慢地把装有籽晶的籽晶杆伸入坩埚的熔体中,并启动籽晶杆上端的转动装置,转动速率为35转/分。恒温半小时后,快速降温到饱和温度,然后以0.8℃/天的速率降温。待晶体生长到所需尺寸后,提升籽晶杆,使晶体脱离液面,仍将晶体留在炉子中退火并以25℃/小时的速率降温至室温,即可得厘米级的Li4Sr(BO3)2晶体。
实施例3
采用助熔剂法,以Li2O助熔剂生长Li4Sr(BO3)2晶体。
称取123.2克(1.667mol)Li2CO3、49.2克(0.333mol)SrCO3和41.2克(0.667mol)H3BO3(其中有1.000mol Li2CO3作为助熔剂),混合研磨均匀后,分批装入的开口坩埚中,并在750℃的马弗炉中融化。然后在竖直式晶体生长炉中快速升温至750℃,恒温24小时,然后快速冷却到饱和温度以上10℃。缓慢地把装有籽晶的籽晶杆伸入坩埚的熔体中,并启动籽晶杆上端的转动装置,转动速率为40转/分。恒温半小时后,快速降温到饱和温度,然后以0.5℃/天的速率降温。待晶体生长到所需尺寸后,提升籽晶杆,使晶体脱离液面,仍将晶体留在炉子中退火并以35℃/小时的速率降温至室温,即可得厘米级的Li4Sr(BO3)2晶体。
实施例4
采用助熔剂法,以Li2O-B2O3助熔剂体系生长Li4Sr(BO3)2晶体。
称取129.3克(1.75mol)Li2CO3、36.9克(0.25mol)SrCO3、34.8克(0.50mol)B2O3(其中有1.83mol Li2CO3和0.25mol B2O3作为助熔剂),混合研磨均匀后,分批装入的开口坩埚中,并在750℃的马弗炉中融化。然后在竖直式晶体生长炉中快速升温至750℃,恒温24小时,然后快速冷却到饱和温度以上10℃。缓慢地把装有籽晶的籽晶杆伸入坩埚的熔体中,并启动籽晶杆上端的转动装置,转动速率为30转/分。恒温半小时后,快速降温到饱和温度,然后以0.8℃/天的速率降温。待晶体生长到所需尺寸后,提升籽晶杆,使晶体脱离液面,仍将晶体留在炉子中退火并以30℃/小时的速率降温至室温,即可得厘米级的Li4Sr(BO3)2晶体。
实施例5
采用助熔剂法,以Li2O助熔剂生长Li4Sr(BO3)2晶体。
称取147.8克(2.00mol)Li2CO3、51.8克(0.50mol)SrO、61.8克(1.00mol)H3BO3(其中有1.00mol Li2CO3作为助熔剂),混合研磨均匀后,分批装入的开口坩埚中,并在750℃的马弗炉中融化。然后在竖直式晶体生长炉中快速升温至750℃,恒温24小时,然后快速冷却到饱和温度以上10℃。缓慢地把装有籽晶的籽晶杆伸入坩埚的熔体中,并启动籽晶杆上端的转动装置,转动速率为30转/分。恒温半小时后,快速降温到饱和温度,然后以0.5℃/天的速率降温。待晶体生长到所需尺寸后,提升籽晶杆,使晶体脱离液面,仍将晶体留在炉子中退火并以30℃/小时的速率降温至室温,即可得Li4Sr(BO3)2晶体。
实施例6
采用助熔剂法,以Li2O-B2O3-LiF助熔剂体系生长Li4Sr(BO3)2晶体。
称取140.1克(1.375mol)Li2C2O4、36.9克(0.250mol)SrCO3、46.4克(0.750mol)H3BO3和13.0克(0.500mol)LiF(其中有0.875mol Li2CO3、0.250mol H3BO3和0.500mol LiF作为助熔剂),混合研磨均匀后,分批装入 的开口坩埚中,并在750℃的马弗炉中融化。然后在竖直式晶体生长炉中快速升温至750℃,恒温24小时,然后快速冷却到饱和温度以上10℃。缓慢地把装有籽晶的籽晶杆伸入坩埚的熔体中,并启动籽晶杆上端的转动装置,转动速率为20转/分。恒温半小时后,快速降温到饱和温度,然后以0.5℃/天的速率降温。待晶体生长到所需尺寸后,提升籽晶杆,使晶体脱离液面,仍将晶体留在炉子中退火并以20℃/小时的速率降温至室温,即可得的Li4Sr(BO3)2晶体。
采用上述三种助熔剂均可获得尺寸为厘米级的Li4Sr(BO3)2非线性光学晶体;使用大尺寸坩埚,并延长生长期,则可获得相应较大尺寸的Li4Sr(BO3)2非线性光学晶体。
经单晶X射线衍射分析,上述实施例1–6所制备的Li4Sr(BO3)2晶体不含对称中心,属于单斜晶系Cc空间群,晶胞参数为 β=105.22(1)°,Z=4;图3是该Li4Sr(BO3)2晶体的结构示意图。
实施例7
将实施例1所得的Li4Sr(BO3)2非线性光学晶体作透过光谱测试,该晶体的紫外吸收截止边短于190nm,并且在190–2500nm波长范围内透过;该晶体不易碎裂,易于切割、抛光加工和保存,并且不潮解;将实施例1所得的Li4Sr(BO3)2非线性光学晶体,放在附图1所示装置标号为3的位置处,在室温下,用调Q Nd:YAG激光器作基频光源,入射波长为1064nm的近红外光,输出波长为532nm的绿色激光,激光强度约相当于KDP(KH2PO4)的2倍;将实施例2所得的Li4Sr(BO3)2非线性光学晶体,放在附图1所示装置标号为3的位置处,在室温下,用532nm波长的绿光激光器作基频光源,入射波长为532nm的绿光,输出波长为266nm的绿色激光,激光强度约相当于BBO的1/4倍。

Claims (9)

1.一种分子式为Li4Sr(BO3)2的化合物。
2.一种权利要求1所述化合物Li4Sr(BO3)2的非线性光学晶体,其特征在于,该晶体不含对称中心,属于单斜晶系Cc空间群,晶胞参数为 β=105.22(1)°,Z=4。
3.一种制备权利要求2中的Li4Sr(BO3)2的非线性光学晶体的方法,其特征在于,采用助熔剂法生长Li4Sr(BO3)2非线性光学晶体,所述助熔剂选自Li2O、Li2O-B2O3或Li2O-B2O3-LiF。
4.根据权利要求3的方法,其特征在于,所述方法包括如下步骤:
将Li2O、SrO、B2O3以摩尔比4–8:1:1–3(相当于摩尔比Li4Sr(BO3)2:Li2O:B2O3=1:2–6:0–2)(优选4–7:1:1–2)或Li2O、SrO、B2O3、LiF以摩尔比4–8:1:1–3:1–3(相当于摩尔比Li4Sr(BO3)2:Li2O:B2O3:LiF=1:2–6:0–2:1–3)(优选4–6:1:1–2:1–2)混合并研磨均匀后并融化(优选在坩埚中融化),在高温熔体表面或熔体中生长晶体。
优选地,所述生长晶体的条件为,降温速率:0.1℃~5℃/天,优选0.2~1℃/天;转速:0~50转/分,优选10~40转/分;旋转方向:单向旋转或双向旋转(如可逆双向旋转)。
优选地,待晶体生长到所需尺度后,提升籽晶杆,使晶体脱离液面,以不大于100℃/小时(优选小于50℃/小时)的速率降温至室温,即可得Li4Sr(BO3)2非线性光学晶体。
5.根据权利要求3或4的方法,其特征在于,所述助熔剂为Li2O或Li2O-B2O3,其步骤为:将Li2O、SrO、B2O3按摩尔比为4–8:1:1–3(相当于摩尔比Li4Sr(BO3)2:Li2O:B2O3=1:2–6:0–2)(优选4–7:1:1–2)混合并研磨均匀后融化(优选放入坩埚内),在高温熔体表面或熔体中生长晶体。
优选地,所述条件为:降温速率0.1℃~5℃/天,优选0.2~1℃/天;转速为0~50转/分,优选10~40转/分;旋转方向为单向旋转或可逆双向旋转;待晶体生长到所需尺度后,提升籽晶杆,使晶体脱离液面,以不大于100℃/小时(优选小于50℃/小时)的速率降温至室温,即可得Li4Sr(BO3)2非线性光学晶体。
6.根据权利要求3或4的方法,其特征在于,所述助熔剂为Li2O-B2O3-LiF助熔剂体系,其步骤为:将Li2O、SrO、B2O3、LiF按摩尔比为4–8:1:1–3:1–3(相当于摩尔比Li4Sr(BO3)2:Li2O:B2O3=1:2–6:0–2:1–3)(优选4–6:1:1–2:1–2)混合并研磨均匀后融化(优选放入坩埚内融化),在高温熔体表面或熔体中生长晶体。
优选地,所述条件为:降温速率0.1℃~5℃/天,优选0.2~1℃/天;转速为0~50转/分,优选10~40转/分;旋转方向为单向旋转或可逆双向旋转;待晶体生长到所需尺度后,提升籽晶杆,使晶体脱离液面,以不大于100℃/小时(优选小于50℃/小时)的速率降温至室温,即可得Li4Sr(BO3)2非线性光学晶体。
7.根据权利要求3或4的方法,其特征在于,所述方法还包括对Li4Sr(BO3)2非线性光学晶体的后处理:晶体生长结束后,仍将晶体留在生长炉中进行退火,以不大于100℃/小时(优选小于50℃/小时)的速率降至室温。
8.根据权利要求1-7任一项的方法,其特征在于,其中所述Li2O选自锂的氢氧化物或氧化物或碳酸盐或硝酸盐或草酸盐。所述SrO选自锶的氢氧化物或氧化物或碳酸盐或硝酸盐或草酸盐。所述B2O3选自硼酸或氧化硼。
9.一种权利要求2所述的Li4Sr(BO3)2非线性光学晶体作为非线性光学器件的用途。
CN201310247500.0A 2013-06-20 2013-06-20 Li4Sr(BO3)2化合物、Li4Sr(BO3)2非线性光学晶体及其制法和用途 Active CN104233468B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310247500.0A CN104233468B (zh) 2013-06-20 2013-06-20 Li4Sr(BO3)2化合物、Li4Sr(BO3)2非线性光学晶体及其制法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310247500.0A CN104233468B (zh) 2013-06-20 2013-06-20 Li4Sr(BO3)2化合物、Li4Sr(BO3)2非线性光学晶体及其制法和用途

Publications (2)

Publication Number Publication Date
CN104233468A true CN104233468A (zh) 2014-12-24
CN104233468B CN104233468B (zh) 2017-05-03

Family

ID=52222334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310247500.0A Active CN104233468B (zh) 2013-06-20 2013-06-20 Li4Sr(BO3)2化合物、Li4Sr(BO3)2非线性光学晶体及其制法和用途

Country Status (1)

Country Link
CN (1) CN104233468B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123130A (zh) * 2016-11-28 2018-06-05 中国科学院大连化学物理研究所 一种LiV2BO5在锂离子电池正极中的应用
CN109459815A (zh) * 2018-11-27 2019-03-12 北京交通大学 Kdp单轴晶体包层特种光纤

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504535A (zh) * 2002-12-02 2004-06-16 中国科学院福建物质结构研究所 一种光致发光晶体材料硼酸锶锂
CN103031606A (zh) * 2011-09-29 2013-04-10 中国科学院福建物质结构研究所 低温相硼铍酸锶化合物及其非线性光学晶体与晶体生长方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504535A (zh) * 2002-12-02 2004-06-16 中国科学院福建物质结构研究所 一种光致发光晶体材料硼酸锶锂
CN103031606A (zh) * 2011-09-29 2013-04-10 中国科学院福建物质结构研究所 低温相硼铍酸锶化合物及其非线性光学晶体与晶体生长方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
L. WU,等: "Ab initio structure determination of newcompound Li4CaB2O6", 《JOURNAL OF SOLID STATE CHEMISTRY》 *
ZHANG HONG,等: "Structural, Electronic Properties and Chemical Bonding of Borate Li4CaB2O6 under High Pressure: an Ab Initio Investigation", 《CHIN.PHYS.LETT.》 *
唐锦,等: "硼酸盐晶体Li4CaB206的从头计算研究", 《四川大学学报(自然科学版)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123130A (zh) * 2016-11-28 2018-06-05 中国科学院大连化学物理研究所 一种LiV2BO5在锂离子电池正极中的应用
CN108123130B (zh) * 2016-11-28 2020-07-14 中国科学院大连化学物理研究所 一种LiV2BO5在锂离子电池正极中的应用
CN109459815A (zh) * 2018-11-27 2019-03-12 北京交通大学 Kdp单轴晶体包层特种光纤

Also Published As

Publication number Publication date
CN104233468B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
CN101545138B (zh) 非线性光学晶体硼铍酸钠及其生长方法和用途
CN105668577A (zh) K3Ba3Li2Al4B6O20F化合物、K3Ba3Li2Al4B6O20F非线性光学晶体及其制法和用途
CN103950912B (zh) RbBa2(PO3)5化合物、RbBa2(PO3)5非线性光学晶体及其制法和用途
CN104556084A (zh) Rb3Al3B3O10F化合物、Rb3Al3B3O10F非线性光学晶体及其制法和用途
CN102976287B (zh) BaGa2GeSe6化合物、BaGa2GeSe6非线性光学晶体及制法和用途
CN101435108B (zh) 大尺寸非线性光学晶体硼酸铅溴的制备方法
CN102838093B (zh) LiGaGe2Se6化合物、LiGaGe2Se6非线性光学晶体及制法和用途
US6391229B1 (en) Borate crystal, growth method of the same and laser equipment using the same
CN103058266A (zh) BaGa2GeS6化合物、BaGa2GeS6非线性光学晶体及制法和用途
CN106757339A (zh) 卤素硼酸锌盐化合物及其非线性光学晶体与晶体生长方法
CN103173860B (zh) K3yb6o12化合物、k3yb6o12非线性光学晶体及制法和用途
CN103014868B (zh) 非线性光学晶体亚碲钼酸镉及其制备和用途
CN110396721A (zh) 氟硼铝酸铯化合物、氟硼铝酸铯非线性光学晶体及其制备方法和用途
CN105839185B (zh) Cs2LiPO4化合物、Cs2LiPO4非线性光学晶体及其制法和用途
CN105502329B (zh) RbNaMgP2O7化合物、RbNaMgP2O7非线性光学晶体及其制法和用途
CN105332045A (zh) 化合物铅钡硼氧和铅钡硼氧非线性光学晶体及制备方法和用途
CN103088423A (zh) 化合物钡硼氧氟和钡硼氧氟非线性光学晶体及制备方法和用途
CN106495121B (zh) CsLiCdP2O7化合物、CsLiCdP2O7非线性光学晶体及其制法和用途
US10005675B2 (en) Li4Sr(BO3)2 compound, Li4Sr(BO3)2 nonlinear optical crystal, preparation method and use thereof
CN103060917A (zh) BaGa2SiS6化合物、BaGa2SiS6非线性光学晶体及制法和用途
CN106868588A (zh) Rb3Ba3Li2Al4B6O20F化合物、非线性光学晶体及其制法和用途
CN104233468B (zh) Li4Sr(BO3)2化合物、Li4Sr(BO3)2非线性光学晶体及其制法和用途
CN103588218B (zh) CsZn2B3O7化合物、CsZn2B3O7非线性光学晶体及其制法和用途
CN103030146B (zh) BaGa2SiSe6化合物、BaGa2SiSe6非线性光学晶体及制法和用途
CN105506740A (zh) CsNaMgP2O7化合物、CsNaMgP2O7非线性光学晶体及其制法和用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant