CN104205461B - 避免阳极端燃料电池的燃料不足 - Google Patents

避免阳极端燃料电池的燃料不足 Download PDF

Info

Publication number
CN104205461B
CN104205461B CN201280070491.6A CN201280070491A CN104205461B CN 104205461 B CN104205461 B CN 104205461B CN 201280070491 A CN201280070491 A CN 201280070491A CN 104205461 B CN104205461 B CN 104205461B
Authority
CN
China
Prior art keywords
fuel
anode
flow field
fuel cell
battery pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280070491.6A
Other languages
English (en)
Other versions
CN104205461A (zh
Inventor
T.W.小帕特森
R.M.达林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG filed Critical Audi AG
Publication of CN104205461A publication Critical patent/CN104205461A/zh
Application granted granted Critical
Publication of CN104205461B publication Critical patent/CN104205461B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

在燃料电池堆的阳极端(34)处的端燃料电池(9a)的燃料流通道(20a)比在所述电池堆中的其余燃料电池(9)的燃料流场通道(20)深得多,由此在冷起动期间避免了由在燃料流通道中的冰引起的燃料不足。在电池堆的阳极端的端电池(9)的燃料流场通道比所述电池堆的其余燃料电池中的燃料流场通道深约0.15mm到约1.5mm,或者比所述电池堆中的其余燃料电池中的燃料流场通道深约35%到约65%。

Description

避免阳极端燃料电池的燃料不足
技术领域
在燃料电池堆的阳极端处的燃料电池的阳极设置有燃料流场通道,该通道比在该燃料电池堆的其他燃料电池中的燃料流场通道深得多。这允许足够的燃料流以避免在冷启动皮带起动期间在阳极端电池中的燃料不足。
背景技术
以前已经提出由于在反应剂流场中存在冰,所以在低于冰点温度下的燃料电池堆的起动过程会受阻。冰会阻止反应剂气体到达某些部分或者甚至是全部的电极催化剂层表面。为了避免这种情况,已经提出许多提议来在电池堆正被关闭时从该电池堆去除全部的水和水蒸汽,从而在恢复运行时不可能存在冰。这样的系统是昂贵的、笨拙的、并且非常耗时,并且自然目前不是非常适合于在车辆中使用的燃料电池动力装置。对于良好的冷起动性能来讲是必要的的电池堆组件变干会导致严重的膜应力,这导致了过早的膜失效。
解决催化剂/冰问题的其他方法包括各种类型的加热方法,这些也是昂贵的、麻烦的,要求过多的时间,并且不是非常适合于车辆应用。
在认识到a)低于冰点温度下的启动皮带起动期间和随后的以及b)由冰冻/融解循环导致的燃料电池堆组件中的端部电池的较差性能是由水淹引起的时,就能预测这种形态。
在从冰冻温度起动期间,在电池堆的阴极和阳极端的端电池最大程度地被水淹没。
发明内容
本文中,“电池堆的阳极端”和“阳极端”被定义为电池堆的一端,在该端中与该端最接近的燃料电池的阳极相比与该端最接近的燃料电池的阴极更接近该端。本文中,“启动皮带起动”指的是通过在不首先加热电池堆或反应剂的情况下使反应剂流动,来在一定载荷下开始燃料电池堆中的发电。
在发现了阳极端电池的燃料不足严重地减少了在起动期间的性能,并促进了阳极端电池的碳腐蚀之后也可预测本文中的形态。
令人惊喜地,本文中的形态涉及使阳极端电池的燃料反应剂流场通道的深度比电池堆的全部其他电池中的燃料反应剂流场通道的深度深得多。作为示例,该端电池燃料流场通道的深度增加约55%就消除了阳极端电池的燃料不足。可以各种方式来实施这种形态,并且该深度的增加可相对于典型的燃料流场通道深度用于关于百分比的范围(如上)或在距离措辞被说明。例如,当阳极端电池中的燃料流场通道的深度比电池堆中的其余燃料电池的燃料流场通道的深度深约35%到约65%时,就避免了阳极端电池的燃料不足。阳极端电池中的燃料通道的深度可大于其他电池中的其他燃料通道的深度的两倍。在大部分燃料电池的燃料流场通道的深度都是0.4mm量级的燃料电池堆中,将阳极端燃料电池的燃料流场通道的深度增加约0.15mm到约1.5mm,或者优选地约0.15mm到约0.5mm,或者更优选地约0.15mm到约0.25mm将基本上消除了阳极端燃料电池中的燃料不足。
根据下面对在附图中示出的示例性实施例的具体描述,其他的变型将变得更加易于理解。
附图说明
惟一的附图是一对相邻的一种示例性形式的燃料电池的部分、侧面立面视图,通过这种示例性形式可利用本发明的布置。
具体实施方式
参照附图,示出了一对一种形式的燃料电池9,9a,通过这种形式可有利地利用本发明的布置,每一个燃料电池都包括质子交换膜(PEM)10。PEM10的一个表面上是阳极催化剂层13而在PEM的相对表面上是阴极催化剂层14。与阳极催化剂层相邻的是多孔阳极气体扩散层(GDL)16,与阴极催化剂层相邻的是多孔阴极GDL17。燃料在阳极水输送板(WTP)21、21a内的燃料反应剂气体流场通道20、20a中被供应到阳极,该WTP有时也被称为燃料反应剂流场板。阳极水输送板21、21a是多孔的并且至少一定程度上是亲水的,以提供在水通道24和燃料通道20、20a之间的液体连通。水通道24被形成在水输送板上与燃料通道20、20a相对的表面上。
类似地,空气通过氧化剂反应剂气体流场通道27被提供,这些通道在本文中被描述为与燃料通道20、20a正交。空气通道27被形成在阴极水输送板28的一个表面上,这些阴极水输送板28的特征与阳极水输送板21、21a的类似。
催化剂是传统的PEM支撑的贵金属涂层,该涂层通常混合有全氟化聚合物,例如在商标名NAFION®被售卖的那些,该商标名可包括或可不包括Teflon®。PEM10由质子传导材料组成,通常是全氟化聚合物,例如在商标名NAFION®下被售卖的那些。水从水通道24被转移通过多孔的、亲水的WTP21、21a和阳极GDL16,以润湿PEM。
在催化剂层发生反应,在该反应中两个氢双原子分子被催化转换为四个带正电的氢离子(质子)和四个电子。质子移动穿过PEM到达阴极催化剂。电子通过燃料电池堆从电连接流出并且通过外部负载,从而做有用功。到达阴极的电子与两个氧原子和四个氢离子组合以形成两个水分子。在阳极的反应要求向阳极催化剂输入水,而在阴极的反应要求去除由电化学过程产生的产物水以及通过移动的质子以及通过渗透从阳极通过PEM被拉过来的水。
阴极催化剂层14也类似地是多孔的并且GDL17是多孔的以允许空气从空气通道27能到达阴极催化剂并且允许产物水和质子拉过来的水移动到阴极WTP,在那里水最终将到达水通道24。在具有外部水管理系统的动力装置中,水将离开电池堆以根据需要用于可能的冷却、存储或返回到电池堆。
在端34,某些种类的传统端板35(不是按比例的)有利于在电池堆的阳极端处提供冷却剂通道24。阳极水输送板21a被描述为与其余的阳极水输送板21具有大约相同的厚度。
不过,在一般情况下,板21a将被制造得更厚从而在有更深的通道20a的情况下保持稳定性。
根据本文中的形态,在阳极端34处的燃料电池9a的阳极流场板21a设置有燃料流场通道20a,该通道比燃料电池堆的其余的燃料电池9的燃料流场通道20都深得多。通道20a可比燃料通道20深约0.15mm到约1.5mm,或者优选地约0.15mm到约0.5mm,或者更优选地约0.15mm到约0.25mm。或者,燃料流动通道20a可比电池堆中的其余燃料电池9的燃料流场通道20深约45%到约65%或者设置超过100%。这导致消除了低于冰点起动期间的阳极和燃料电池的燃料不足。
令人惊喜的事情是不是所增加的深度也填充了同样程度的冰并由此在起动期间阻挡了燃料流,而是每个通道中的冰量似乎保持大约不变,由此所增加的深度基本上都形成了燃料反应剂气体会在其中流动的容积。
性能的改善伴随着由冷天气起动引起的阳极端电池的碳腐蚀的减少或基本消除。
因为在不脱离概念的目的的情况下可做出对所公开的实施例的改变和变型,所以不是意在在所附权利要求之外还限制本公开。

Claims (2)

1.一种燃料电池堆装置,包括:
燃料电池堆(31),其包括压在一对端板(32)之间的多个相邻的燃料电池(9),所述燃料电池中的每一个都包括电解质(10),所述电解质在该电解质的一个表面上具有阳极催化剂层(13)并在该电解质的第二表面上具有阴极催化剂层(14);与所述阳极催化剂相邻的阳极气体扩散层(16)和与所述阴极催化剂相邻的阴极气体扩散层(17);与所述阳极气体扩散层相邻的具有燃料流场的阳极水输送板(21)和与所述阴极气体扩散层相邻的具有氧化剂流场的阴极水输送板(28);
所述电池堆具有阳极端(34),所述阳极端的特征在于:
在所述电池堆的所述阳极端的燃料电池的燃料流场中的燃料流场通道的深度,在所述燃料电池被堆叠的方向上,a)或者比所述电池堆中的其余燃料电池的燃料流板中的燃料流场通道深约35%到约65%,b)或者比所述电池堆中的其余燃料电池的燃料流板中的燃料流场通道深约0.15mm到约1.5mm。
2. 如权利要求1所述的燃料电池堆装置,其特征还在于: 所述电池堆中的其余燃料电池的燃料流场板中的燃料流场通道深度在约0.3mm到0.5mm之间,并且在所述电池堆的阳极端处的燃料电池的燃料流场通道比所述电池堆的其余燃料电池的燃料流场板中的燃料流场通道深约0.15mm到约0.25mm。
CN201280070491.6A 2012-02-24 2012-02-24 避免阳极端燃料电池的燃料不足 Active CN104205461B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2012/026553 WO2013126075A1 (en) 2012-02-24 2012-02-24 Avoiding fuel starvation of anode end fuel cell

Publications (2)

Publication Number Publication Date
CN104205461A CN104205461A (zh) 2014-12-10
CN104205461B true CN104205461B (zh) 2017-03-08

Family

ID=49006093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280070491.6A Active CN104205461B (zh) 2012-02-24 2012-02-24 避免阳极端燃料电池的燃料不足

Country Status (5)

Country Link
US (1) US9966612B2 (zh)
EP (1) EP2817843B1 (zh)
JP (1) JP5964463B2 (zh)
CN (1) CN104205461B (zh)
WO (1) WO2013126075A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014221351A1 (de) * 2014-10-21 2016-04-21 Volkswagen Ag Brennstoffzelle
US20170062851A1 (en) * 2015-04-24 2017-03-02 GM Global Technology Operations LLC Fuel cell stack end cells with improved diagnostic capabilities
CN107464944B (zh) 2016-05-27 2021-02-02 通用电气公司 燃料电池系统及其操作方法
US11133519B2 (en) * 2017-11-30 2021-09-28 Doosan Fuel Cell America, Inc. Fuel cell assembly including varied flow resistance
US10991957B2 (en) 2017-11-30 2021-04-27 Doosan Fuel Cell America, Inc. Fuel cell assembly including multiple flow capacities in a condensation zone
DE102019206117A1 (de) * 2019-04-29 2020-10-29 Audi Ag Brennstoffzellenstapel umfassend variable Biopolarplatten

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190186A (ja) * 1992-01-17 1993-07-30 Fuji Electric Co Ltd 積層燃料電池
JPH06251790A (ja) * 1993-02-22 1994-09-09 Toshiba Corp 燃料電池
JP2005190983A (ja) * 2003-12-02 2005-07-14 Denso Corp 燃料電池
US7041408B1 (en) * 2004-12-28 2006-05-09 Utc Fuel Cells, Llc Varied fuel cell oxidant flow channel depth resulting in fewer cooler plates

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824901B2 (en) 2002-08-21 2004-11-30 Utc Fuel Cells, Llc End-cell thermal distancing for fuel cell system
JP3894109B2 (ja) 2002-11-28 2007-03-14 トヨタ自動車株式会社 燃料電池
EP1623478A2 (en) * 2003-05-15 2006-02-08 Nissan Motor Company, Limited Prevention of flooding of fuel cell stack
US20040247967A1 (en) 2003-06-06 2004-12-09 Gennady Resnick Maintaining PEM fuel cell performance with sub-freezing boot strap starts
US7462415B2 (en) * 2003-09-24 2008-12-09 General Motors Corporation Flow field plate arrangement for a fuel cell
CN100592561C (zh) 2005-04-15 2010-02-24 Utc电力公司 在冷冻启动过程中燃料电池堆中用于冷却和加湿的存留水
CN101416335A (zh) * 2005-12-29 2009-04-22 Utc电力公司 稳定化的燃料电池流场
WO2007139550A1 (en) * 2006-05-30 2007-12-06 Utc Power Corporation Fuel cell employing hydrated non-perfluorinated hydrocarbon lon exchange membrane
JP5068052B2 (ja) * 2006-09-29 2012-11-07 昭和電工株式会社 燃料電池用セパレータ、燃料電池用セルおよび燃料電池用セルユニット、ならびに燃料電池用セパレータおよび燃料電池用セルユニットの製造方法
KR101576311B1 (ko) 2007-12-11 2015-12-10 발라드 파워 시스템즈 인크. 연료 전지 스택 내 확산 층의 액체 물 투과성의 맞춤화
US20090186253A1 (en) * 2008-01-17 2009-07-23 Gm Global Technology Operations, Inc. Bipolar Plate Design for Passive Low Load Stability
CN102301514B (zh) * 2009-12-14 2014-09-17 松下电器产业株式会社 高分子电解质型燃料电池、具备其的燃料电池堆、燃料电池系统以及燃料电池系统的运转方法
JP5560728B2 (ja) * 2010-01-19 2014-07-30 トヨタ車体株式会社 燃料電池
EP2545608B1 (en) * 2010-03-08 2016-11-02 BDF IP Holdings Ltd Flow field plate for electrochemical fuel cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190186A (ja) * 1992-01-17 1993-07-30 Fuji Electric Co Ltd 積層燃料電池
JPH06251790A (ja) * 1993-02-22 1994-09-09 Toshiba Corp 燃料電池
JP2005190983A (ja) * 2003-12-02 2005-07-14 Denso Corp 燃料電池
US7041408B1 (en) * 2004-12-28 2006-05-09 Utc Fuel Cells, Llc Varied fuel cell oxidant flow channel depth resulting in fewer cooler plates

Also Published As

Publication number Publication date
WO2013126075A1 (en) 2013-08-29
US9966612B2 (en) 2018-05-08
JP2015511390A (ja) 2015-04-16
EP2817843A4 (en) 2015-10-14
JP5964463B2 (ja) 2016-08-03
US20150004515A1 (en) 2015-01-01
EP2817843A1 (en) 2014-12-31
CN104205461A (zh) 2014-12-10
EP2817843B1 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
US11152627B2 (en) Bipolar plate which has reactant gas channels with variable cross-sectional areas, fuel cell stack, and vehicle comprising such a fuel cell stack
EP1517392B1 (en) Solid high polymer type cell assembly
CN104205461B (zh) 避免阳极端燃料电池的燃料不足
US8921000B2 (en) Fuel cell
US20090023046A1 (en) Porous Transport Structures for Direct-Oxidation Fuel Cell System Operating with Concentrated Fuel
KR20180058571A (ko) 그래핀폼을 포함하는 가스유로/가스확산층 복합 기능 연료전지용 부재
KR101013853B1 (ko) 연료전지용 분리판
JP6353294B2 (ja) 燃料電池用ガス拡散シートおよび燃料電池
US8785078B2 (en) Fuel cell
KR101315622B1 (ko) 분기유로를 이용한 연료전지 스택
CN102714321B (zh) 燃料电池及具有燃料电池的车辆
US10403917B2 (en) Fuel cell unit
JP2011082126A (ja) 多孔質金属板を有する燃料電池構造
CN102341945A (zh) 燃料电池用隔板以及具备其的燃料电池
US9281536B2 (en) Material design to enable high mid-temperature performance of a fuel cell with ultrathin electrodes
JP2013069673A (ja) 燃料電池スタックの活性化方法
US10665871B2 (en) Fuel cell stack having bipolar plates, and fuel cell system
CN2718794Y (zh) 一种可提高氢气利用率的燃料电池
CN106605327A (zh) 燃料电池以及机动车
CN2718795Y (zh) 一种具有较高运行稳定性的燃料电池
KR101359492B1 (ko) 연료전지용 분리판 및 그 제조방법
CN1734814A (zh) 一种具有较高运行稳定性的燃料电池
JP5990448B2 (ja) 燃料電池
KR20180035002A (ko) 연료 전지
KR100651216B1 (ko) 냉각 유로가 포함된 고분자 전해질 연료전지용 바이폴라플레이트

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160303

Address after: Germany Ingolstadt

Applicant after: Audi AG

Address before: Canadian British Columbia

Applicant before: Ballard Power Systems

C14 Grant of patent or utility model
GR01 Patent grant