CN104204228A - 使用组合的核酸酶、连接和聚合酶反应用于核酸序列的相对定量、表达或拷贝变化的方法 - Google Patents
使用组合的核酸酶、连接和聚合酶反应用于核酸序列的相对定量、表达或拷贝变化的方法 Download PDFInfo
- Publication number
- CN104204228A CN104204228A CN201380018363.1A CN201380018363A CN104204228A CN 104204228 A CN104204228 A CN 104204228A CN 201380018363 A CN201380018363 A CN 201380018363A CN 104204228 A CN104204228 A CN 104204228A
- Authority
- CN
- China
- Prior art keywords
- oligonucleotide probe
- target
- probe
- sequence
- zip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/5308—Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6851—Quantitative amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2521/00—Reaction characterised by the enzymatic activity
- C12Q2521/50—Other enzymatic activities
- C12Q2521/501—Ligase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2533/00—Reactions characterised by the enzymatic reaction principle used
- C12Q2533/10—Reactions characterised by the enzymatic reaction principle used the purpose being to increase the length of an oligonucleotide strand
- C12Q2533/107—Probe or oligonucleotide ligation
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明涉及用于鉴定参与核酸酶-连接反应的样本中一个或多个靶核苷酸序列的存在的方法。在一些实施方案中,使用聚合酶链式反应随后扩增在本发明的所述核酸酶-连接过程中形成的连接产物。检测所述连接的产物序列或其延伸产物,并且基于所述检测来鉴定所述样本中一个或多个靶核苷酸序列的存在。
Description
本申请要求2012年2月14日提交的美国临时专利申请序列号61/598,343、2012年2月29日提交的61/605,057和2012年5月8日提交的61/644,405的权益,所述美国临时专利申请的全部内容通过引用并入本文。
发明领域
本发明涉及使用组合的核酸酶、连接和聚合酶反应用于核酸序列的相对定量、表达或拷贝变化的方法。
发明背景
基于连接的核酸检测反应通常采用与互补核酸靶标退火的两个或多个基于核酸的寡核苷酸。这些寡核苷酸彼此直接邻接,并采用连接酶通过连接一个寡核苷酸的5’-磷酸与直接邻接的寡核苷酸的3’-OH来产生切口间的磷酸二酯键。所述连接测定通常是多重的。然而,尤其是在多重反应中在第三个寡核苷酸上具有两个寡核苷酸连接的非特异性连接可产生不希望的假阳性结果。此外,由于多种原因,多重聚合酶链式反应(PCR)、连接酶链式反应(ligation chain reaction,LCR)和连接酶检测反应(ligation detection reaction,LDR)/PCR方法受可组合的引物数量限制,这些原因包括:(i)寡核苷酸和靶标组合形成“引物-二聚体”脱靶型复合物的倾向,(ii)来源于使用具有固有不同退火偏好和不同靶标特异性的引物序列的扩增的PCR扩增偏好,(iii)对于LCR和LDR/PCR,大量的5’磷酸基团产生高背景的不期望的连接和随后假扩增产物,和(iv)多重靶标数目增加时与比例缩放的扩增反应相关的生物化学、信息学和原材料成本问题。
为了提高以便宜且可靠的方式特异性扩增单个或多个核酸靶标的能力,需要配置除了传统单一/多重PCR或LCR之外的方法。能够可靠地检测用于单重和多重用途的低频突变(例如,在104正常背景下单个突变分子(检测具有类似序列的0.01%DNA的信号的特异性)将具有巨大价值,尤其是在诊断领域。实现该特异性可能够检测具有低/极少量的肿瘤DNA样本中的癌症标记,例如,含有循环肿瘤细胞和来自肿瘤细胞的无细胞DNA的样本。需要完成该检测的简单、特异性并便宜的测定,但并不存在。
本发明针对克服现有技术中的这些及其它缺点。
发明概要
本发明的第一方面涉及用于鉴定样本中一个或多个靶核苷酸序列的存在的方法。此方法包括提供可能含有所述一个或多个靶核苷酸序列的样本并提供一个或多个寡核苷酸探针组。每个探针组包含(a)具有靶特异性部分的第一寡核苷酸探针,和(b)具有靶特异性部分的第二寡核苷酸探针。探针组的第一和第二寡核苷酸探针被配置为在靶核苷酸序列上彼此相邻杂交,在第一和第二寡核苷酸探针之间形成接合,并且在探针组中,第二寡核苷酸探针的靶特异性部分在接合处具有与第一寡核苷酸探针重叠的相同核苷酸。该方法还包括在使探针组的第一和第二寡核苷酸探针在相邻位置上以碱基特异性方式与其相应的靶核苷酸序列(如果存在于样本中)杂交有效的条件下,使样本和一个或多个寡核苷酸探针组接触,其中杂交后,在包含重叠的相同核苷酸的接合处第二寡核苷酸探针的重叠的相同核苷酸形成侧翼(flap)。用具有5’核酸酶活性的酶切割第二寡核苷酸探针的重叠的相同核苷酸,从而释放在第二寡核苷酸探针的5’末端的磷酸,并且探针组的第一和第二寡核苷酸探针在接合处连接在一起以形成连接的产物序列。检测样本中连接的产物序列,并且基于该检测鉴定样本中一个或多个靶核苷酸序列的存在。
本发明的另一方面涉及用于鉴定样本中一个或多个靶核苷酸序列的存在的方法。此方法包括提供可能含有所述一个或多个靶核苷酸序列的样本并提供一个或多个寡核苷酸探针组。每个探针组包含(a)具有靶特异性部分的第一寡核苷酸探针,和(b)具有5’非靶特异性侧翼部分和含有一个或多个硫代磷酸修饰的核苷酸碱基的靶特异性部分的第二寡核苷酸探针,其中探针组的第一和第二寡核苷酸探针被配置为在靶核苷酸序列上杂交。在使探针组的第一和第二寡核苷酸探针以碱基特异性方式与其相应的靶核苷酸序列(如果存在于样本中)杂交有效的条件下,使样本和一个或多个寡核苷酸探针组接触。第二寡核苷酸探针的5’非靶特异性侧翼部分被具有5’核酸酶活性的酶切割,从而释放第二寡核苷酸的靶特异性部分的第一核苷酸碱基的5’磷酸,并且一个或多个寡核苷酸探针组的第一和第二寡核苷酸探针连接在一起以与一个或多个硫代磷酸修饰的核苷酸碱基形成含有靶特异性部分的连接的产物序列。该方法还包括检测样本中的连接的产物序列,并且基于该检测鉴定样本中一个或多个靶核苷酸序列的存在。
本发明的另一方面涉及用于鉴定样本中一个或多个靶核苷酸序列的存在的方法。此方法包括提供可能含有所述一个或多个靶核苷酸序列的样本并提供一个或多个寡核苷酸探针组。每个探针组具有(i)包含5’引物特异性部分、zip-code部分的第一部分、第一zip-code部分的3’第一标签部分和靶特异性部分的第一寡核苷酸探针,和(ii)包含3’引物特异性部分、zip-code部分的第二部分、第二zip-code部分的5’第二标签部分和靶特异性部分的第二寡核苷酸探针。当寡核苷酸探针组的第一和第二zip-code部分相邻定位时形成全长zip-code部分,并且寡核苷酸探针组的第一和第二标签部分彼此互补。在使探针组的第一和第二寡核苷酸探针以碱基特异性方式与其相应的靶核苷酸序列(如果存在于样本中)杂交有效的条件下,使样本和一个或多个寡核苷酸探针组接触,并且一个或多个探针组的第一和第二寡核苷酸探针连接在一起以形成连接的产物序列。此方法还包括提供一个或多个寡核苷酸引物组,每组包含(a)包含与连接的产物序列的5’引物特异性部分相同的核苷酸序列的第一寡核苷酸引物和(b)包含与连接的产物序列的3’引物特异性部分互补的核苷酸序列的第二寡核苷酸引物。将连接的产物序列、一个或多个寡核苷酸引物组和DNA聚合酶共混以形成聚合酶链式反应混合物,并且使该聚合酶链式反应混合物经历一个或多个聚合酶链式反应循环从而形成初级延伸产物。提供与第一zip-code部分的一部分和第二zip-code部分的一部分互补的捕获寡核苷酸的集合。每种不同的初级延伸产物的集合的每个捕获寡核苷酸具有不同的核苷酸序列并包含彼此分离的淬灭剂分子和可检测的标记。使初级延伸产物和捕获寡核苷酸的集合经历对以下有效的条件:(i)特定的初级延伸产物的第一和第二标签部分相互杂交以与相邻定位的第一和第二zip-code部分形成发夹式延伸产物和(ii)集合中的捕获寡核苷酸与互补的相邻定位的发夹式延伸产物的第一和第二zip-code部分杂交。从杂交的捕获寡核苷酸上切割淬灭剂分子或可检测的标记,并检测与淬灭剂分子分离的可检测的标记。基于该检测来鉴定样本中一个或多个靶核苷酸序列的存在
本发明的另一方面涉及用于鉴定样本中一个或多个靶核苷酸序列的存在的方法。此方法包括提供可能含有所述一个或多个靶核苷酸序列的样本并提供一个或多个寡核苷酸探针组。每个探针组具有(i)包含5’引物特异性部分、zip-code部分的第一部分、第一zip-code部分的3’第一标签部分和靶特异性部分的第一寡核苷酸探针,和(ii)包含3’引物特异性部分、zip-code部分的第二部分、第二zip-code部分的5’第二标签部分和靶特异性部分的第二寡核苷酸探针。当寡核苷酸探针组的第一和第二zip-code部分相邻定位时形成全长zip-code部分,并且寡核苷酸探针组的第一和第二标签部分彼此互补。在使探针组的第一和第二寡核苷酸探针以碱基特异性方式与其相应的靶核苷酸序列(如果存在于样本中)杂交有效的条件下,使样本和一个或多个寡核苷酸探针组接触,并且一个或多个探针组的第一和第二寡核苷酸探针连接在一起以形成连接的产物序列。该方法还包括提供一个或多个寡核苷酸引物组,每组包含(i)具有(a)与第一寡核苷酸探针的第二引物特异性部分相同的核苷酸序列、(b)与相邻定位的寡核苷酸探针组的第一和第二zip-code部分互补的捕获寡核苷酸部分、(c)被所述捕获寡核苷酸部分分离的淬灭剂分子和可检测的标记的第一寡核苷酸引物,(ii)包含与连接的产物序列的3’引物特异性部分互补的核苷酸序列的第二寡核苷酸引物。将连接的产物序列、一个或多个寡核苷酸引物组和DNA聚合酶共混以形成聚合酶链式反应混合物,并使该聚合酶链式反应混合物经历一个或多个聚合酶链式反应循环从而形成初级延伸产物。使初级延伸产物经历对以下有效的条件:特定的初级延伸产物的第一和第二标签部分相互杂交以与相邻定位的第一和第二zip-code部分形成发夹式初级延伸产物和(ii)特定的发夹式初级延伸产物的捕获寡核苷酸部分与互补的相邻定位的发夹式延伸产物的第一和第二zip-code部分杂交。切割淬灭剂分子或发夹式初级延伸产物的可检测的标记,并检测与淬灭剂分子分离的可检测的标记。基于该检测鉴定样本中一个或多个靶核苷酸序列的存在。
本发明的另一方面涉及用于鉴定样本中一个或多个靶核苷酸序列的存在的试剂盒。该试剂盒含有具有5’核酸酶活性的酶、连接酶和一个或多个寡核苷酸探针组。寡核苷酸探针组各自具有(a)具有靶特异性部分的第一寡核苷酸探针,和(b)具有靶特异性部分的第二寡核苷酸探针,其中探针组的第一和第二寡核苷酸探针被配置为在靶核苷酸序列上彼此相邻杂交,在第一和第二寡核苷酸探针之间形成接合,并且其中,在探针组中,第二寡核苷酸探针的靶特异性部分在接合处具有与第一寡核苷酸探针重叠的相同核苷酸。
本发明的另一方面涉及用于鉴定样本中一个或多个靶核苷酸序列的存在的试剂盒。此试剂盒含有具有5’核酸酶活性的酶、连接酶和一个或多个寡核苷酸探针组。寡核苷酸探针组各自具有(a)具有靶特异性部分的第一寡核苷酸探针,和(b)具有5’非靶特异性侧翼部分和含有一个或多个硫代磷酸修饰的核苷酸碱基的靶特异性部分的第二寡核苷酸探针,其中探针组的第一和第二寡核苷酸探针被配置为在靶核苷酸序列上杂交。
本文描述的是解决多重扩增反应中引物靶标混杂(promiscuity)和平衡引物对之间扩增的难度的方法。该方法允许:(a)基本增加单个样本中可同时检测的靶标的数量,(b)降低所需样本的量,和(c)提供检测罕见的、或低数量/低质量/降解的(例如,单细胞/福尔马林固定石蜡包埋(FFPE)的/母体循环中的胎儿或来自肿瘤的核酸样本的方法。
附图简述
图1A-1D示出本发明5’-核酸酶(FEN)-连接过程。在图1A中,当第一和第二寡核苷酸探针在靶核苷酸序列上的相邻位置上杂交时,通过紧邻也具有靶特异性部分的第二寡核苷酸探针的5’OH末端,使具有能连接的3’OH的靶特异性部分的第一寡核苷酸探针重叠。当第二种寡核苷酸探针的重叠的侧翼核苷酸是与第一寡核苷酸探针的末端3’核苷酸相同的核苷酸时,刚好位于第二寡核苷酸探针的配对核苷酸的上游的磷酸二酯键可被具有FEN活性的酶区别性地切割。在两个探针上,3’和5’末端核苷酸是相同的“X”。在靶核酸分子上的“X”可以是可变的(例如,SNP)或保守的核苷酸。如图1B所示,核酸酶型侧翼活性产生能连接的5’PO4并释放侧翼切割产物(X)。由于第一和第二寡核苷酸探针互相紧邻杂交,连接酶使切口密封(图1C)。。多轮的加热、退火、核酸酶-连接步骤可用于产生单一靶标的多个连接分子。连接产物(约70-250个核苷酸长度)可容易地从较低的MW连接产物中纯化,例如,用交联葡聚糖(Sephadex)。在该图中,第一寡核苷酸探针具有5’引物特异性部分并且第二寡核苷酸探针具有3’引物特异性部分,这有助于连接产物的下游检测。寡核苷酸探针可含有与本文所述检测相关的替代部分。图1D示出与第一、第二和第三寡核苷酸探针的双重连接-核酸酶反应。
图2A-2C示出通过连接酶检测反应,用于检测突变、插入和缺失的寡核苷酸探针设计的实例。“Z”表示第一寡核苷酸探针的3’末端第2或第3(未示出)位的碱基,并表示:dG、dA、肌苷、硝基吲哚、硝基吡咯或其它核苷酸类似物。另外的探针设计涉及在第二寡核苷酸探针中纳入硫代磷酸。所述硫代磷酸可位于第二寡核苷酸探针的重叠的相同核苷酸碱基处,或位于第二寡核苷酸探针的重叠的核苷酸碱基的3’或5’碱基处(图2B和2C)。如本文所述和本实施方案所描述,本发明的寡核苷酸探针还可具有在随后的聚合酶链式反应中可用于扩增连接产物的上游和下游引物特异性部分。
图3示出本发明的核酸酶-连接-zipcode阵列捕获过程,以检测靶核苷酸序列中的多个单碱基突变
图4A-4C是示出便于从未连接的寡核苷酸探针中分离连接产物的各种寡核苷酸探针设计的示意图。在图4A中,第二寡核苷酸探针具有与第一寡核苷酸探针上的C1’5’尾互补的3’尾C1,并且在图4B中,第二寡核苷酸探针具有与第一寡核苷酸探针上的A15’尾互补的3’尾A1’。在两种情况下,在用于核酸外切酶I处理的温度下正确的连接产物形成发夹。单链特异性3’核酸外切酶切割单链未连接的寡核苷酸,而不是形成发夹的连接产物。在图4C中,第一和第二寡核苷酸探针携带等位基因特异性互补标签,C1和C1’,并且另外地,第二寡核苷酸探针具有通用标签L1。连接后,C1和C1’杂交后形成发夹。在同一反应中通用的生物素化寡核苷酸(L1’)连接到发夹式产物上,允许链霉亲和素选择携带生物素的连接产物。
图5是示出便于从连接产物中分离未连接的寡核苷酸探针以在连接后的扩增阶段中阻止未连接的寡核苷酸探针的延伸或扩增的寡核苷酸探针设计的示意图。在该设计中,第二寡核苷酸探针具有互补的标签B1和B1’。在核酸酶-连接期间,互补的次级寡核苷酸探针不形成明显的发夹,因为退火温度设置太高而不允许形成稳定的分子内茎。核酸酶-连接后,降低温度允许未连接的第二寡核苷酸探针形成B1和B1’之间的分子内退火。未连接的寡核苷酸B1的3’末端延伸形成热力学高度稳定的茎。未连接的寡核苷酸形成锅柄状(panhandles),其不再能够参与PCR引物延伸。
图6示出本发明的核酸酶-连接-PCR过程,以检测靶核苷酸序列中的多个单碱基突变。
图7示出使用偶联寡核苷酸探针(即,可环化的探针),FEN产生的连接底物用于多重LDR/PCR。携带与靶SNP(箭头)和3’OH末端核苷酸配对的侧翼结构的偶联寡核苷酸探针产生FEN可切割的底物。环状寡核苷酸探针的3’OH可连接至FEN产生的5’磷酸,产生环形连接产物。使用,例如,核酸外切酶I、III、V和1可消化未连接的未环化的寡核苷酸探针。任选地,寡核苷酸探针可在断裂区被内部切割(星形符号),例如,UNG靶向的dU束+热=不稳定的脱碱基磷酸二酯延伸。环状探针的开口和阴影矩形表示用于连接产物的PCR扩增的通用PCR引物位点。
图8示出使用偶联探针的本发明的核酸酶-连接-PCR过程的实例。在该实施例中,仅示出突变等位基因的探针,在上游探针的3’末端和在或接近下游探针的5’末端具有突变特异性碱基。聚合酶(◆)的FEN活性仅切割配对的5’重叠碱基,留下能连接的5’-磷酸,并且连接酶(●)使偶联寡核苷酸探针的两个游离末端共价密封。PCR扩增连接产物,在这种情况下仅产生突变型连接产物(未形成野生型连接产物)。偶联探针还含有与3’靶特异性部分(Kr)区域互补的片段(Kr’)。不存在连接时,所述偶联探针的3’靶特异性部分与互补片段(Kr’)杂交以形成发夹式偶联寡核苷酸探针,该探针通过聚合酶延伸以形成稳定的发夹,并且从而阻止随后的延伸或扩增。
图9A-9C示出本发明的核酸酶-连接-PCR过程的实例,其中zipcode序列促进所得到的产物的检测。图9B示出在传统的(Roche Molecular Systems,Pleasanton,CA)型测定中使用zipcode的检测,其中捕获寡核苷酸用作探针。图9C示出在含有互补的捕获寡核苷酸的通用阵列上zipcode介导的产物的捕获。
图10示出使用本发明的核酸酶-连接-PCR过程形成的产物的通用分开的zip-code发夹检测的实例。
图11示出使用本发明的核酸酶-连接-PCR过程形成的产物的通用分开的zip-code发夹检测的实例。
图12A-12B示出UniTaq检测序列掺入到核酸酶-连接证明和所得到的产物及其用于多重检测的用途。图12A-12B示出靶核酸的任一条链可用于与含有UniTaq检测和引物部分的探针连接。
图13A-13C示出使用(a)UniTaq介导发夹形成、(b)UniTaq 5’核酸酶(AKA TaqMan)探针和(c)UniTaq环检测的本发明的核酸酶-连接酶产物的PCR检测的三个实例。
图14示出两个等位基因“X”和“O”的检测,例如,对于SNP被示出。在图14中,步骤1,具有5’尾Aix和Aio的等位基因特异性第一寡核苷酸探针和等位基因特异性第二寡核苷酸探针(其中i=1至N)用于多重核酸酶-连接酶反应。使用UniTaq介导的发夹形成,具有染料D1 & D2(其对每个等位基因是特异性的)的通用引物(图14,步骤2)用于产生D1和/或D2颜色的信号,其取决于靶核酸中两个等位基因的存在(图14,步骤3)。
图15A-15D示出例如,用于T21胎儿非整倍性作为实例的两个靶组的检测。图15A示出用于染色体21上N靶标的多重编码核酸酶-连接酶编码反应。所有的靶标都被选择具有短的通用标签B1并且在标签内或在连接寡核苷酸的一个内的某个地方挑取连接点。对于对照区域,示出使用中间寡核苷酸的双重连接方法:所有连接产物具有通用标签B2。在图15B中,连接产物在末端具有通用标签和短的中间标签B1和B2。在图15C和15D中,示出使用UniTaq方法和短的通用标签的检测实例。具有D1和D2信号的孔的计数可用于检测胎儿非整倍性。也可使用短的通用探针,例如,图15B。C1和C2可以是相同的引物。
图16示出通过引物延伸、单碱基链置换、产生5’-磷酸的5’-核酸酶切割、连接和PCR扩增的未知突变的检测。第二寡核苷酸探针含有对5’核酸酶切割具有抗性的一个或多个硫代磷酸修饰的核苷酸(“s”)。
发明详述
本发明的第一方面涉及用于鉴定样本中一个或多个靶核苷酸序列的存在的方法。此方法涉及提供可能含有所述一个或多个靶核苷酸序列的样本并提供一个或多个寡核苷酸探针组。每个探针组包含(a)具有靶特异性部分的第一寡核苷酸探针,和(b)具有靶特异性部分的第二寡核苷酸探针。探针组的第一和第二寡核苷酸探针被配置为在靶核苷酸序列上彼此相邻杂交,在第一和第二寡核苷酸探针之间形成接合,并且在探针组中,第二寡核苷酸探针的靶特异性部分在接合处具有与第一寡核苷酸探针重叠的相同核苷酸。该方法还涉及在使探针组的第一和第二寡核苷酸探针在相邻位置上以碱基特异性方式与其相应的靶核苷酸序列(如果存在于样本中)杂交有效的条件下,使样本和一个或多个寡核苷酸探针组接触,其中杂交后,在包含重叠的相同核苷酸的接合处第二寡核苷酸探针的重叠的相同核苷酸形成侧翼(flap)。第二寡核苷酸探针的重叠的相同核苷酸被具有5’核酸酶活性的酶切割,从而释放在第二寡核苷酸探针的5’末端的磷酸,并且探针组的第一和第二寡核苷酸探针在接合处连接在一起以形成连接的产物序列。检测样本中连接的产物序列,并且基于该检测来鉴定样本中一个或多个靶核苷酸序列的存在。
图1A-1D描述使用本发明的偶联核酸酶-连接酶反应检测靶核酸分子的过程。反应利用多个探针组,每个探针组由至少第一和第二寡核苷酸探针组成。每个寡核苷酸探针具有与靶核酸分子序列区域互补的靶特异性部分。第一寡核苷酸探针携带能连接的3’OH基团,而第二寡核苷酸探针携带能连接的5’末端(即,没有5’磷酸的寡核苷酸探针)。根据本发明的方法设计探针组的寡核苷酸探针,使得通过紧邻与靶核酸分子互补的第二寡核苷酸探针的5’端碱基,使第一寡核苷酸探针的3’-端碱基重叠。重叠的核苷酸被称为“侧翼”。当第二寡核苷酸探针的重叠的侧翼核苷酸与靶核酸分子序列和与第一寡核苷酸探针的末端3’核苷酸相同的序列互补时,刚好位于第二寡核苷酸探针的侧翼核苷酸的上游的磷酸二酯键的被具有侧翼核酸内切酶(FEN)或5’核酸酶活性的酶区别性地切割。特定的FEN活性在第二寡核苷酸探针上产生新的能连接的5’磷酸末端,其精确地定位于第一寡核苷酸探针相邻的3’OH的旁边。由于(a)通过彼此相邻的寡核苷酸探针的靶特异性退火,(b)仅当切割的侧翼核苷酸与模板配对时选择性生成5’磷酸,和(c)加入区别于第一寡核苷酸探针的3’-碱基的非沃森-克里克配对的连接酶,本发明的方法能实现非常高的靶检测特异性和灵敏度。还可采用动力学方法(诸如改变循环时间和条件)以增强野生型和突变型靶核酸分子之间的区别
可通过采用各种探针设计特征进一步增强连接酶区别。例如,有意的错配或核苷酸类似物(例如,肌苷、硝基吲哚或硝基吡咯)可并入3’接合末端的第2或第3碱基处的第一寡核苷酸探针,如果3’末端完全配对则使3’末端的杂交略微不稳定,但如果3’末端错配则使3’末端的杂交明显不稳定(图2A)。当突变型探针与野生型靶标杂交时,此设计降低了不适当的错误连接。可选地,能够被RNA酶切割的RNA碱基可并入寡核苷酸探针,以确保模板依赖性产物形成。例如,据此通过引用整体并入的Dobosy等,“RNase H-Dependent PCR(rhPCR):Improved Specificity and Single Nucleotide Polymorphism DetectionUsing Blocked Cleavable Primers,”BMC Biotechnology 11(80):1011(2011)描述了使用靠近具有3’-封闭末端的寡核苷酸探针的3’末端的RNA碱基,并用RNA酶H2切割产生PCR-可延伸和可连接的3’-OH。此方法可用于产生能连接的3’OH或5’-P或两者,假设利用可连接5’-RNA碱基的连接酶。
对于在接合处的第2或第3位的第一寡核苷酸探针中的插入或缺失、掺入配对的碱基或核苷酸类似物(例如,-氨基-dA或5-丙炔基-dC)提高稳定性并且可提高此类移码突变与野生型序列的区别(图2B-2C)。对于插入,当探针与野生型DNA杂交时,在第二寡核苷酸探针的所需的断裂的磷酸酯键的下游使用一个或多个硫代磷酸修饰的核苷酸将防止被5’核酸酶不适当切割,并且从而减少野生型靶标上的假阳性连接(图2B)。同样,对于缺失,当探针与野生型DNA杂交时,在第二寡核苷酸探针的所需的断裂的磷酸酯键的上游使用一个或多个硫代磷酸修饰的核苷酸将防止被5’核酸酶不适当切割,并且从而减少野生型靶标上的假阳性连接(图2C)。
其它可能的修饰包括脱碱基位点,例如,间隔基(dSpacer)(也称作THF四氢呋喃)或氧代-G。这些异常的“碱基”具有除去异常碱基并产生能连接的3’-OH或5’P位点的特定酶。连接寡核苷酸与靶核酸退火后,核酸内切酶IV、Tth EndoIV(NEB)将除去脱碱基残基,但不是从单链DNA。类似地,可使用氧代-G和Fpg或肌苷/尿嘧啶和EndoV或Thimine乙二醇和EndoVIII。
如图1D所示,本发明的探针组还可包含也具有与靶核酸分子区域互补的靶特异性部分的第三寡核苷酸探针。在该实施方案中,探针组的第二和第三寡核苷酸探针被配置为在靶核苷酸序列上彼此相邻杂交,在序列之间形成接合。第三寡核苷酸探针的靶特异性部分在接合处具有与探针组中的第二寡核苷酸探针重叠的相同核苷酸侧翼,当该侧翼与靶核苷酸序列互补时被具有FEN活性的酶除去,并且是与第二寡核苷酸探针的末端3’核苷酸相同的序列。侧翼的切割释放第三寡核苷酸探针上的能连接的5’磷酸,该探针允许在接合处第二和第三寡核苷酸探针之间的连接,以形成连接的产物序列。使用引物组中的三个探针允许以增加的特异性来检测更长的靶区域。
适用于在连接前切割第二寡核苷酸探针的5’侧翼的侧翼核酸内切酶或5’核酸酶包括但不限于具有5’核酸酶活性的聚合酶,诸如大肠杆菌(E.coli)DNA聚合酶和来自Taq和高温嗜热菌(T.thermophilus)的聚合酶,以及T4RNA酶H和TaqExo。
本发明的方法中利用的连接反应在本领域中是公知的。切割第二寡核苷酸探针的5’侧翼后适用于将探针组的寡核苷酸探针连接在一起的连接酶包括但不限于水生栖热杆菌(Thermus aquaticus)连接酶、大肠杆菌连接酶、T4DNA连接酶、T4RNA连接酶、Taq连接酶、9N°连接酶和火球菌(Pyrococcus)连接酶或本领域已知的任何其它热稳定的连接酶。根据本发明,本发明的核酸酶-连接过程可通过采用寡核苷酸连接测定(OLA)反应(参见Landegren,等,"A Ligase-MediatedGene Detection Technique,"Science 241:1077-80(1988);Landegren,等,"DNA Diagnostics--Molecular Techniques and Automation,"Science242:229-37(1988);和Landegren,等的美国专利号4,988,617)、利用一组互补寡核苷酸探针的连接酶检测反应(LDR)(参见例如,Barany等的WO 90/17239,其据此通过引用整体并入),或利用两组互补寡核苷酸探针的连接酶链式反应(LCR)参见例如,Barany等的WO90/17239,其据此通过引用整体并入)来进行。
探针组的寡核苷酸探针可以为以下形式:核糖核苷酸、脱氧核糖核苷酸、修饰的核糖核苷酸、修饰的脱氧核糖核苷酸、肽核苷酸类似物、修饰的肽核苷酸类似物、修饰的磷酸-糖-骨架寡核苷酸、核苷酸类似物及其混合物。
基于在连接接合处的不同核苷酸,优选为热杂交处理的连接酶检测反应中的杂交步骤在核苷酸序列之间有所区别。靶核苷酸序列之间的差异可以是,例如,单核酸碱基差异、核酸缺失、核酸插入或重排。包括一个以上碱基的此类序列差异也可被检测。优选地,寡核苷酸探针组具有基本上相同的长度,以便它们在基本类似的杂交条件下与靶核苷酸序列杂交。
可使用本领域已知的多种检测方法检测本发明的核酸酶-连接产物。例如,可通过使用本领域公知的方法对连接产物进行测序来检测连接产物。或者,连接产物可根据大小来分离并检测。为了便于通过测序的检测或大小分离,探针组的寡核苷酸探针还可包括一个或多个可检测的标记、引物部分或其它检测部分。许多合适的检测部分和检测方法在附图中示出并在下面详细描述。
在本发明的一个实施方案中,连接产物的检测通过zip-code部分来促进。根据该实施方案,探针组的一个寡核苷酸探针还包含zip-code部分,并且探针组的另一个寡核苷酸探针包含可检测的标记。如本文所用,zip-code是短的核苷酸序列,例如,16至24个核苷酸之间的长度,其不具有与靶核苷酸序列的序列同一性,并且优选地,具有很少或不具有与任何基因组核苷酸序列的序列同一性。在zip-code集合中,每个zip-code在序列上与集合中其它zip-code序列的区别至少25%,然而集合中所有zip-code被设计为具有类似的解链温度从而在相同的杂交条件下促进与互补捕获寡核苷酸的杂交,其中几乎没有或没有与非捕获寡核苷酸序列的非特异性杂交。在本发明的一个实施方案中,探针组的寡核苷酸探针的zip-code部分用于鉴定和区分样本中的单个连接产物序列,因此每个不同的连接产物序列的zip-code部分具有不同的核苷酸序列(即,zip-code部分是等位基因特异性的)。此实施方案特别用于检测和区分不同的等位基因突变。在替代实施方案中,其中目标是简单地检测基因或染色体拷贝数目突变的存在,但是突变或染色体区域的身份不是关键的,相同的zip-code部分可用于检测不同的连接产物。在任一实施例中,将zip-code掺入探针组的一个寡核苷酸探针允许同时高度多重检测各种靶序列。设计zip-code序列及其互补的捕获寡核苷酸序列的集合的方法详细描述于全部为Barany等的美国专利号6,852,487、7,455,965和6,506,594中,其据此通过引用整体并入。
在每个连接产物序列的zip-code部分与其互补的捕获寡核苷酸杂交有效的相同的杂交条件下,使含有zip-code部分的连接产物与固定的捕获寡核苷酸的集合接触。由于当对准时集合中的zip-code在核苷酸序列中发生变化,例如,其序列的变化为至少25%,多个连接产物zip-code及其互补的捕获寡核苷酸之间的杂交以最小的非特异性杂交而发生。通过其可检测的标记来检测固定的连接产物。
图3是根据本发明检测K-ras基因中G A、T、C突变的核酸酶-连接-zipcode捕获过程的流程图。如该实施例中所描述,该方法包括四个5’-N第二寡核苷酸探针和四个N-3’第一寡核苷酸探针。每个第一寡核苷酸探针包含不同的zip-code部分(即,Z1、Z2、Z3或Z4)并且每个第二寡核苷酸探针包含可检测的标记(F)。如步骤2所示,5’-核酸酶活性(◆)仅切割掉配对的5’-重叠碱基和另外的侧翼,例如,5’-D(D=A,G或T)在突变的情况下(5’-A示出),留下第二寡核苷酸探针上能连接的5’-磷酸。连接酶(●)将两个寡核苷酸探针共价密封在一起(仅示出突变情况)。在该实施例中,在核酸酶介导的5’重叠的相同A核苷酸的切割后,靶核苷酸序列中突变T的存在使具有3’A和可寻址的阵列特异性部分Z1的第一寡核苷酸探针连接至具有5’重叠的相同A核苷酸的寡核苷酸探针。靶核苷酸序列中T等位基因的存在通过荧光信号(F)被示出,该信号在具有与连接的产物序列的部分Z1互补的捕获寡核苷酸探针的固体载体上的位置上被检测到。在包含与Z2、Z3和Z4zip-code(其将被定位于固体载体上彼此不同的位置并且是Z1的互补序列)互补的捕获寡核苷酸探针的固体载体上的位置上出现的荧光信号(F)同样表示在靶核苷酸序列上分别存在A、C和G等位基因。
如图3所示,含有zip-code部分的连接产物序列的检测涉及zip-code序列与其互补的捕获寡核苷酸的杂交。在本发明的一个实施方案中,捕获寡核苷酸的集合被固定在固体载体上,例如,阵列、珠粒、载玻片、盘、膜、薄膜、微量滴定板和其组合。固相载体可包含位置阵列和被固定在该位置阵列上的捕获寡核苷酸的集合。在固体载体上形成捕获寡核苷酸阵列的方法及其用于靶核酸捕获的用途完全描述于全部为Barany等的美国专利号6,852,487及其延续和分案申请,其据此通过引用整体并入。
根据本发明的该实施方案,优选地在核酸酶-连接反应之前进行初始靶核酸扩增程序。在采用核酸酶-连接过程之前,这增加样本中靶核苷酸序列的量。例如,使用聚合酶链式反应过程、自主序列复制(self-sustained sequence replication)或Q-β复制酶介导的RNA扩增可完成初始靶核酸扩增。聚合酶链式反应过程是优选的扩增程序,并充分描述于H.Erlich,等,"Recent Advances in the Polymerase ChainReaction,"Science 252:1643-50(1991);M.Innis,等,PCR Protocols:AGuide to Methods and Applications,Academic Press:New York(1990);和R.Saiki,等,"Primer-directed Enzymatic Amplification of DNA with aThermostable DNA Polymerase,"Science 239:487-91(1988),上述文献据此通过引用并入。据此通过引用并入的J.Guatelli,等,"Isothermal,in vitro Amplification of Nucleic Acids by a Multienzyme ReactionModeled After Retroviral Replication,"Proc.Natl.Acad.Sci.USA 87:1874-78(1990)描述了自主序列复制过程。Q-β复制酶介导的RNA扩增公开于F.Kramer等,"Replicatable RNA Reporters,"Nature 339:401-02(1989),其据此通过引用并入。
在本发明的另一个实施方案中,使用下一代测序方法检测核酸酶-连接产物。根据本实施方案,探针组的寡核苷酸探针还包括MiSeqTM或HiSeqTM(San Diego,CA)平台、Life TechnologiesTM IonTorrentTM(Life Technologies,Carlsbad,CA)平台、RocheTM 454平台或其它下一代测序平台(即,焦磷酸测序、通过合成基于荧光的测序、通过连接基于荧光的测序、通过合成基于离子的测序和通过连接基于离子的测序)所需的适当的测序标签或接头(adaptor),其都是本领域公知的。不同染色体不需要具有不同标签,因为序列本身可明确地映射到人基因组中的一个染色体。测序特别适于对靶核酸分子中不同的单核苷酸多态性(SNP)等位基因进行计数。
在本发明的另一个实施方案中,核酸酶-连接产物的检测包括PCR扩增。根据本实施方案,如图1和2所示,探针组的第一寡核苷酸探针还包含5’引物特异性部分并且探针组中的第二寡核苷酸探针还包含3’引物特异性部分。所得到的连接产物包含5’引物特异性部分、靶特异性部分和3’引物特异性部分。
第一和第二寡核苷酸探针的引物特异性部分可以为通用引物序列,从而允许在单组条件下形成的所有连接产物随后的通用扩增。这在检测低丰度靶核苷酸分子时特别有用。因此,连接产物形成后进行通用PCR扩增以按比例扩增样本中的所有连接产物。通用PCR后,检测并定量初始连接产物的延伸产物。或者,第一和第二寡核苷酸探针的引物特异性部分对靶核苷酸序列可以是特异性的(即,等位基因特异性)。在又一个实施方案中,寡核苷酸探针被设计为含有一组通用引物特异性部分与一个或多个靶特异性引物特异性部分(即,等位基因特异性引物部分)的组合。
核酸酶-连接反应后,将含有连接产物的样本进行聚合酶链式反应。在聚合酶链式反应中,提供一个或多个寡核苷酸引物组。每个引物组具有含有与连接产物序列的5’引物特异性部分相同序列的第一寡核苷酸引物和与连接产物序列的3’引物特异性部分互补的第二寡核苷酸引物。将核酸酶-连接酶反应混合物与一个或多个寡核苷酸引物组和聚合酶共混以形成聚合酶链式反应混合物。
使聚合酶链式反应混合物经历一个或多个聚合酶链式反应循环,所述循环包括变性处理、杂交处理和延伸处理。在变性处理期间,分离杂交的核酸序列。杂交处理使引物与其互补的连接产物序列的引物特异性部分杂交。在延伸处理期间,使杂交的引物延伸以形成与和引物杂交的序列互补的延伸产物。在聚合酶链式反应阶段的第一循环,第二寡核苷酸引物与连接产物序列的3’引物特异性部分杂交并且延伸以形成与连接产物序列互补的延伸产物。在随后的循环中,第一寡核苷酸引物与和连接产物序列互补的延伸产物的5’引物特异性部分杂交并且第二寡核苷酸引物与连接产物序列的3’下游部分杂交。
在几乎所有情况下,希望在PCR扩增之前从含有连接产物序列的样本中封闭未连接的寡核苷酸探针以防止可产生假阳性信号的未连接的探针延伸和/或扩增。达到这一目标的几种方法描述于下。
一种方法包括在扩增之前在连接过程之后通过核酸外切酶消化从样本中除去未连接的探针序列(L-H Guo和R.Wu,Methods inEnzymology 100:60-96(1985),其据此通过引用并入)。为了并入核酸外切酶消化,需保护连接产物免于消化。在一种方法中,探针组的第一和第二寡核苷酸探针分别包含互补的第一和第二标签部分。寡核苷酸探针组的第一和第二标签部分,优选地但不是必须地,在序列上不同于其它寡核苷酸探针组的标签部分,即它们可以是等位基因特异性的。图4A示出实施例,其中第一寡核苷酸探针包含标签部分C1’并且第二寡核苷酸探针包含标签部分C1,其中C1’和C1彼此互补。探针组的第一和第二寡核苷酸探针连接后,第一和第二标签部分,即,C1’和C1,杂交形成抗核酸外切酶消化的发夹式连接产物序列(该示意图中A1和B1表示用于下游聚合酶链式反应的引物特异性部分)。随后核酸外切酶消化除去未连接的探针。此外,含有错配的标签并保持完全或部分单链的非特异性连接的分子也被消化。核酸外切酶消化后,发夹式连接产物变性,并且使用寡核苷酸引物组进行PCR扩增,所述引物组具有与连接产物的3’引物特异性部分互补的第一引物(即,B1)和具有与连接产物的5’引物特异性部分相同的核苷酸序列的第二引物(即,A1)。
图4B示出替代的寡核苷酸探针设计,其中第二寡核苷酸探针含有与第一寡核苷酸探针(A1)的5’引物特异性部分互补的区域(A1’)。该探针组的第一和第二寡核苷酸探针连接后,A1和A1’杂交以形成发夹式连接产物。同样,使用单链特异性核酸外切酶例如ExoI,随后将未连接的寡核苷酸探针和非特异性连接的分子(其含有错配的标签并保持完全或部分单链)消化。对于图4A如上所述后,核酸外切酶消化后,使发夹式连接产物变性,并且在不存在任何未连接的探针的情况下加入寡核苷酸引物和聚合酶以扩增变性的连接产物。
在替代实施方案中,探针组的寡核苷酸探针在其未参与连接的末端可包含阻断部分。合适的阻断部分包括可检测的标记或硫代磷酸酯基团(Nikiforow,等,"The Use of Phosphorothioate Primers andExonuclease Hydrolysis for the Preparation of Single-stranded PCRProducts and their Detection by Solid-phase Hybridization,"PCRMethods and Applications,3:p.285-291(1994),其据此通过引用并入)。连接过程后,通过孵育反应混合物与核酸外切酶来选择性地破坏未连接的探针,而由于消除核酸外切酶反应开始所需的游离3’末端来保护连接的探针。
图4C示出用于从未连接的寡核苷酸探针中分离连接产物的另一种方法,其依赖于连接产物的选择。在该实施方案中,第一和第二寡核苷酸探针具有等位基因特异性互补标签,C1和C1’,并且另外地,第二寡核苷酸探针具有通用标签L1。连接后,C1和C1’杂交后形成发夹,该发夹在其末端具有突出的L1。将通用生物素化(●)寡核苷酸(L1’)连接至同一反应中的发夹式产物,允许通过链霉亲和素选择从未连接的寡核苷酸探针中分离携带生物素的连接产物。寡核苷酸探针也可制备成足够长,例如,通过包括标签(C1/C1’)和寡核苷酸的引物特异性部分(A1/B1)之间所谓的间隔基,使得生物素化寡核苷酸的连接发生,而寡核苷酸探针的部分与靶标退火。或者,可提高连接产物从靶标解链的温度,然后降低温度以使产物的发夹形成和生物素化寡核苷酸与发夹式产物连接。在任何情况下,在如上所述的聚合酶和寡核苷酸引物存在下随后扩增分离的连接产物。
图4A-4C所示的寡核苷酸探针设计发挥作用的关键特征是分子内发夹在热力学上比寡核苷酸探针之间的双分子相互作用稳定的多。选择温度和缓冲液使得具有互补标签的非常小的百分比的未连接的寡核苷酸探针将相互退火,但是接近100%的连接分子将形成发夹结构。
在本发明的另一个实施方案中,使用凝胶过滤(例如,交联葡聚糖)或类似方法除去未连接的寡核苷酸探针以从较短的未连接的寡核苷酸探针中分离较长、较高分子量的连接产物。用于在连接产物序列的PCR扩增之前除去未连接的探针的另一种方法包括将连接产物固定在固体载体上(例如,使用如上所述的zip-code捕获)并洗去未连接的寡核苷酸探针。
在本发明的又一个实施方案中,通过设计不存在连接时能形成稳定的发夹结构的探针,阻止未连接的寡核苷酸探针进行随后的延伸和和扩增。此实施方案描述于图5。根据该实施方案,第二寡核苷酸探针还包含在接合处重叠的相同核苷酸5’的核苷酸侧翼,其中至少一部分核苷酸侧翼(图5中的B1’)与第二寡核苷酸探针的3’引物特异性部分的至少一部分(图5中的B1)互补。不存在连接时,核苷酸侧翼的互补区(B1’)和未连接的第二寡核苷酸探针的3’引物特异性部分(B1)相互杂交以形成发夹式第二寡核苷酸探针(图5,右手侧)。在第一个PCR循环期间发夹式第二寡核苷酸探针的3’引物特异性部分(B1)延伸以形成阻止第二寡核苷酸引物与其互补序列结合的延伸的发夹式第二寡核苷酸探针。如图5的左手侧所示,使用PCR随后扩增形成的连接产物,而没有来自未连接的探针的干扰。
在核酸酶-连接过程期间,温度相对地高(50-70℃),从而使用分别具有组合或单独的5’核酸酶和连接酶活性的热稳定的酶(例如Taq聚合酶和Taq连接酶)以及灭活的(延伸被封闭的)dNTP(TriLink),允许第二寡核苷酸参与核酸酶-连接反应中。一旦连接完成,温度升高到95℃,将dNTP和/或聚合酶灭活。接着,温度迅速降低,使得未连接的第二寡核苷酸探针形成发夹(图5,右手侧)。通过聚合酶延伸发夹结构的3’末端,从而形成更长的和高度稳定的发夹茎(图5,右手侧),其防止在PCR期间引物在未连接的第二寡核苷酸探针上引发。该方法的主要优点是它能进行“封闭管”的连接PCR检测:样本DNA、核酸酶-聚合酶、连接酶、寡核苷酸探针和引物、dNTP和核酸酶、连接和PCR所需的其它试剂可预装在孔或微滴中。通过将PCR所需的一种或几种试剂热活化,将反应从核酸酶-连接转换为PCR扩增。
图6描述本发明的核酸酶-连接-PCR过程以检测K-ras基因中的G A、T、C突变。此反应包括四个5’-N第二寡核苷酸探针,一些探针在接合处含有重叠的相同核苷酸5’的核苷酸侧翼。第二寡核苷酸探针的核苷酸侧翼的至少一部分与探针的3’引物特异性部分互补以促进不存在连接时的发夹形成。该反应也包括四个N-3’第一寡核苷酸探针。在该实施例中,突变特异性寡核苷酸探针含有用于随后扩增的3’和5’引物特异性部分,但野生型特异性寡核苷酸探针含有将不扩增的短序列。如步骤2所示,5’-核酸酶活性(◆)仅切割掉配对的5’-重叠碱基和另外的侧翼,例如,在野生型情况下5’-C以及在突变情况下5’-D(D=A、G或T)(5’-A示出),留下第二寡核苷酸探针上能连接的5’-磷酸。连接酶(●)将两个寡核苷酸探针共价密封在一起(仅示出突变情况)并且PCR仅扩增突变型而不是野生型等位基因的连接产物。如图6右手侧所示,未被切割并连接的未连接的第二寡核苷酸探针形成发夹,所述发夹通过聚合酶延伸以阻止与次级引物结合以及随后通过次级引物延伸或扩增。
所有间隔在一起的包括密码子12上6个变化和密码子13上1个变化的K-ras突变特别难检测。为了实现高保真度的区别,突变寡核苷酸探针和野生型序列之间的错配应至少为最后一个碱基C:A,而非G:T。如果倒数第二位的碱基是C:A或G:T错配,则保真度还可被增强。另外,可包括3’侧第三位具有错配的野生型序列的任选上游探针。而且,通过在第三位形成错配,突变的第一寡核苷酸探针现在将在3’侧最后3位上错配,并且因此不会意外地PCR扩增剩余正常LDR连接产物。野生型序列的第二寡核苷酸探针在关键碱基上将包含野生型碱基。此探针也将缺少引物特异性区域,并且因此将不会允许任何扩增。
由于不同探针将彼此竞争结合(稀有)突变序列,允许所有探针与正确的序列杂交是重要的。对于K-ras密码子12的第1位突变将有四个上游和四个下游探针,生成16种不同的可能的组合。为避免突变探针与正常序列的错误连接/错误信号,但在突变序列的存在下还允许正确连接发生,可采用“微型循环(mini-cycling)”方法。在此方法中,将温度在60℃用于连接(10分钟)和75℃(1分钟)之间变化,因此未连接的探针而不是连接的产物从模板上脱落。
为了总结使用两种引物来检测每种突变的核酸酶-连接-PCR过程中可采用的区别的各种水平,包括:(i)使用聚合酶或Fen核酸酶的5’-3’核酸酶活性仅切割在与第一寡核苷酸探针的接合处具有重叠的相同核苷酸的第二寡核苷酸探针以释放5’磷酸允许连接发生;(ii)使用第一寡核苷酸探针上热稳定连接酶的3’连接保真度;(iii)在第一寡核苷酸探针的3’末端的第2或第3个碱基上使用错配或核苷酸类似物;(iv)使用寡核苷酸探针与野生型序列以抑制设计用于检测野生型核苷酸序列上突变核苷酸序列的寡核苷酸探针的连接;(v)使用微型循环条件以提高突变存在时的产物产率;和(vi)不存在连接时在较低温度下使用通过与3’引物特异性部分的互补区域杂交形成发夹的第二寡核苷酸探针的5’末端的核苷酸侧翼。发夹延伸形成未被PCR引物结合的产物,并且此避免未连接的寡核苷酸探针的延伸或扩增。
在本发明的替代实施方案中,探针组的寡核苷酸探针被栓系在一起以形成如图7所示的偶联探针。根据该实施方案,第一寡核苷酸探针的5’末端偶联到第二寡核苷酸探针的3’末端。偶联探针的靶特异性部分与其靶核酸分子杂交并且核酸酶切割5’侧翼核苷酸后,连接偶联探针以形成环状连接产物序列。
根据本发明的这个实施方案,区别碱基在3’末端和5’末端是相同的碱基,或切割5’末端的侧翼之前为最后一个碱基。循环条件可以变化以确定对以下有效的最佳时间(i)当特定突变的下游探针部分具有完美的配对杂交时,5’核酸酶切割释放5’磷酸,然后(ii)连接至上游探针部分的3’末端,再次假设有与突变碱基的完美配对。同时,在将温度升高至使引物从不正确的模板变性之前,通过减少允许两个反应发生的时间使非特异性切割和连接最小化。
本发明的偶联探针可被设计成包括本文描述的用于非偶联探针的所有特征,例如,上游/下游引物区域、zip-code部分、UniTaq检测部分和引物部分、标签部分等。另外,偶联探针可被设计成包含一个或多个下列特征。在一个实施方案中,偶联探针含有阻断聚合酶延伸穿过该区域的序列或化学键,即,聚合酶阻断剂,从而防止整个环化连接产物的复制。在另一个实施方案中,偶联探针被设计为含有连接后切割的序列。在该切割之前,未连接的偶联探针(以及给定模板DNA)通过核酸外切酶被除去。在另一个实施方案中,在较低温度下未连接的偶联引物形成发夹并自身延伸以形成不扩增的产物(参见图8)。为促进发夹形成,偶联寡核苷酸探针包括与3’靶特异性部分互补的片段。在不存在连接时,偶联探针的3’靶特异性部分与互补片段杂交以形成发夹式偶联的寡核苷酸探针。在随后的PCR的第一轮期间,使偶联的发夹式寡核苷酸探针的3’靶特异性部分延伸,形成阻止第二寡核苷酸引物与其互补序列结合的延伸的偶联的发夹式寡核苷酸探针。该方法的优点是,它从下游扩增和检测过程中除去未连接的偶联探针,不需要任何额外的消化(例如,核酸外切酶消化)步骤。
图8示出在本发明的核酸酶-连接-PCR过程中使用偶联探针以检测K-ras基因中的G A、T、C突变。此方法利用在上游探针的3’末端和在或接近下游探针的5’末端含有两种具有突变特异性碱基的偶联探针的三种寡核苷酸(仅示出“A”特异性寡核苷酸)。突变特异性寡核苷酸包含用于随后扩增的引物特异性部分。只有配对的5’重叠碱基,例如,在突变情况下(示出5’-A),被5’-核酸酶活性切割,留下能连接的5’-磷酸。切割可仅释放单个配对的5’重叠碱基(示出5’-A)或在游离的3’末端含有该碱基的侧翼。连接酶(●)使偶联寡核苷酸探针的两个游离末端共价密封以生成共价闭合的环状连接产物。PCR仅扩增突变型而不是野生型等位基因的连接产物。如图8右手侧所示,未连接的偶联探针形成发夹,所述发夹被聚合酶延伸以阻止与次级引物结合以及随后通过次级引物延伸或扩增。
总之,使用偶联探针可获得的区别水平包括(i)使用下游引物部分的聚合酶或Fen核酸酶的5’-3’核酸酶活性;(ii)使用上游引物部分的热稳定的连接酶的3’连接保真度;(iii)在上游引物部分的3’末端的第2或第3个碱基上使用错配或核苷酸类似物;(iv)使用循环条件以提高仅当突变存在时产生连接产物的特异性;(v)使用较低的引物浓度以使不依赖靶的事件最小化;和(vi)使用偶联引物的序列,使得当它们不连接时在较低温度下形成发夹,并自身延伸以形成不扩增的产物。
可采用如下所述的检测PCR扩增连接产物的几种方法。
在第一种方法中,用于PCR扩增的寡核苷酸引物组中的一个引物还可包含可检测的标记以生成可被检测和鉴定的标记的初级延伸产物。当连接产物的引物特异性部分是等位基因特异性的,此检测方法是适合的。据此通过引用整体并入的都为Barany的美国专利号6,027,889、6,797,470、7,312,039、7,320,865、7332,285、7,166,434、7,429,453、8,283,121描述了使用偶联连接检测和聚合酶链式反应检测核酸序列差异的方法。
在另一种方法中,探针组的第一和/或第二寡核苷酸探针包含zip-code部分。如上所述,不同寡核苷酸探针组的zip-code具有不同的核苷酸序列(即,它们是等位基因特异性的)并在相同的杂交条件下与互补的捕获寡核苷酸杂交。图9A描述本发明的核酸酶-连接-PCR过程以检测K-ras基因中的G A、T、C突变。此反应涉及四个5’-N第二寡核苷酸探针,一些探针在接合处含有重叠的相同核苷酸5’端的核苷酸侧翼和3’引物特异性部分。为在PCR扩增之前除去未连接的寡核苷酸探针,第二寡核苷酸探针的核苷酸侧翼的至少一部分与探针的3’引物特异性部分互补以促进不存在连接时的发夹形成。该反应也涉及四个N-3’第一寡核苷酸探针,每个探针含有不同的zip-code和5’引物特异性部分。在该实施例中,突变特异性寡核苷酸探针含有用于随后扩增的3’和5’引物特异性部分,但野生型特异性寡核苷酸探针含有将不扩增的短序列。如步骤2所示,聚合酶(◆)的5’-核酸酶活性仅切割掉配对的5’-重叠碱基和另外的侧翼,例如,在野生型情况下5’-C以及在突变情况下5’-D(D=A、G或T)(5’-A示出),留下第二寡核苷酸探针上能连接的5’-磷酸。连接酶(●)将两个寡核苷酸探针共价密封在一起(仅示出突变情况),并且PCR仅扩增突变型而不是野生型等位基因的连接产物。未被切割并连接的未连接的第二寡核苷酸探针形成发夹,所述发夹通过聚合酶延伸以阻止与次级引物结合以及随后通过次级引物延伸或扩增。
如图9B所示使用传统的TaqmanTM检测可进行使用zipcode的检测(参见Whitcombe等的美国专利号6,270,967和Anderson等的美国专利号7,601,821,其据此通过引用整体并入)。对于使用Taqman测定的检测,可进行使用通用PCR引物的任选第一通用扩增反应以成比例地增加样本中的连接产物(图9C中未示出通用PCR步骤)。当检测低丰度靶核酸序列时,这特别适合。在通用扩增约8-20个循环后,将样本稀释10至100倍,并将加入单一引物,该引物与每种产物的独特的zipcode序列部分或全部重叠。Taqman探针将用于zipcode和靶DNA的接合序列(如图9C所示)或仅靶DNA(在任一情况下没有独特引物的重叠)。第二引物可以是通用的(U2)或,对于增加的特异性,可将第二引物设计为包括一些基因组特异性碱基(没有与Taqman探针的重叠)。当延伸第二引物时,信号由聚合酶的5’核酸酶活性产生。引物延伸从捕获寡核苷酸上切割可检测的标记,从而从淬灭剂分子上释放可检测的标记,并能检测。
或者,如图9C所示对于使用通用(zipcode)阵列的检测,第二寡核苷酸引物(U2)将含有报告标记,即荧光基团,而第一寡核苷酸引物(U1)将含有5’磷酸,并且扩增将继续进行总共约30至40个循环。这将允许使用λ核酸外切酶消化第二条链,产生单链并适于在如图9C所示的通用(zipcode)阵列上杂交的荧光标记产物。
此外,上述构建体可包括如下所表示的通用引物内的独特序列(0至10个碱基)(独特的Ai、独特的Bi)。
通用引物U1–独特Ai-Zipcode Zi–靶DNA-独特Bi–通用引物U2’
对于使用Zipcode Taqman测定的检测,在通用扩增8-20个循环后,将样本稀释10至100倍,并将加入独特引物,该引物与每种产物的独特的Ai独特的Bi序列重叠。Taqman探针将为zipcode序列。
由于zipcode标识与靶序列之间的每个接合序列是独特的,使用下一代测序也可鉴定和定量初始通用扩增的产物。
利用zipcode的另一种检测方法包括将zipcode部分分成两部分,使用分开的部分的两侧的互补序列的短区域可将所述两部分互相接近,。特别地,第一寡核苷酸探针将包含zip-code的第一部分和第一zip-code部分3’的第一标签部分,并且第二寡核苷酸探针将包含zip-code的第二部分和第二zip-code部分5’的第二标签部分。寡核苷酸探针组的第一和第二标签部分彼此互补,并优选为约5至8个碱基。当两部分在DNA的同一单链上时,这允许在短区域瞬时形成发夹,通过使zipcode序列的两部分与全长互补的zipcode序列在阵列上杂交、或可选地作为Taqman测定的部分使其稳定。
图10示出通用Taqman分开的zipcode发夹检测的实例。在该图中,并且根据上述方法,使用包含第一寡核苷酸探针的寡核苷酸探针组(未示出)已经形成连接产物,所述第一寡核苷酸探针具有(i)第一5’通用引物特异性部分(U1)、(ii)第一个短的(1-10个碱基)独特的识别序列(A1)、(iii)zip-code部分的第一部分(Z1.1’)、(iv)第一zip-code部分3’的第一标签部分(T1)和(v)靶特异性部分。探针组的第二寡核苷酸探针具有(i)3’通用引物特异性部分(U2’)、(ii)第二个短的独特的识别序列(B1)、(iii)zip-code部分的第二部分(Z1.2’)、(iv)第二zip-code部分5’的第二标签部分(T1’)和(v)靶特异性部分。如图10所示,当使用的PCR引物分别跨越通用引物部分和A1和B1部分时,A1和B1独特序列用来促进连接产物序列的靶特异性PCR扩增。此靶特异性PCR扩增可任选地在通用PCR扩增反应之后进行,所述PCR扩增反应使用与5’和3’通用引物特异性部分杂交的引物。当检测样本中低丰度靶核酸序列时,第一通用扩增反应特别适用。在连接产物或其延伸产物的靶特异性PCR扩增后(图10,步骤1),使双链DNA产物变性(图10,步骤2)。当温度降低时,第一和第二标签部分(T1和T1’)瞬时杂交在一起,使zipcode序列的第一部分(来自第一寡核苷酸探针的Z1.1’)接近第二zipcode序列(来自第二寡核苷酸探针的Z1.2’)。通过使互补的标记的捕获寡核苷酸(Z1)与相邻定位的zipcode序列同时杂交而使瞬时杂交稳定(图10,步骤3)。在一个实施方案中,捕获寡聚核苷酸具有彼此分离的淬灭剂分子(Q)和可检测的标记(F),其中当紧邻淬灭剂分子时所述可检测的标记被淬灭。当聚合酶使结合至通用引物特异性部分(U2)、独特的B1部分或其组合的引物(即,“消化引物”)延伸并切割杂交的捕获寡核苷酸时,信号由聚合酶的5’核酸酶活性产生。引物延伸从捕获寡核苷酸上切割可检测的标记,从而从淬灭剂分子上释放可检测的标记,并能检测(图10,步骤4)。一旦聚合酶经过Z1.2’,Z1.2’和Z1.1’之间的短茎分开并且聚合酶继续延伸以产生dsDNA产物。很多种可检测的标记(即,荧光染料)是本领域已知的且可商购获得,例如,FAM、TET、JOE、VIC、HEX、CY3、TAMRA、TexasRed、CY5、ROX。类似地,淬灭剂分子,例如,来自IDT的MGB-NFQ、BHQ-[0123]、ZEN淬灭剂也为本领域技术人员所熟知。
本发明的相关方面涉及用于鉴定样本中一个或多个靶核苷酸序列的存在的方法。此方法涉及提供可能含有所述一个或多个靶核苷酸序列的样本并提供一个或多个寡核苷酸探针组。每个探针组具有(i)包含5’引物特异性部分、zip-code部分的第一部分、第一zip-code部分的3’第一标签部分和靶特异性部分的第一寡核苷酸探针,和(ii)包含3’引物特异性部分、zip-code部分的第二部分、第二zip-code部分的5’第二标签部分和靶特异性部分的第二寡核苷酸探针。当相邻定位时,寡核苷酸探针组的第一和第二zip-code部分形成全长zip-code部分,并且寡核苷酸探针组的第一和第二标签部分彼此互补。在使探针组的第一和第二寡核苷酸探针以碱基特异性方式与其相应的靶核苷酸序列(如果存在于样本中)杂交有效的条件下,使样本和一个或多个寡核苷酸探针组接触,并且一个或多个探针组的第一和第二寡核苷酸探针连接在一起以形成连接的产物序列。此方法还涉及提供一个或多个寡核苷酸引物组,每组包含(a)包含与连接的产物序列的5’引物特异性部分相同的核苷酸序列的第一寡核苷酸引物和(b)包含与连接的产物序列的3’引物特异性部分互补的核苷酸序列的第二寡核苷酸引物。将连接的产物序列、一个或多个寡核苷酸引物组和DNA聚合酶共混以形成聚合酶链式反应混合物,并且使该聚合酶链式反应混合物经历一个或多个聚合酶链式反应循环从而形成初级延伸产物。提供与第一zip-code部分的一部分和第二zip-code部分的一部分互补的捕获寡核苷酸的集合。每种不同的初级延伸产物的集合的每个捕获寡核苷酸具有不同的核苷酸序列并包含彼此分离的淬灭剂分子和可检测的标记。使初级延伸产物和捕获寡核苷酸的集合经历对以下有效的条件:(i)特定的初级延伸产物的第一和第二标签部分相互杂交以与相邻定位的第一和第二zip-code部分形成发夹式延伸产物和(ii)集合中的捕获寡核苷酸与互补的相邻定位的发夹式延伸产物的第一和第二zip-code部分杂交。从杂交的捕获寡核苷酸上切割淬灭剂分子或可检测的标记,并检测与淬灭剂分子分离的可检测的标记。基于该检测来鉴定样本中一个或多个靶核苷酸序列的存在。
根据本发明的这个方面,连接反应过程可以是将第二寡核苷酸探针进行5’核酸酶切割之后进行的连接反应,如本文所述。或者,可提供能连接的寡核苷酸探针并且连接之前不需要由5’核酸酶切割。
图11示出通用分开的zipcode发夹检测的另一个实例。在该图中,使用包含第一寡核苷酸探针的寡核苷酸探针组(未示出)已经形成连接产物,所述第一寡核苷酸探针具有(i)第一5’通用引物特异性部分(U1)、(ii)连接产物特异性引物部分的第二引物特异性部分(A1)、(iii)zip-code部分的第一部分(Z1.1’)、(iv)第一zip-code部分3’的第一标签部分(T1)和(v)靶特异性部分。探针组的第二寡核苷酸探针具有(i)3’通用引物特异性部分(U2’)、(ii)zip-code部分的第二部分(Z1.2’)、(iii)第二zip-code部分5’的第二标签部分(T1’)和(iv)靶特异性部分。在图11的步骤1中,使用通用寡核苷酸引物组,即,具有与连接产物的5’通用引物特异性部分相同序列的第一寡核苷酸引物(U1),和与连接产物的3’通用引物特异性部分互补的第二寡核苷酸引物(U2),将连接产物任选地初始扩增。使用包含第一个次级寡核苷酸引物的二级引物组,使由初级通用PCR步骤形成的初级延伸产物经历次级PCR步骤(图11,步骤2),所述第一个次级寡核苷酸引物具有(a)与第一寡核苷酸探针(A1)的第二引物特异性部分相同的核苷酸序列、(b)与相邻定位的寡核苷酸探针组的第一和第二zip-code部分互补的捕获寡核苷酸部分(Z1)、(c)被所述捕获寡核苷酸部分分离的淬灭剂分子(Q)和可检测的标记(F)。引物组的第二个次级寡核苷酸引物(U2)具有与初级PCR的第二个初级寡核苷酸引物相同的核苷酸序列(即,其与连接产物的3’通用引物特异性部分互补)。第一个次级引物的淬灭剂分子可用作聚合酶阻断剂以阻断下游链的聚合酶延伸。或者,聚合酶阻断剂诸如HEG(己二醇(hexethylene glycol))、THF(四氢呋喃)、Sp-18或足以阻止聚合酶延伸的任何其它本领域已知的阻断剂,可被定位于接近淬灭剂部分。使双链DNA产物(示于图11,步骤3)变性,并将温度降低以允许具有Z1.1’和Z1.2’之间(通过T1和T1’之间的杂交形成茎)和捕获寡核苷酸部分(Z1)和Z1.1’/Z1.2’之间的茎的双发夹形成(图11,步骤4)。当聚合酶延伸与5’通用引物特异性部分互补的“消化引物”时,信号由聚合酶的5’核酸酶活性产生。引物延伸从捕获寡核苷酸上切割可检测的标记(F)或淬灭剂分子(Q),从而从淬灭剂分子(Q)释放可检测的标记(F),并能检测(图11,步骤5)。一旦聚合酶经过Z1.2’,Z1.2和Z1.1’之间的短茎分开并且聚合酶继续延伸直到其到达聚合酶阻断剂,以产生类似于步骤1中但缺乏荧光D1信号的dsDNA产物。
本发明的另一方面涉及用于鉴定样本中一个或多个靶核苷酸序列的存在和/或潜在突变的方法。此方法涉及提供可能含有所述一个或多个靶核苷酸序列的样本并提供一个或多个寡核苷酸探针组。每个探针组具有(i)包含5’引物特异性部分、zip-code部分的第一部分、第一zip-code部分的3’第一标签部分和靶特异性部分的第一寡核苷酸探针,和(ii)包含3’引物特异性部分、zip-code部分的第二部分、第二zip-code部分的5’第二标签部分和靶特异性部分的第二寡核苷酸探针。当相邻定位时,寡核苷酸探针组的第一和第二zip-code部分形成全长zip-code部分,并且寡核苷酸探针组的第一和第二标签部分彼此互补。在使探针组的第一和第二寡核苷酸探针以碱基特异性方式与其相应的靶核苷酸序列(如果存在于样本中)杂交有效的条件下,使样本和一个或多个寡核苷酸探针组接触,并且一个或多个探针组的第一和第二寡核苷酸探针连接在一起以形成连接的产物序列。该方法还涉及提供一个或多个寡核苷酸引物组,每组包含(i)具有(a)与第一寡核苷酸探针的第二引物特异性部分相同的核苷酸序列、(b)与相邻定位的寡核苷酸探针组的第一和第二zip-code部分互补的捕获寡核苷酸部分、(c)被所述捕获寡核苷酸部分分离的淬灭剂分子和可检测的标记的第一寡核苷酸引物,(ii)包含与连接的产物序列的3’引物特异性部分互补的核苷酸序列的第二寡核苷酸引物。将连接的产物序列、一个或多个寡核苷酸引物组和DNA聚合酶共混以形成聚合酶链式反应混合物,并使该聚合酶链式反应混合物经历一个或多个聚合酶链式反应循环从而形成初级延伸产物。使初级延伸产物经历对以下有效的条件:特定的初级延伸产物的第一和第二标签部分相互杂交以与相邻定位的第一和第二zip-code部分形成发夹式初级延伸产物和(ii)特定的发夹式初级延伸产物的捕获寡核苷酸部分与互补的相邻定位的发夹式延伸产物的第一和第二zip-code部分杂交。切割淬灭剂分子或发夹式初级延伸产物的可检测的标记,并检测与淬灭剂分子分离的可检测的标记。基于该检测来鉴定样本中一个或多个靶核苷酸序列的存在
根据本发明的这个方面,连接反应过程可以是将如本文所述的第二寡核苷酸探针进行5’核酸酶切割之后进行的连接反应。或者,可提供能连接的寡核苷酸探针并且连接之前不需要由5’核酸酶切割。
利用zipcode/捕获寡核苷酸序列用于检测的替代方法包括UniTaq方法。UniTaq系统完整地描述于Spier的美国专利申请公开号2011/0212846,其据此通过引用整体并入。UniTaq系统涉及使用两至三个短的(1-10个核苷酸)独特的“标签”序列,其中独特的标签序列(Ai)中的至少一个存在于第一寡核苷酸探针,并且第二和第三个独特的标签部分(Bi和Ci)处于第二寡核苷酸探针序列。探针组中的寡核苷酸探针连接后,所得到的连接产物将含有Ai序列-靶特异性序列-Bi序列-Ci序列。UniTaq方法的本质是为了获得阳性信号,需要连接探针组的两种寡核苷酸探针是准确的,所述信号允许高度多重核酸检测。例如,和如本文所述,这通过需要两部分(即,两个标签)的相互杂交来实现。
在本发明的一个实施方案中,寡核苷酸探针组的UniTaq标签部分是“等位基因特异性的”并用于鉴定和区分样本中的单个连接产物序列。根据本实施方案,每个不同的连接产物序列的UniTaq部分是不同的。此实施方案特别用于检测和区分不同的等位基因突变。在替代实施方案中,其中目标是简单地检测基因或染色体拷贝数目突变的存在,但是突变或染色体区域的同一性不是关键的,相同的UniTaq标签部分可用于检测不同的连接产物。在任一实施方案中,将UniTaq标签部分掺入探针组的一个寡核苷酸探针允许同时高度多重检测各种靶序列。
图12A和12B是示出不同的Unitaq标签组(例如,Ai和Bi-Ci,i=1-N)掺入到寡核苷酸连接探针和所得到的产物的示意图。如图12A和12B所示,寡核苷酸探针组可被设计为与基因组DNA的沃森(Watson)或克里克(Crick)链互补。
图13A-13C示出各种方法,其中UniTaq标签系统可合并到本发明的核酸酶-连接-PCR过程。在第一种方法中,如图13A所示,使用具有与Ai相同的核苷酸序列的第一寡核苷酸引物和与C’i(即,Ci)互补的第二寡核苷酸引物,含有Ai(第一引物特异性部分)、B’i(UniTaq检测部分)和C’i(第二引物特异性部分)的连接产物在两条链上被引发。第一寡核苷酸引物也包括UniTaq检测探针(Bi),该探针在一个末端具有可检测的标记D1并且在另一末端具有淬灭剂分子(Q)(D1-Bi-Q-Ai)。任选地位置接近淬灭剂的是聚合酶阻断单元,例如,HEG、THF、Sp-18或足以阻止聚合酶延伸的任何其它本领域已知的阻断剂。如果折叠入茎的5’-尾在不与中间通用标签序列互补的5’末端具有一个或多个碱基,可以不需要聚合酶阻断剂,从而由DNA的相反链(茎的末端具有3’-末端)形成的发夹在PCR期间不可延伸。也可将小发夹设计到引物100的5’部分中,从而使染料和淬灭剂更加靠近,类似于“日出(Sunrise)”引物和探针,以提高淬灭并降低背景荧光。例如,参见美国专利号5,866,336和6,270,967,其据此通过引用整体并入。
PCR扩增导致双链产物(图13A,步骤2)。在这个实例中,聚合酶阻断单元阻止聚合酶拷贝第一通用引物的5’部分(Bi),当变成单链时使得产物的下游链不能形成发夹。此类发夹的形成将导致茎的3’末端与扩增子退火,使得此3’末端的聚合酶延伸将终止PCR反应。
双链PCR产物解链(例如,通过将温度升高至约95℃以分离上链和下链,并且当温度随后降低时,产物的上链形成发夹,该发夹具有第一寡核苷酸引物的5’部分(Bi)和该链的相对末端的部分B'i之间的茎(图13A,步骤3)。此外,在该步骤期间,使第二寡核苷酸引物与5’-引物特异性部分(C’i)退火。分子内发夹形成快速发生并且通过热动力学被驱动:通过茎长、GC含量和环长测定自由能。重要的是,发夹的解链温度(Tm)显著高于(例如,大约10℃或更高)第二寡核苷酸引物的Tm。这样,当温度降低时,在第二通用引物退火和延伸之前,几乎100%的分子将形成发夹。在步骤4中第二通用引物延伸后,聚合酶的5’核酸酶活性从扩增子的5’末端切割可检测的标记D1或淬灭剂分子,从而增加标记和淬灭剂或FRET染料之间的距离并且允许检测该标记。很多种荧光染料是本领域已知的且可商购获得,例如,FAM、TET、JOE、VIC、HEX、CY3、TAMRA、TexasRed、CY5、ROX。类似地,合适的淬灭剂分子,例如,来自IDT的MGB-NFQ、BHQ-[0123]、ZEN淬灭剂也为本领域技术人员所熟知。
在图13B所示的方法中,传统的TaqmanTM测定用于检测连接产物。此方法包括提供与UniTaq检测部分(B’i)互补的UniTaq检测探针(Bi)。该UniTaq检测探针包含彼此分离的淬灭剂分子(Q)和可检测的标记(D1)。在PCR扩增期间,UniTaq检测探针与其互补的连接产物的UniTaq检测部分杂交,同时第二寡核苷酸引物(Ci)与连接产物的5’C’i引物特异性部分杂交。通过5’核酸外切酶切割D1并从淬灭剂中分离D1,第二寡核苷酸引物的延伸产生信号。
涉及通用环形成的另一个实例检测形式示意性地示于图13C。如上所述,在图13C中的连接产物含有Ai(第一引物特异性部分)、靶特异性部分、B’i(UniTaq检测部分)和C’i(第二引物特异性部分)。使用第一寡核苷酸引物(Ai)和第二寡核苷酸引物扩增连接产物,所述第一寡核苷酸引物具有与连接产物的Ai引物特异性部分相同的核苷酸序列,并且第二寡核苷酸引物包括(i)与连接产物的5’C’i引物特异性部分互补的引物部分(Ci),(ii)包含聚合酶阻断剂(x)的间隔基、(iii)淬灭剂分子(Q)、(iv)UniTaq检测探针(Bi)和(v)当接近淬灭剂分子时被淬灭的可检测的标记(D1)。在PCR期间,第二寡核苷酸引物的引物部分(Ci)与连接产物的引物特异性部分退火,而UniTaq检测探针(Bi)与其连接产物的互补的UniTaq检测部分杂交(图13C,步骤1)。在这个实例中,第二寡核苷酸引物的延伸(图13,步骤2)切割杂交的UniTaq检测探针(Bi),从而释放可检测的标记。从淬灭剂分子释放可检测的标记产生可检测的信号。
图14示出使用如图13A中所描述的相同过程检测两种等位基因的实例。示出两个等位基因“X”和“O”。不像常规的LDR反应,探针组的两个寡核苷酸探针是等位基因特异性的。换句话说,包含具有5’引物特异性部分(Aix)和靶特异性部分的第一寡核苷酸探针和具有3’引物特异性部分(Ci)、UniTaq检测部分(Bix)和靶特异性部分的第二寡核苷酸探针的探针组对于检测等位基因X是特异性的。同样,包含具有5’引物特异性部分(Aio)和靶特异性部分的第一寡核苷酸探针和具有3’引物特异性部分(Ci)、UniTaq检测部分(Bio)和靶特异性部分的第二寡核苷酸探针的探针组对于检测等位基因O是特异性的。图14的步骤1示出本发明的核酸酶-连接过程。此寡核苷酸探针设计形式增加检测特异性:仅在5’碱基与等位基因配对时切割第二寡核苷酸探针的5’-FLAP碱基,并且仅在第一寡核苷酸探针的3’端碱基与等位基因配对时连接两个寡核苷酸探针。此方法特别有利于检测突变检测,例如,检测大量过量的野生型分子的罕见的体细胞突变。在接近或高于连接探针Tm的温度下可进行等位基因和突变特异性核酸酶-连接酶反应,以便错配寡核苷酸可从模板解链并允许新寡核苷酸退火。在突变检测的情况下,可以仅使用对突变而不是对正常等位基因特异性的寡核苷酸探针。图14的步骤2和3示出图13A中所描述的相同的过程,其中使用具有第一寡核苷酸引物的引物组扩增连接产物,该引物包含UniTaq检测探针部分(Bix或Bio),该部分包含淬灭剂分子(Q)和可检测的标记(D1或D2)(步骤2)。由于UniTaq检测探针部分(Bix或Bio)和互补的UniTaq检测部分(分别为B’ix和B’io)之间的杂交,所得到的延伸产物形成发夹(步骤3)。当该聚合酶延伸杂交的引物(Ci)时,由从发夹式产物的UniTaq检测探针部分(Bix或Bio)切割可检测的标记(D1或D2)的聚合酶的5’核酸酶活性产生可检测的信号(步骤3)。
图15示出使用通用的天然存在的“标签”进行检测的实例。当有足够的自由度以获得检测靶标时可使用此方法,并且需要增加检测灵敏性和稳固性。唐氏综合征(Down’s syndrome)的胎儿非整倍性检测允许挑选21号染色体上的多个基因座(图15A中的N),所述基因座都具有相同的通用序列B1,例如8-mer。可任选使用相同的通用8-mer中间寡核苷酸用于所有靶标。在这种情况下,可以使用杂交使此通用中间寡核苷酸中的修饰碱基稳定,例如LNA。连接寡核苷酸探针被设计为在靠近通用标签中间的连接点连接。或者,连接寡核苷酸可被设计成使得通用B1标签出现在连接产物的任何位置。图15A的右边示出可如何使用双连接设计;在这种情况下,不同的通用标签B2存在于所有N对照靶标。使用双标记引物的通用检测将检测具有染料D1的B1标签的所有靶标和具有染料2的B2标签的所有靶标。使用相同的通用序列用于检测第一染色体(即染色体21)和不同的通用序列用于检测第二染色体(即对照染色体2)的此方法可用于无创产前诊断。使用数字PCR(dPCR)对各个连接产物进行“计数”。在dPCR的情况下,具有D1和D2信号的孔的计数可用于检测胎儿非整倍性。
本发明的另一方面涉及用于鉴定样本中一个或多个靶核苷酸序列的存在的方法。此方法涉及提供可能含有所述一个或多个靶核苷酸序列的样本并提供一个或多个寡核苷酸探针组。每个探针组包含(a)具有靶特异性部分的第一寡核苷酸探针,和(b)具有5’非靶特异性侧翼部分和含有一个或多个硫代磷酸修饰的核苷酸碱基的靶特异性部分的第二寡核苷酸探针,其中探针组的第一和第二寡核苷酸探针被配置为在靶核苷酸序列上杂交。在使探针组的第一和第二寡核苷酸探针以碱基特异性方式与其相应的靶核苷酸序列(如果存在于样本中)杂交有效的条件下,使样本和一个或多个寡核苷酸探针组接触。第二寡核苷酸探针的5’非靶特异性侧翼部分被具有5’核酸酶活性的酶切割,从而释放第二寡核苷酸的靶特异性部分的第一核苷酸碱基的5’磷酸,并且一个或多个寡核苷酸探针组的第一和第二寡核苷酸探针连接在一起以与一个或多个硫代磷酸修饰的核苷酸碱基形成含有靶特异性部分的连接的产物序列。该方法还包括检测样本中的连接产物序列,并且基于所述检测来鉴定样本中一个或多个靶核苷酸序列的存在。
根据本发明的这个方面,第二寡核苷酸探针的一个或多个硫代磷酸修饰的核苷酸碱基中的至少一个与第一靶特异性核苷酸碱基相邻。
根据本发明的这个方面,探针组的寡核苷酸探针可包含在靶核酸分子上彼此紧邻的靶特异性部分,并且被配置为在靶核苷酸序列上彼此相邻杂交,在它们之间形成接合,如图1所示。或者,并如图16所示,探针组的寡核苷酸探针可包含彼此不相邻的靶特异性部分。根据该实施方案,在切割第二寡核苷酸探针的5’非靶特异性侧翼部分(侧翼)之前,第一寡核苷酸探针用聚合酶延伸以形成与第二寡核苷酸探针的接合,即,缺口-连接反应(Jou等,“Deletion Detection inDystrophia Gene by Multiplex Gap Ligase Chain Reaction andImmunochromatographic Strip Technology,”Human Mutation 5:86-93(1995),其据此通过引用整体并入)。如果第二寡核苷酸探针的靶特异性部分在接合处具有与延伸的第一寡核苷酸探针重叠的相同核苷酸,则切割发生。另外的5’核酸酶活性被第二寡核苷酸探针的硫代磷酸修饰的核苷酸(“S”)中断。被聚合酶(◆)的5’核酸酶活性切割后,延伸的第一寡核苷酸探针通过连接酶(●)连接至第二寡核苷酸探针。在图16描述的实施方案中,第一寡核苷酸探针还包含5’引物特异性部分(P1)并且第二寡核苷酸探针包含3’引物特异性部分(P2)。因此,连接后,连接产物随后被PCR扩增和/或进行测序。通过将寡核苷酸探针的5’侧翼部分设计为与3’引物特异性部分的一部分互补,可阻止未连接的第二寡核苷酸探针序列干扰连接产物的PCR扩增。如图16所示(右手侧),由于5’侧翼部分与其3’引物特异性部分的互补区域之间的杂交,未连接的寡核苷酸探针形成发夹。发夹式寡核苷酸探针的3’引物特异性部分的延伸形成稳定的不会被PCR寡核苷酸引物结合的发夹。
用于检测连接产物序列的各种方法如上文所述,例如,基于标记的连接探针的检测、下一代测序、含有zip-code部分和/或UniTaq检测部分的标记的延伸产物的PCR扩增和检测。如上所述,优选在进行任何随后的基于扩增的测定之前,从含有连接的产物序列的样本中封闭未连接的寡核苷酸探针,以防止未连接的探针延伸或扩增。第二寡核苷酸探针的5’核苷酸侧翼与第二寡核苷酸探针的3’引物特异性部分的至少一部分互补,并且其中,在不存在连接时,未连接的第二寡核苷酸探针的5’核苷酸侧翼的互补区和3’引物特异性部分相互杂交以形成发夹式的第二寡核苷酸探针。
对两类进行可靠的诊断和筛选试验的挑战是区分从肿瘤或胎儿传出的表明疾病(即早期癌症)的那些标记与从正常组织传出的相同标记的存在。还需要使检测的标记的数量和测试成本以及测定的特异性和灵敏性平衡。这是一个挑战,这需要解决疾病(诸如癌症)中的生物学变化。在许多情况下,测定应用作筛选工具,需要次级诊断随访(即结肠镜检查、羊膜穿刺)的可用性。
从极少数量的初始细胞(即从CTC),或在大部分核酸存在下从正常细胞传出癌症或胎儿特异性信号时,可靠地检测核酸序列突变或可靠地定量DNA或RNA拷贝数需要解决该生物问题。
最后,区分来源于检测所需疾病特异性核酸差别的真实信号、与存在于样本中的正常核酸产生的错误信号、与不存在疾病特异性核酸差别时产生的错误信号存在技术挑战。
本文所述的本发明的方法提供这些挑战的解决方案。这些解决方案共同具有以下突出的某些共同的主题。
第一个主题是多重的。当引物浓度相对较高(50nM至500nM)时,PCR最佳地发挥作用,限制多重反应。此外,加入的PCR引物对越多,扩增不正确的产物或产生引物-二聚体的可能性呈指数地增加。相反,对于LDR探针,使用4nM至20nM级别的低浓度,并且探针-二聚体受到在靶标上相邻杂交以允许连接事件发生的要求的限制。使用低浓度的基因特异性PCR引物或具有通用引物序列“尾”的LDR探针允许随后加入更高浓度的通用引物以获得初始PCR或LDR产物的比例扩增。
第二主题是由于较低的给定的靶核酸的信号波动。通常,靶核酸来自几种细胞,捕获的如CTC,或来自经历凋亡并在血清中将其DNA释放成小片段(200bp)的肿瘤细胞。在此类情况下,优选当少量起始分子分配到各个孔时,进行一定水平的比例扩增以避免由于波动而丢失整个信号或报告不精确的拷贝数(对于实时或数字PCR定量)。只要这些初始通用扩增保持在合理的水平(大约8至20个循环),打开管并将扩增子分配用于随后检测/定量(使用实时或微滴PCR)期间携带(carryover)污染的风险被最小化。如果需要,通用扩增步骤期间和在预扩增后处理过程中使用UNG和AP核酸内切酶通过标准尿嘧啶掺入可消除携带的信号。
第三主题是不依赖靶的信号。这将来源于不存在正确靶标时发生的聚合酶或连接酶反应。通过准确的引物设计,这种信号中的一些可被最小化。对于连接反应,聚合酶的5’->3’核酸酶活性可用于释放下游连接引物的5’磷酸(只有当与靶标杂交时),所以它适用于连接。区分低水平突变存在的另外的特异性可通过以下来获得:(i)使用3’OH的第2或第3位含有错配的上游LDR引物,和(ii)连接但不进行另外扩增的野生型序列的LDR引物。
第四主题是由于反应中未使用引物的被抑制的(减少的)扩增或不正确的(错误的)扩增。消除此类未使用的引物的一个方法是在固体载体上捕获基因组DNA,允许连接引物杂交和连接,然后除去不与固体载体上的基因组DNA杂交的引物或产物。另一种方法是使下游连接引物的3’末端与其自身5’末端的一部分杂交,如果其已经进行了成功的核酸酶切割和随后的连接步骤与从引物缺失的序列杂交。未被切割的那些引物是自延伸的以形成更长的不会发生进一步扩增的发夹环。又一种方法是使用PCR或LDR基因组引物上的通用引物尾,它们稍微短于通用引物。这允许以较低循环温度(即55℃退火),然后以较高循环温度(即65℃退火)进行初始通用扩增,使得通用引物优先结合至所需产物(与结合至不正确产物的复合PCR或LDR引物相比)。
本文所述的本发明的方法能够检测和定量具有一个或多个核苷酸碱基插入、缺失、易位、突变和/或损坏的核苷酸碱基的一种或多种低丰度靶核酸分子。本文所用的“低丰度靶核酸分子”是指以低至样本的1%至0.01%的水平存在的靶核酸分子。换句话说,具有一个或多个核苷酸碱基插入、缺失、易位、突变和/或损坏的核苷酸碱基的低丰度核酸分子与样本中核酸分子的区别超过100-10,000倍,所述样本是具有与低丰度核酸分子类似的核苷酸序列,但是没有一个或多个核苷酸碱基插入、缺失、易位、突变和/或损坏的碱基的使用本发明方法的总核酸样本。在本发明的一些实施方案中,对一个或多个低丰度靶核苷酸序列的拷贝数相对于具有与低丰度核酸分子类似的核苷酸序列的样本中的过量核酸分子的拷贝数进行定量。在本发明的另一个实施方案中,将一个或多个靶核苷酸序列相对于样本中的其它核苷酸序列进行定量。在本发明的其它实施方案中,将一个或多个靶核苷酸序列的相对拷贝数进行定量。
待检测的低丰度靶核酸分子可存在于任何生物样本中,包括但不限于组织、细胞、血清、血液、血浆、羊水、唾液、尿液、体液、身体分泌物、身体排泄物、无细胞循环核酸、妊娠女性的无细胞循环胎儿核酸、循环肿瘤细胞、肿瘤、肿瘤活检和胞外体。
对于早期癌症检测,如本文的预测性实施例所述,当以样本的1%-0.01%存在时,本发明的方法适用于检测已知基因(例如,Braf、K-ras)中的重复突变和已知基因(例如,p53)中的罕见突变。本发明的方法也可实现分离自胞外体的肿瘤特异性mRNA(例如区分结肠肿瘤组织与配对的正常粘膜的十几个表达标记)和分离自胞外体或Argonaut蛋白的肿瘤特异性miRNA(例如区分结肠肿瘤组织与配对的正常粘膜的十几个微小RNA标记)的精确定量。本发明的方法也可提供分离自循环肿瘤细胞的DNA中肿瘤特异性拷贝变化(例如区分结肠肿瘤组织与配对的正常粘膜的十几个拷贝变化)和分离自循环肿瘤细胞的DNA中突变检测的精确定量。(例如K-ras、B-raf、AKT、p53、BRCA1基因)。
本发明也能够精确定量(i)分离自胞外体或循环肿瘤细胞的肿瘤特异性mRNA,(ii)分离自胞外体或Argonaut蛋白的肿瘤特异性miRNA,和(iii)分离自循环肿瘤细胞的DNA中肿瘤特异性拷贝变化,其可预测结果或指导治疗。本发明还可检测分离自循环肿瘤细胞的DNA中的突变,例如K-ras、B-raf、AKT、p53、BRCA1或其它基因,其预测结果或指导治疗。
对于产前诊断,本发明的方法能够通过计算拷贝数检测非整倍性(例如,21-三体综合症)、含有已知基因中常见突变的遗传性疾病(例如镰状细胞贫血病、囊性纤维化)、含有已知基因中罕见突变的遗传性疾病(例如家族性腺瘤性息肉病)、由已知基因中已知的或偶然发生的拷贝数的减少或增加引起的遗传性疾病(例如杜氏(Duchenne’s)肌营养不良)和亲子鉴定。
本发明的另一方面涉及用于鉴定样本中一个或多个靶核苷酸序列的存在的试剂盒。该试剂盒含有具有5’核酸酶活性的酶、连接酶和一个或多个寡核苷酸探针组。寡核苷酸探针组各自具有(a)具有靶特异性部分的第一寡核苷酸探针,和(b)具有靶特异性部分的第二寡核苷酸探针,其中探针组的第一和第二寡核苷酸探针被配置为在靶核苷酸序列上彼此相邻杂交,在第一和第二寡核苷酸探针之间形成接合,并且其中,在探针组中,第二寡核苷酸探针的靶特异性部分在接合处具有与第一寡核苷酸探针重叠的相同核苷酸。
本发明的另一方面涉及用于鉴定样本中一个或多个靶核苷酸序列的存在的试剂盒。此试剂盒含有具有5’核酸酶活性的酶、连接酶和一个或多个寡核苷酸探针组。寡核苷酸探针组各自具有(a)具有靶特异性部分的第一寡核苷酸探针,和(b)具有5’非靶特异性侧翼部分和含有一个或多个硫代磷酸修饰的核苷酸碱基的靶特异性部分的第二寡核苷酸探针,其中探针组的第一和第二寡核苷酸探针被配置为在靶核苷酸序列上杂交。
预测性实施例
提供以下实施例以说明本发明的预测性实施方案,但它们并不旨在以任何方式限制其范围
预测性实施例1-高灵敏性突变标记(以1%至0.01%存在);已知基因中的重复突变的检测
癌基因的突变变化通常在离散区域或位置,并且通常可推进肿瘤的发展。这些基因的列表及其突变可见于公共数据库诸如Sanger基因组中心“COSMIC”数据库。血清中此类突变的存在是体内某些肿瘤组织的强烈指示。传统上,使用等位基因特异性PCR扩增已经鉴定此类突变。此方法易于进行初始错误扩增,然后进行错误产物的扩增。其他人已经使用数字PCR以试图定量血清中的突变DNA。
方法概述:此方法取决于两种酶的保真度:(i)区别下游引物5’侧配对与错配的聚合酶5’ 3’核酸酶或侧翼切割酶,和(ii)区别上游探针3’侧配对与错配的连接酶。后者还通过在3’末端的第2或第3个碱基使用有意的错配或核苷酸类似物被增强,如果3’末端完全配对则使3’末端的杂交略微不稳定,但如果3’末端错配则使3’末端的杂交明显不稳定。最后,诸如改变循环时间和条件的动力学方法可增强野生型和突变模板之间的区别。一旦连接事件发生,将在随后的PCR扩增步骤中扩增那些产物,因此这是关键的区别步骤。
最困难的情况是对于K-ras突变,其中密码子12上六个变化和密码子13上一个变化被全部间隔在一起。通常,对于最高保真度,突变引物和野生型序列之间的错配对于最后一个碱基应该至少为C:A,而非G:T。因此,需要运行上链和下链两种引物,或不管怎样每个反应两个初始连接管。然而,一个以上的突变可被给予相同的UniTaq序列或其它可检测的部分(zip-code,可检测的标记),由于目标是找到突变,而不必区别彼此不同的突变。
第二个问题是,如果倒数第二位的碱基是C:A或G:T错配,则实现连接的最高保真度。这会降低产量,但提高了保真度。
第三个问题还包括3’侧第三位具有错配的野生型序列的任选上游探针。然而,上游区域将缺乏UniTaq和通用引物区域,并且因此将不允许任何扩增。而且,通过形成第三位的错配,突变的LDR探针现在将在3’侧最后3位上错配,因此不会意外地PCR扩增剩余正常LDR连接产物。野生型序列的下游探针在关键碱基上将包含野生型碱基。此引物也会缺乏UniTaq和通用引物区域,因此将不允许任何扩增。
由于不同引物将彼此竞争结合(稀有)突变序列,所以重要的是允许所有探针与正确的序列杂交。对于K-ras密码子12的第1位突变将有4个上游和4个下游探针,生成16种不同的可能的组合。目标是避免突变探针与正常序列的错误连接/错误信号(因此正常探针缺乏UniTaq和通用引物尾而不会扩增),但在突变序列存在下还具有正确的连接发生。因此,可并入“微型循环”,其中将温度在60℃用于连接(10分钟)和75℃(1分钟)之间变化,因此未连接的探针而不是连接的产物从模板上脱落。
为了总结上述方法的区别水平,使用两个探针来检测每个突变:
1.使用下游探针的聚合酶或Fen核酸酶的5’-3’核酸酶活性。
2.使用上游探针的热稳定的连接酶的3’连接保真度。
3.使用上游探针的3’末端的第2或第3个碱基上的错配或核苷酸类似物。
4.使用探针与野生型序列以抑制突变探针在野生型DNA上的连接。
5.使用微型循环条件以提高突变存在时的产物产率。
6.使用下游寡核苷酸探针的5’末端序列,使得当它们不被切割时在较低温度下形成发夹,并自身延伸以形成不扩增的产物。
使用栓系的或偶联的配对的上游和下游引物的替代方法(参见下文)也是可能的。因此,区别碱基在3’末端和5’末端是相同的碱基,或切割5’末端的侧翼之前为最后一个碱基。可改变循环条件以确定对以下有效的最佳时间(i)当特定突变的下游探针具有完美的配对杂交时,聚合酶5’ 3’核酸酶切割释放5’磷酸,然后(ii)连接至上游探针的3’末端,再次假设有突变碱基的完美配对。同时,在温度升至使探针从不正确的模板变性之前,通过减少允许两个反应发生的时间,可使聚合酶5’ 3’核酸酶切割下游探针(如果有不正确的碱基(即错配))然后连接酶不正确地连接上游探针(也有错配)最小化。
偶联探针有两种变化需要考虑。在第一种变化中,(如图8所示),偶联引物被设计为(i)包含阻断连接产物周围的聚合酶复制的序列,和(ii)未连接的偶联探针在较低温度下形成发夹并自身延伸以形成不扩增的产物。
为了总结第一种变化的区别水平,使用偶联寡核苷酸探针来检测每个突变:
1.使用下游探针部分的聚合酶或Fen核酸酶的5’-3’核酸酶活性。
2.使用上游探针部分的热稳定的连接酶的3’连接保真度。
3.使用上游探针部分的3’末端的第2或第3个碱基上的错配或核苷酸类似物
4.使用循环条件以提高仅当突变存在时产生连接产物的特异性。
5.使用较低的探针浓度以使不依赖靶的事件最小化。
6.使用偶联探针的序列,使得当它们不被连接时在较低温度下形成发夹,并自身延伸以形成不扩增的产物。
在第二种变化中,偶联探针被设计为包含在连接步骤后可被切割的序列(例如,被UNG靶向的dU束),如图7所示。在该切割之前,未连接的偶联引物(以及给定模板DNA)通过核酸外切酶消化被除去。
为了总结第一种变化的区别水平,使用偶联引物来检测每个突变:
1.使用下游探针部分的聚合酶或Fen核酸酶的5’-3’核酸酶活性。
2.使用上游探针部分的热稳定的连接酶的3’连接保真度。
3.使用上游探针部分的3’末端的第2或第3个碱基上的错配或核苷酸类似物
4.使用循环条件以提高仅当突变存在时产生连接产物的特异性。
5.使用较低的引物浓度以使不依赖靶的事件最小化。
6.使用核酸外切酶以破坏未连接的探针和靶标。
作为存在的DNA总量的对照,可以选择附近的靶区域。连接至下游的上游寡核苷酸是两种寡核苷酸的混合物:(i)与正确的UniTaq特异性序列以1/100存在的寡核苷酸,和(ii)与具有与其3’末端互补的8-10个碱基的序列以99/100存在的寡核苷酸。含有UniTaq序列的连接产物扩增,并将生成等效于原始模板1/100的信号。大部分连接产物在5’末端缺少通用序列,并且不能指数扩增。未连接的上游引物将自身回折形成发夹,并自身延长其3’序列,而不竞争成为另一个PCR扩增子的一部分。
作为存在的DNA总量的对照,此方法还可与仍在附近靶区域的偶联探针一起使用。使用两种寡核苷酸的混合物:(i)与正确的UniTaq和/或其它标签序列以1/100存在的寡核苷酸,和(ii)与缺少或具有不正确的标签序列的序列以99/100存在的寡核苷酸。含有UniTaq和/或标签序列的连接产物扩增,并将生成等效于原始模板1/100的信号。大部分连接产物缺少或具有不正确的标签序列,并且不能指数扩增。
详细方案:突变标记(当以1%至0.01%存在时)、已知基因中的重复突变的高灵敏性检测(参见图6)
步骤1:在第一寡核苷酸探针(含有5’通用引物U1、然后UniTaqAi、然后倒数第二位碱基具有C:A或G:T错配的靶特异性序列,并且突变碱基在3’末端的“上游探针”)、第二寡核苷酸探针(含有5’的20个碱基的额外突出,其中8-10个碱基与通用引物U2’序列的3’末端互补、然后靶特异性序列--UniTaq Bi’--通用引物U2’的“下游探针”)、Taq聚合酶和热稳定的连接酶(优选来自菌株AK16D)的存在下,使来自血清的基因组DNA变性(94℃1分钟)。进行一个或多个连接检测反应,其中退火温度在60℃用于连接(10分钟)和75℃(1分钟)之间循环一次或多次。如果存在突变DNA这将允许连接事件发生。
步骤2:加入热启动dNTP的通用引物U1、通用引物U2。在55℃(活化dNTP)孵育以使未连接的下游探针与和3’末端互补的8-10个碱基自我形成发夹,其延伸以产生更长的发夹,使这些下游探针难以进一步扩增。然后,使PCR扩增进行8-20个循环。理想地,在LDR复合探针上的通用引物尾U1和U2稍微短于通用引物U1和U2。这允许以较低循环温度(即55℃退火),然后以较高的循环温度(即65℃退火)进行初始通用扩增,使得通用引物U1和U2优先结合至所需产物(与结合至不正确产物的复合LDR探针相比)。另外,通用引物U1和U2含有共同的短序列(即6-10个碱基)以避免引物二聚体形成。这些条件扩增以下序列的片段:
通用引物U1–UniTaq Ai–上游靶标-突变-下游靶标–UniTaq Bi’–通用引物U2’
步骤3:打开管,稀释10至100倍并等份分配至Taqman孔中,每孔含有以下引物:形式F1-UniTaq Bi–Q-UniTaq Ai的通用引物U2和UniTaq特异性引物。(其中F1是被淬灭剂Q淬灭的荧光染料)。在这些条件下,将形成以下产物:
F1-UniTaq Bi–Q-UniTaq Ai–上游靶标-突变-下游靶标–UniTaqBi’–通用引物U2’
这将形成发夹,使得UniTaq Bi序列与UniTaq Bi’序列配对。当通用引物U2结合至通用引物U2’序列时,聚合酶的5’ 3’核酸外切酶活性消化UniTaq Bi序列,释放F1荧光染料。
如上所述使用Zipcode阵列、Zipcode Taqman或传统Taqman检测可进行高灵敏性的突变检测。简言之,此方法将使用上游第一寡核苷酸探针(5’通用引物U1、然后Zipcode Zi、然后倒数第二位碱基具有C:A或G:T错配的靶特异性序列,并且突变碱基在3’末端)和下游第二寡核苷酸探针(5’的20个碱基的额外突出,其中8-10个碱基与通用引物U2’序列的3’末端互补、然后靶特异性序列--通用引物U2’)。通用PCR扩增后,这些条件扩增以下序列的片段:
通用引物U1–Zipcode Zi–上游靶标-突变-下游靶标–通用引物U2’
对于使用包含捕获寡核苷酸的通用阵列的检测,通用引物U2将含有报告标记,即荧光基团,而通用引物U1将含有5’磷酸,并且扩增将继续进行总共约30至40个循环。这将允许使用λ核酸外切酶以消化第二条链,产生荧光标记产物单链并适于在包含捕获寡核苷酸的通用(zipcode)阵列上杂交。
在替代方法中,可使用分开的Zipcode序列可进行高灵敏性的突变检测。此方法将使用上游第一寡核苷酸探针(5’通用引物U1、第一半zipcode序列Ai和短序列Ci、然后倒数第二位碱基具有C:A或G:T错配的靶特异性序列,并且突变碱基在3’末端)和下游第二寡核苷酸探针(5’的20个碱基的额外突出,其中8-10个碱基与通用引物U2’序列的3’末端互补、然后靶特异性序列–短序列Ci’的互补序列、第二半zipcode序列Ai-通用引物U2’)。通用PCR扩增后,这些条件扩增以下序列的片段:
通用引物U1–第1个1/2Zipcode Zi–短Ci–上游靶标-突变-下游靶标–短Ci’–第2个1/2Zipcode Zi-通用引物U2’
当短Ci与短Ci’瞬时杂交时,第1个1/2Zipcode Zi序列邻近第2个1/2Zipcode Zi,并且当在zipcode阵列上两个Zipcode Zi一半序列与全长Zipcode Zi’序列杂交时瞬时杂交可以是稳定的。
此外,上述构建体可包括如下所表示的通用引物内的独特序列(0至10个碱基)(独特的Ai、独特的Bi)。
通用引物U1–独特的Ai-第1个1/2Zipcode Zi–短Ci–上游靶标-突变-下游靶标–短Ci’–第2个1/2Zipcode Zi-独特的Bi–通用引物U2’
对于使用Zipcode Taqman测定的检测,在通用扩增8-20个循环后,将样本稀释10至100倍,并将加入独特引物,该引物与每种产物的独特的Ai独特的Bi序列重叠。Taqman探针将结合全长zipcode序列。
由于靶序列之间的每个接合序列是独特的,所以使用下一代测序也可鉴定和定量初始通用扩增的产物。(测序可鉴定不正确片段的不依赖靶的连接,但不鉴定突变连接探针在正常靶标上的错误连接。然而,使用野生型序列的非扩增上游连接探针将显著减少此类不正确的连接)。
避免此问题的替代方法是摒弃(forego)使用野生型序列的探针,但取而代之使用通过其未连接的末端彼此偶联的连接探针。这允许使用较低的引物浓度。此外,提供简单方法以从经历的连接后反应中除去上游和下游未连接的引物。
使用偶联探针高灵敏性检测突变标记(当以1%至0.01%存在时)、已知基因中重复突变的详细方案(参见图8):
步骤1:在偶联寡核苷酸探针(该探针由偶联至配对的下游LDR引物部分(5’相同的突变碱基或含有相同突变碱基的侧翼、然后靶特异性序列--UniTaq BI’--通用引物U2’–和与上游引物序列部分的游离3’末端互补的8-10个碱基的靶特异性序列)的上游LDR引物部分(5’通用引物U1--UniTaq Ai、然后倒数第二位碱基具有C:A或G:T错配的靶特异性序列,并且突变碱基在3’末端)组成)、Taq聚合酶和热稳定的连接酶(优选来自菌株AK16D)存在下,使来自血清的基因组DNA变性(94℃1分钟)。在此变型中,偶联探针可包含另外的碱基或仅间隔基,但应包含聚合酶不拷贝通过的区域。与错配聚合酶切割/连接相比,对完全配对聚合酶切割/连接进行已被优化的一个或多个连接反应。如果存在突变DNA这将允许连接事件发生。
步骤2:加入热启动dNTP的通用引物U1和通用引物U2。在55℃(活化dNTP)孵育以使未连接的偶联探针与和3’末端互补的8-10个碱基自我形成发夹,其延伸以产生更长的发夹,使这些偶联引物难以进一步扩增。然后,使PCR扩增进行8-20个循环。理想地,在桥接引物上的通用引物尾U1和U2稍微短于通用引物U1和U2。另外,通用引物U1和U2含有共同的短序列(即6-10个碱基)以避免引物二聚体形成。在使靶标独立扩增最小化的任选变型中,桥接PCR引物含有当引物与其靶标杂交时被切割尿嘧啶碱基的RNA酶-H释放的尿嘧啶碱基和封闭的3’末端。这些条件产生以下序列的通用扩增产物:
通用引物U1–UniTaq Ai–上游靶标-突变-下游靶标–UniTaq Bi’–通用引物U2’
步骤3:打开管,稀释10至100倍并等份分配至Taqman孔中,每孔含有以下引物:形式F1-UniTaq Bi–Q-UniTaq Ai(其中F1是被淬灭剂Q淬灭的荧光染料)的通用引物U2和UniTaq特异性引物。在这些条件下,以下次级延伸产物将形成:
F1-UniTaq Bi–Q-UniTaq Ai–上游靶标-突变-下游靶标–UniTaqBi’–通用引物U2’
这将形成发夹,使得UniTaq Bi序列与UniTaq Bi’序列配对。当通用引物U2结合至通用引物U2’序列时,聚合酶的5’ 3’核酸外切酶活性消化UniTaq Bi序列,释放F1荧光染料。
在上面的变型中,配对的下游LDR引物部分,即5’相同的突变碱基或包含相同突变碱基的侧翼,然后靶特异性序列--UniTaq BI’–不包括与上游引物序列部分的游离3’末端互补的靶特异性序列的8-10个碱基。相反,偶联探针含有内部序列,该内部序列不抑制核酸外切酶消化,但在核酸外切酶消化步骤之后和聚合酶扩增步骤之前可被切割。此类序列的实例是使用可随后用尿嘧啶DNA糖基化酶切割的尿嘧啶碱基。在此实施例中,在连接步骤后,加入核酸外切酶I和核酸外切酶III以消化所有未连接的偶联探针和所有给定的靶DNA。在加热灭活核酸外切酶后,加入尿嘧啶DNA糖基化酶以使随后PCR扩增所用的连接探针线性化。
在上述两种变型中,可合成不具有一个或两个通用引物U1和/或通用引物U2’序列或其部分的偶联探针,因此在通用PCR扩增步骤期间需要一个或两个桥接引物(通用引物U1-UniTaq Ai和通用引物U2-UniTaq Bi)。
检测突变、插入和缺失的可能的引物设计的概述示于图2。对于单碱基突变,3’末端的第2或第3位(未示出)的“Z”碱基表示:dG、dA、肌苷、硝基吲哚、硝基吡咯或其它核苷酸类似物,并且当突变探针与野生型靶标杂交时通过减少3’末端的稳定性将降低不适当的错误连接(图2A)。对于插入或缺失,在第2或第3位使用提高稳定性的配对的碱基或核苷酸类似物(诸如2-氨基-dA或5-丙炔基-dC)可改善此类移码突变与野生型序列的区别。对于插入,当探针与野生型DNA杂交时,在下游探针的所需的断裂的磷酸酯键的下游使用一个或多个硫代磷酸基团将防止被聚合酶的5’-3’核酸外切酶活性不适当切割,从而减少野生型靶标上的假阳性连接(图2B)。同样,对于缺失,当探针与野生型DNA杂交时,在下游探针的所需的断裂的磷酸酯键的上游使用一个或多个硫代磷酸基团将防止被聚合酶的5’-3’核酸外切酶活性不适当切割,从而减少野生型靶标上的假阳性连接(图2C)。上游和下游探针的标签也可通过其未连接的末端进行偶联,如图8所示。
荧光标记:考虑可分别检测5个荧光信号(F1、F2、F3、F4和F5)的仪器。作为实例,在结肠癌的情况下,最高频率突变将发现于K-ras、p53、APC和BRAF。可用单荧光信号(F1、F2、F3、F4)检测这四个基因中的突变。如果范围为1000FU,那么使用标记和未标记的UniTaq引物比率加入引物,使得这些基因的突变靶标上LDR产物的扩增在平稳期产生约300FU。对于对照,将校准F5以得到对于1:1,000稀释定量对照的100FU的信号,并得到对于在野生型对照上连接突变探针的另外的300FU(应没有背景信号或得到低背景信号)。
对于如下所示结肠癌中通常突变的其它基因(或p53基因中的甚至更低丰度突变),可使用下述编码系统:相同UniTaq的5’末端等摩尔量的两种荧光信号,用未标记的引物滴定,使得两个荧光信号在平稳期为100FU。如果荧光信号为F1、F2、F3、F4,则能够使用单荧光信号检测4个基因中的突变,并使用荧光信号的组合检测6个基因中的突变:
假设有第二个突变,则与一个顶端基因的突变组合。由于顶端基因总会生成更多独立信号,这容易区分它是否与其它荧光信号重叠。例如,如果荧光信号是F1 100FU和F2 400FU,则它将对应于基因2和基因5中的突变。
如果有来自较不常见的突变基因(基因5-基因10)的两个突变,则结果将作为荧光信号即F1 200FU、F2 100FU、F4 100FU的重叠或所有4个荧光信号而出现。如果荧光信号的比率是2:1:1,则非常直接地计算出2个突变:在上述实例中,F1 200FU、F2 100FU、F4 100FU将对应于基因5和基因7中的突变。
对于所有4个荧光信号,突变浓度精确地一致(即所有4个荧光信号将在相同时间开始出现或产生相同的Ct)是非常不可能的。如果两个荧光信号在检测突变方面彼此联系,则它们的动力学应是相同的。例如,如果F1 100FU和F2 100FU的Ct为31并且F3 100FU和F4 100FU的Ct为31.8,则该图案将对应于基因5和基因10中的突变。
最后,3个或4个荧光信号的出现表明至少两个基因包含突变,表明很可能cDNA反映肿瘤或癌症的迹象,而不依赖于突变的本质。
在替代方法中,使用Zipcode阵列、Zipcode Taqman或传统Taqman检测可进行高灵敏性的突变检测。此方法将使用偶联至配对的下游第二寡核苷酸连接探针(5’相同的突变碱基、然后靶特异性序列--通用引物U2’-–和与上游引物序列的游离3’末端互补的8-10个碱基的靶特异性序列)的上游第一寡核苷酸连接探针(5’Zipcode Zi、然后倒数第二位碱基具有C:A或G:T错配的靶特异性序列,并且突变碱基在3’末端)。通用PCR扩增后,形成以下扩增产物:
通用引物U1–Zipcode Zi–上游靶标-突变-下游靶标–通用引物U2’
对于使用包含捕获寡核苷酸集合的通用(zipcode)阵列的检测,通用引物U2将含有报告标记,即荧光基团,而通用引物U1将含有5’磷酸,并且扩增将继续进行总共约30至40个循环。这将允许使用λ核酸外切酶消化第二条链,产生单链并适于在通用(zipcode)阵列上杂交的荧光标记产物。
在替代方法中,使用分开的Zipcode序列可进行非常高灵敏性突变检测。此方法将使用偶联至配对的下游第二寡核苷酸探针(5’相同的突变碱基、然后靶特异性序列--短序列Ci’的互补序列、第二半zipcode序列Ai-通用引物U2’–和与上游引物序列的游离3’末端互补的8-10个碱基的靶特异性序列)的上游第一寡核苷酸探针(5’通用引物U1、第一半zipcode序列Ai和短序列Ci、然后倒数第二位碱基具有C:A或G:T错配的靶特异性序列,并且突变碱基在3’末端)。通用PCR扩增后,扩增产物将具有以下序列:
通用引物U1–第1个1/2Zipcode Zi–短Ci–上游靶标-突变-下游靶标–短Ci’–第2个1/2Zipcode Zi-通用引物U2’
当短Ci与短Ci’瞬时杂交时,第1个1/2Zipcode Zi序列邻近第2个1/2Zipcode Zi,并且当在zipcode阵列上两个Zipcode Zi一半序列与全长Zipcode Zi’序列杂交时瞬时杂交可以是稳定的。
此外,上述构建体可包括如下所表示的通用引物内的独特序列(0至10个碱基)(独特的Ai、独特的Bi)。
通用引物U1–独特的Ai-第1个1/2Zipcode Zi–短Ci–上游靶标-突变-下游靶标–短Ci’–第2个1/2Zipcode Zi-独特的Bi–通用引物U2’
对于使用Zipcode Taqman测定的检测,在通用扩增8-20个循环后,将样本稀释10至100倍,并将加入独特引物,该引物与每种产物的独特的Ai独特的Bi序列重叠。Taqman探针将结合全长zipcode序列。
预测性实施例2-高灵敏性突变标记(以1%至0.01%存在);已知基因中的罕见突变
肿瘤抑制基因诸如p53和APC中的突变变化太多而不能使用等位基因特异性PCR方法覆盖。因此,方法转换为对蛋白质的全部外显子进行深度测序。当给定的DNA有限时,重要的是获得不同区域的相同扩增以确保覆盖的普遍深度相同。
方法概述:方法是如实复制存在的所有外显子,并在测序前对所有的进行有限的相同扩增。尽管其它人使用类似于冷冻PCR的技巧富集野生型片段,但此类方法对目标基因内的SNP是易感的。此外,此类富集方法不可能相同地扩增片段,无论如何会留下深度测序的任务。
取决于待评价的DNA的质量,使上游连接探针与下游约100至160bp的下游连接探针配对来拷贝所有外显子。如果DNA来自血清,其中来源于肿瘤的DNA的平均大小为约160个碱基,则使用用于交替管的重叠的平铺策略来使用较小尺寸的扩增子。
此处的挑战是避免聚合酶以它破坏下游探针的方式来延伸上游引物而无需连接步骤。这通过将硫代磷酸酯键掺入5’磷酸末端(其将通过聚合酶的5’ 3’核酸酶活性被释放)的第2和第3位来完成。当它延伸一个碱基太多(其将不可能连接至下游探针)时,为使那些碱基的聚合酶位移最小化,连接接合处的靶碱基将优选在3’侧富含AT和在5’侧富含GC。
替代方法是使用下游连接探针,所述探针在与所需的5’磷酸相邻定位含有脱嘌呤(AP)位点。使用热稳定的EndoIII(诸如Tma EndoIII)释放此5’磷酸。当探针结合至靶标时,此酶切割AP位点留下5’磷酸。核酸内切酶还切割单链探针,但效率较低,因此与模板杂交的探针将为优选的底物。当使用热稳定的EndoIII时,使用的PCR聚合酶将缺少5’ 3’核酸外切酶活性。
高灵敏性检测突变标记(以1%至0.01%存在)的详细方案;已知基因中的罕见突变(图14):
步骤1:在上游第一寡核苷酸探针(5’通用引物U1、然后3’末端的靶特异性序列)、下游第二寡核苷酸探针(5’的20个碱基的额外突出,其中8-10个碱基与通用引物U2’序列的3’末端互补、然后是靶特异性序列--通用引物U2’)、热启动的Taq聚合酶、dNTP和热稳定的连接酶(优选来自菌株AK16D)的存在下,使来自血清的基因组DNA变性(94℃,5分钟以活化热启动的Taq聚合酶)。下游探针比上游探针更长并具有更高的Tm值,这样当从94℃冷却时,在70℃暂停一次以使下游探针首先退火,然后当反应冷却至65℃或60℃时,使上游探针杂交并使聚合酶拷贝两个探针之间的DNA,从下游探针切割5’尾,然后热稳定的连接酶将切口密封。下游探针在5’磷酸末端(其将被聚合酶的5’ 3’核酸酶活性释放)的第2和第3位具有硫代磷酸酯键,使得聚合酶不消化下游探针而是脱落以允许连接步骤。
步骤2:加入通用引物U1、通用引物U2。在55℃孵育以使未连接的下游探针与和3’末端互补的8-10个碱基自我形成发夹,其延伸以产生更长的发夹,使这些下游探针难以进一步扩增。然后,使PCR扩增进行8-20个循环。理想地,在连接复合探针上的通用引物尾U1和U2稍微短于通用引物U1和U2。这允许以较低循环温度(即55℃退火),然后以较高的循环温度(即65℃退火)进行初始通用扩增,使得通用引物U1和U2优先结合至所需产物(与结合至不正确产物的复合连接探针相比)。另外,通用引物U1和U2含有共同的短序列(即6-10个碱基)以避免引物二聚体形成。然后,使扩增进行8-20个循环。这些通用PCR条件扩增以下序列的片段:
通用引物U1-约100-160个碱基靶标-(可能包含突变)-通用引物U2’
步骤3:然后使用下一代测序技术能鉴定基因中突变的存在。
在过量的野生型DNA存在下当处理含有突变的低数量的给定的DNA分子时,有可能聚合酶发生错误。因此将有必要证实在多次读取中两条链上存在突变。
替代的步骤1将使用缺乏5’ 3’核酸外切酶活性(优选含有3’5’校正活性)的热稳定的聚合酶,在上游连接探针(5’通用引物U1、然后3’末端的靶特异性序列、3’末端的第1和第2位具有硫代磷酸酯键,以避免当使用具有3’->5’校正活性的聚合酶时消化探针)、下游连接探针(5’的20个碱基的额外突出,其中8-10个碱基与通用引物U2’序列的3’末端互补、脱嘌呤位点、然后靶特异性序列--通用引物U2’)、dNTP、热稳定的EndoIII(优选Tma EndoIII)和热稳定的连接酶(优选来自菌株AK16D)的存在下。下游探针比上游探针更长并具有更高的Tm值,这样当从94℃冷却时在70℃暂停一次以使下游探针首先退火,并用EndoIII切割以释放5’末端,然后当反应冷却至65℃或60℃时,使上游探针杂交并使聚合酶拷贝两个引物之间的DNA,然后热稳定的连接酶将切口密封。
预测性实施例3-分离自胞外体的肿瘤特异性mRNA的精确定量
在过去的几年中,几个小组已经获得肿瘤特异性胞外体,其含有对原始肿瘤细胞具有特异性的miRNA和mRNA。对这些标记的精确定量可有助于鉴定早期癌症以及提供用于预测结果的标记。传统上,使用反转录-实时PCR测定mRNA表达的相对水平。
方法概述:此处的方法是计算十几个左右基因的mRNA的多少拷贝存在于样本中。初始反转录步骤制备mRNA的所有所需区域的DNA拷贝,然后可使用每个转录物的一个或两个连接探针对以精确定量每个目标转录物的量。
此处再次的挑战是避免聚合酶以它破坏下游探针的方式来延伸上游探针而无需连接步骤。这通过将硫代磷酸酯键掺入5’磷酸末端(其将通过聚合酶的5’3’核酸酶活性被释放)的第2和第3位来完成。当它延伸一个碱基太多(其将不可能连接至下游引物)时,为使那些碱基的聚合酶位移最小化,连接接合处的靶碱基将优选在3’侧富含AT和在5’侧富含GC。
不像用于鉴定罕见突变的情况,不需要确定两个连接探针之间的任何序列信息。因此,它们可被设计成直接彼此相邻。在此替代方法中,下游第二寡核苷酸探针在与所需5’磷酸相邻的位置包含脱嘌呤(AP)位点。使用热稳定的EndoIII(诸如Tma EndoIII)释放此5’磷酸。当探针结合至靶标时,此酶切割AP位点留下5’磷酸。核酸内切酶还切割单链探针,但效率较低,因此与模板杂交的探针将为优选的底物。当使用热稳定的EndoIII以释放5’磷酸时,由于在接合处连接酶可立即将切口密封,因此在此步骤中不需要加入热稳定的聚合酶。
尽管编写此方法用于编码mRNA,但它对于定量非编码RNA也同样有效。此类非编码RNA也可存在于来源于肿瘤的胞外体。
分离自胞外体的肿瘤特异性mRNA定量的详细方法:
步骤1:使用逆转录酶(RT)和基因特异性引物或非特异性dN-dT10引发以产生转录物3’末端的cDNA拷贝。在37℃孵育1小时,然后在94℃下加热5分钟灭活RT,并同时活化热启动的Taq聚合酶。反应还包含上游第一寡核苷酸探针(5’通用引物U1、然后UniTaqAi、然后3’末端的靶基因特异性序列)、下游第二寡核苷酸探针(5’的20个碱基的额外突出,其中8-10个碱基与通用引物U2’序列的3’末端互补、然后靶基因特异性序列--UniTaq Bi′--通用引物U2’)、热启动的Taq聚合酶和热稳定的连接酶(优选来自菌株AK16D)。下游探针在5’磷酸末端(其将被聚合酶的5’ 3’核酸酶活性释放)的第2和第3位具有硫代磷酸酯键,使得聚合酶不消化下游探针而是脱落以允许连接步骤。
步骤2:加入通用引物U1、通用引物U2。在55℃孵育以使未连接的下游探针与和3’末端互补的8-10个碱基自我形成发夹,其延伸以产生更长的发夹,使这些下游探针难以进一步扩增。理想地,在复合连接探针上的通用引物尾U1和U2稍微短于通用引物U1和U2。这允许以较低循环温度(即55℃退火),然后以较高的循环温度(即65℃退火)进行初始通用扩增,使得通用引物U1和U2优先结合至所需产物(与结合至不正确产物的复合LDR引物相比)。另外,通用引物U1和U2含有共同的短序列(即6-10个碱基)以避免引物二聚体形成。然后,使扩增进行8-20个循环。这些通用扩增条件扩增以下序列的产物:
通用引物U1–UniTaq Ai–基因靶区域–UniTaq Bi’–通用引物U2’
步骤3:打开管,稀释10至100倍并等份分配至Taqman孔中,每孔含有以下引物:形式F1-UniTaq Bi–Q-UniTaq Ai(其中F1是被淬灭剂Q淬灭的荧光染料)的通用引物U2和UniTaq特异性引物。在这些条件下,将形成以下产物:
F1-UniTaq Bi–Q-UniTaq Ai–基因靶区域–UniTaq Bi’–通用引物U2’
这将形成发夹,使得UniTaq Bi序列与UniTaq Bi’序列配对。当通用引物U2结合至通用引物U2’序列时,聚合酶的5’ 3’核酸外切酶活性消化UniTaq Bi序列,释放F1荧光染料。
在替代方法中,使用Zipcode阵列、Zipcode Taqman或传统Taqman检测可进行肿瘤特异性mRNA的精确定量。此方法将使用上游第一寡核苷酸探针(5’通用引物U1、然后Zipcode Zi、然后3’末端的靶基因特异性序列)和下游第二寡核苷酸探针(5’的20个碱基的额外突出,其中8-10个碱基与通用引物U2’序列的3’末端互补、然后靶基因特异性序列--通用引物U2’)。通用PCR扩增后,形成以下序列的产物:
通用引物U1–Zipcode Zi–基因靶区域–通用引物U2’
对于使用包含捕获寡核苷酸的集合的通用(zipcode)阵列的检测,通用引物U2将含有报告标记,即荧光基团,而通用引物U1将含有5’磷酸,并且扩增将继续进行总共约30至40个循环。这将允许使用λ核酸外切酶消化第二条链,产生单链并适于在通用(zipcode)阵列上杂交的荧光标记产物。
此外,上述构建体可包括通用引物内的独特序列(0至10个碱基)(独特的Ai、独特的Bi),以扩增以下序列的片段:
通用引物U1–独特Ai-Zipcode Zi–基因靶区域-独特的Bi–通用引物U2’
对于使用Zipcode Taqman测定的检测,在通用扩增8-20个循环后,将样本稀释10至100倍,并将加入独特引物,该引物与每种产物的独特的Ai独特的Bi序列重叠。Taqman探针将为zipcode序列。
在替代方法中,使用分开的Zipcode序列可进行肿瘤特异性mRNA的精确定量。此方法将使用上游第一寡核苷酸探针(5’通用引物U1、第一半zipcode序列Ai和短序列Ci、然后3’末端的靶基因特异性序列)和下游第二寡核苷酸探针(5’的20个碱基的额外突出,其中8-10个碱基与通用引物U2’序列的3’末端互补、然后靶基因特异性序列–短序列Ci’的互补序列、第二半zipcode序列Ai-通用引物U2’)。通用PCR扩增后,这些条件扩增以下序列的片段:
通用引物U1–第1个1/2Zipcode Zi–短Ci–基因靶区域–短Ci’–第2个1/2Zipcode Zi-通用引物U2’
当短Ci与短Ci’瞬时杂交时,第1个1/2Zipcode Zi序列邻近第2个1/2Zipcode Zi,并且当在zipcode阵列上两个Zipcode Zi一半序列与全长Zipcode Zi’序列杂交时瞬时杂交可以是稳定的。
此外,上述构建体可包括如下所表示的通用引物内的独特序列(0至10个碱基)(独特的Ai、独特的Bi)。
通用引物U1–独特的Ai-第1个1/2Zipcode Zi–短Ci–基因靶区域–短Ci’–第2个1/2Zipcode Zi-独特的Bi–通用引物U2’
对于使用Zipcode Taqman测定的检测,在通用扩增8-20个循环后,将样本稀释10至100倍,并将加入独特引物,该引物与每种产物的独特的Ai独特的Bi序列重叠。Taqman探针将结合全长zipcode序列。
由于靶序列之间的每个接合序列是独特的,所以使用下一代测序也可鉴定和定量初始通用扩增的产物。在这些条件下,LDR探针可以彼此直接相邻杂交,或在切割下游引物的5’末端以释放5’磷酸之前,可选地使聚合酶填充在两个引物之间的序列。
可包括“低水平”看家基因作为对照。或者,可比较预测表达/拷贝数增加的基因与预测表达/拷贝数降低的那些基因的Ct值。
以上步骤1的替代方案将使用热稳定的EndoIII(优选TmaEndoIII),在上游第一寡核苷酸探针(5’通用引物U1、然后3’末端的靶特异性序列)、下游第二寡核苷酸探针(5’的20个碱基的额外突出,其中8-10个碱基与通用引物U2’序列的3’末端互补、脱嘌呤位点、然后靶特异性序列--通用引物U2’)、dNTP和热稳定的连接酶(优选来自菌株AK16D)的存在下。下游探针比上游探针更长并具有更高的Tm值,这样当从94℃冷却时在70℃暂停一次以使下游探针首先退火,并用EndoIII切割以释放5’末端,然后当反应冷却至65℃或60℃时,使上游探针与下游探针释放的5’磷酸直接相邻杂交,然后热稳定的连接酶将切口密封。
预测性实施例4-分离自胞外体或Argonaut蛋白的肿瘤特异性miRNA的精确定量
方法概述:方法和用于mRNA的相同,除了初始miRNA特异性引物具有在低温形成的小发夹,并允许在miRNA靶标上杂交和延伸之外。在适于LDR连接的较高温度下,发夹是单链的并提供另外的碱基,用于使下游LDR引物杂交。使用miRNA特异性引物和小发夹的方法在ABI被开发。
预测性实施例5-分离自循环肿瘤细胞的DNA中肿瘤特异性拷贝变化的精确定量
肿瘤DNA中的拷贝变化可以是结果的强预示。最近几年,已在SNP芯片上进行大部分拷贝数研究,其中生物信息学方法将信号平均在区域中以确定相对拷贝数。对于低数目细胞,数字PCR方法用于获得起始分子的精确计数。
方法概述:通常,拷贝变化发生在DNA的大区域,诸如染色体臂。由于要处理极低数量的肿瘤细胞,通过同时询问给定染色体臂的多个区域并将所得信号相加或平均可以提高精度。同样,在一些肿瘤中扩增特异性基因(即Her2-neu、IGF2),其可以预测结果或指导治疗。
分离自循环肿瘤细胞的DNA中肿瘤特异性拷贝变化的定量的详细方案:
步骤1:在上游第一寡核苷酸探针(5’通用引物U1、然后UniTaqAi、然后3’末端的靶特异性序列)、下游第二寡核苷酸探针(5’的20个碱基的额外突出,其中8-10个碱基与通用引物U2’序列的3’末端互补、然后是靶基因特异性序列--UniTaq Bi’--通用引物U2’)、热启动的Taq聚合酶和热稳定的连接酶(优选来自菌株AK16D)的存在下,使来自血清的基因组DNA变性(94℃,5分钟以活化热启动的Taq聚合酶)。
步骤2:加入热启动的dNTP、通用引物U1、通用引物U2。在55℃孵育以使未连接的下游探针与和3’末端互补的8-10个碱基自我形成发夹,其延伸以产生更长的发夹,使这些下游探针难以进一步扩增。理想地,在复合连接探针上的通用引物尾U1和U2稍微短于通用引物U1和U2。这允许以较低循环温度(即55℃退火),然后以较高的循环温度(即65℃退火)进行初始通用扩增,使得通用引物U1和U2优先结合至所需产物(与结合至不正确产物的复合连接探针相比)。另外,通用引物U1和U2含有共同的短序列(即6-10个碱基)以避免引物二聚体形成。然后,使扩增进行8-20个循环。这些条件扩增以下序列的片段:
通用引物U1–UniTaq Ai–靶区域–UniTaq Bi’–通用引物U2’
步骤3:打开管,稀释10至100倍并等份分配至孔中用于数字PCR,每孔含有以下引物:形式F1-UniTaq Bi–Q-UniTaq Ai(其中F1是被淬灭剂Q淬灭的荧光染料)的通用引物U2和UniTaq特异性引物。每孔含有一组给定的染色体臂或基因区域以及对照区域的连接产物。在这些条件下,在数字PCR后将形成以下产物:
F1-UniTaq Bi–Q-UniTaq Ai–靶区域–UniTaq Bi’–通用引物U2’
这将形成发夹,使得UniTaq Bi序列与UniTaq Bi’序列配对。当通用引物U2结合至通用引物U2’序列时,聚合酶的5’ 3’核酸外切酶活性消化UniTaq Bi序列,释放F1荧光染料。将靶区域的具有荧光信号的总微滴与对照区域的具有荧光信号的总微滴进行对比以确定相对拷贝数。
结肠癌中很少发生拷贝变化的染色体:2、11、16
结肠癌中经常发生拷贝增加的染色体臂:7p、7q、8q、13q、20p、20q
结肠癌中经常发生拷贝减少的染色体臂:1p、4p、4q、8p、14q、17p、18p、18q
8p和18q的减少和不良预后相关。
Her2-Neu扩增表明用赫塞汀(Herceptin)治疗。
IGF2扩增表明用IGFR抑制剂治疗
作为使用数字PCR的替代方案,通过使用下一代测序可定量连接产物。为确保发生在基因组DNA的连接步骤,与预测性实施例2所述的方法类似,连接探针使分开的约10-20个碱基与连接步骤之前用聚合酶填充的缺口杂交。当同时询问许多区域并寻找集中的基因特异性缺失或扩增时可使用此方法。
预测性实施例6-分离自循环肿瘤细胞的DNA中的突变的检测
循环肿瘤细胞提供浓缩含突变DNA的优点,所以不再需要在过量野生型序列中寻找低水平突变。然而,由于存在少量的起始DNA分子,重要的是精确扩增所有区域,并核实突变真实存在。
方法概述:如上述预测性实施例2和3所描述,此处的方法与用于寻找已知的常见点突变或对多个外显子进行测序的方法相同。然而,当处理少量给定的DNA时,聚合酶可能存在错误。因此将有必要证实在多次读取中两条链上存在突变。
由于DNA从一些捕获的肿瘤细胞中获得,所以如果突变存在,则应存在于某些(如果不是大多数)捕获的细胞中。这开启了进行PCR-LDR-PCR(UniTaq)测定的前景。
分离自循环肿瘤细胞的DNA中的突变的检测的详细方案。
步骤1:在含有尿嘧啶的基因特异性引物的存在下,使来自捕获的CTC的基因组DNA变性(94℃5分钟)以活化热启动的Taq聚合酶,并PCR扩增DNA 10-20个循环。通过在99℃孵育30分钟加热灭活Taq聚合酶。在有限的PCR循环后加热灭活聚合酶的目的是避免在与含有UNG和AP核酸内切酶的混合物孵育30分钟期间在连接探针之间错误延伸产物。
步骤2:加入UNG和AP核酸内切酶、热启动Taq聚合酶、新配制的dNTP(如果需要)、通用引物U1、通用引物U2。在37℃孵育30分钟以破坏原始引物、在95℃5分钟使聚合酶活化。反应包含上游第一寡核苷酸探针(5’通用引物U1、然后UniTaq Ai、然后倒数第二位碱基具有C:A或G:T错配的靶特异性序列,并且突变碱基在3’末端)、下游第二寡核苷酸探针(5’的20个碱基的额外突出,其中8-10个碱基与通用引物U2’序列的3’末端互补、然后靶特异性序列--UniTaq Bi’--通用引物U2’)、Taq聚合酶和热稳定的连接酶(优选来自菌株AK16D)。进行一个或多个连接反应,其中退火温度在60℃用于连接(10分钟)和75℃(1分钟)之间循环一次或多次。如果存在突变DNA这将允许连接事件发生。下游探针在5’磷酸末端(其将被聚合酶的5’ 3’核酸酶活性释放)的第2和第3位具有硫代磷酸酯键,使得聚合酶不消化下游探针而是脱落以允许连接步骤。另一种选择是设计下游探针,使其比上游探针更长并具有更高的Tm值,这样当从94℃冷却时在70℃暂停一次以使下游探针首先退火,然后当反应冷却至65℃或60℃时,使上游探针杂交并使聚合酶从下游探针切割5’尾,然后热稳定的连接酶将切口密封。这应限制在下游探针杂交之前上游探针的聚合酶延伸。
步骤3:加入通用引物U1、通用引物U2。在55℃孵育以使未连接的下游探针与和3’末端互补的8-10个碱基自我形成发夹,其延伸以产生更长的发夹,使这些下游探针难以进一步扩增。然后,使PCR扩增进行0-15个循环。理想地,在复合连接探针上的通用引物尾U1和U2稍微短于通用引物U1和U2。这允许以较低循环温度(即55℃退火),然后以较高的循环温度(即65℃退火)进行初始通用扩增,使得通用引物U1和U2优先结合至所需产物(与结合至不正确产物的复合LDR引物相比)。另外,通用引物U1和U2含有共同的短序列(即6-10个碱基)以避免引物二聚体形成。这些条件扩增以下序列的片段:
通用引物U1–UniTaq Ai–上游靶标-突变-下游靶标-–UniTaq Bi’–通用引物U2’
步骤4:打开管,稀释10-100倍并等份分配至Taqman孔中,每孔含有以下引物:形式F1-UniTaq Bi–Q-UniTaq Ai(其中F1是被淬灭剂Q淬灭的荧光染料)的通用引物U2和UniTaq特异性引物。在这些条件下,将形成以下产物:
F1-UniTaq Bi–Q-UniTaq Ai–上游靶标-突变-下游靶标–UniTaqBi’–通用引物U2’
这将形成发夹,使得UniTaq Bi序列与UniTaq Bi’序列配对。当通用引物U2结合至通用引物U2’序列时,聚合酶的5’ 3’核酸外切酶活性消化UniTaq Bi序列,释放F1荧光染料。
在替代方法中,如预测性实施例3所述使用Zipcode阵列、ZipcodeTaqman或传统Taqman检测可进行非常高灵敏性突变检测,产生以下产物:
通用引物U1–Zipcode Zi–上游靶标-突变-下游靶标–通用引物U2’
在替代方法中,如上述预测性实施例3所述使用分开的Zipcode序列可进行高灵敏性突变检测,产生以下产物:
通用引物U1–第1个1/2Zipcode Zi–短Ci–上游靶标-突变-下游靶标–短Ci’–第2个1/2Zipcode Zi-通用引物U2’
由于有PCR产物的初级扩增,可能跳过步骤3。另外,上游LDR探针不需要通用序列,使得步骤2的连接产物为以下形式:
UniTaq Ai–上游靶标-突变-下游靶标–UniTaq Bi’–通用引物U2’
这将仍使步骤4的连接产物为以下形式:
F1-UniTaq Bi–Q-UniTaq Ai–上游靶标-突变-下游靶标–UniTaqBi’–通用引物U2’
此外,如果跳过步骤4的通用引物PCR扩增,在步骤2使用UNG和AP核酸内切酶去除未使用的PCR引物的替代方案是使用热敏磷酸酶(即CIAP)以在步骤1之后和步骤2之前破坏dNTP。在步骤2将不会加入新配制的dNTP,因为步骤3不需要它们。
预测性实施例7-分离自胞外体或循环肿瘤细胞的肿瘤特异性mRNA的精确定量
参见如以上预测性实施例3中描述的方法。当从循环肿瘤细胞中分离mRNA时,其总量可能相当低。因此,对于给定的mRNA转录物可谨慎使用一个以上的连接探针组,并在数字PCR中读数。如以上预测性实施例3中描述的步骤1和2进行步骤1和2,然后:
步骤3:打开管,稀释10至100倍并等份分配至孔中用于数字PCR,每孔含有以下引物:形式F1-UniTaq Bi–Q-UniTaq Ai的通用引物U2和UniTaq特异性引物。(其中F1是被淬灭剂Q淬灭的荧光染料)。每孔含有一组给定的mRNA区域以及对照区域的连接产物。在这些条件下,在数字PCR后将形成以下产物:
F1-UniTaq Bi–Q-UniTaq Ai–靶区域–UniTaq Bi’–通用引物U2’
这将形成发夹,使得UniTaq Bi序列与UniTaq Bi’序列配对。当通用引物U2结合至通用引物U2’序列时,聚合酶的5’ 3’核酸外切酶活性消化UniTaq Bi序列,释放F1荧光染料。将靶区域的具有荧光信号的总微滴与对照区域的具有荧光信号的总微滴进行对比以确定相对的mRNA表达水平。
预测性实施例8-母体血清样本的产前诊断应用
概述:最近的研究已显示在第1、第2和第3个三个月时胎儿DNA在血清中占母体DNA中的百分比分别为约6%、20%和26%。由于如何降解DNA,母体DNA通常约160个碱基并且还与H1组蛋白相关联,而胎儿DNA约140个碱基并且不与组蛋白相关联。根据临床需要和知识将提供最佳护理之处,可开发具有足够灵敏性的测试以在合适的三个月检测胎儿DNA。
通过计算拷贝数的非整倍性(例如,21-三体综合症)。参见以上预测性实施例5的方法。最明智的是使用大量区域以询问染色体21和对照染色体(例如染色体2),以示出胎儿21号染色体数在统计学上高于胎儿对照(例如,染色体2)。通过在每个数字扩增孔中使用内部对照染色体,该方法不依赖于每个循环的精确扩增条件或效率。
替代方法取决于询问单个SNP,并更适用于疾病突变,如下所述。
含有已知基因的常见突变的遗传性疾病(例如镰状细胞贫血病、囊性纤维化)。序列分析容易确定双亲中隐性等位基因的存在。如果在亲本中突变不同,则通过评价来自母体血清的无细胞DNA可能确定是否子代是疾病的复合杂合子。为了获得母体血清中胎儿DNA分析的完整答案,可能需要该测定的两部分。第一是建立疾病基因周围的母体SNP的相位。这可以通过从WBC或中期染色体中分离高分子量DNA并分配至96或384孔板中来实现,以使每孔中少于一个染色体。随后,使用全基因组扩增来确定哪些孔含有染色体,然后对于讨论中的基因来测定母体疾病等位基因的96个相邻SNP的相位。一旦完成,对来自父本的疾病等位基因的存在进行评分(如上述预测性实施例2所述),并且使用数字PCR证实从母本遗传的染色体也包含疾病等位基因。
关键问题是家族得到正确的回答将是如何重要。直接确定是否两个亲本是携带者以及是否突变不同,相对直接确定是否父亲的疾病等位基因存在于胎儿。如果不存在,则胎儿将无疾病或携带者。如果存在,则遗传母本等位基因并获得疾病的可能性是50%。如果总的胎儿DNA试验的错误率是3%,它值得得到错误答案吗?可能更谨慎的是进行羊膜穿刺并直接测试母本等位基因的存在。
因此,推荐如以上预测性实施例2所述仅对基因进行测序并且对父本疾病等位基因进行评分。如果存在或如果父本和母本疾病特异性突变是相同的,那么推荐羊膜穿刺术。
含有已知基因的罕见突变的遗传性疾病。(例如家族性腺瘤性息肉病)。预测性实施例2所述的方法可用于检测这些遗传性疾病突变。
已知基因中已知的或偶然发生的拷贝数的减少或增加引起的遗传性疾病(例如杜氏肌营养不良)。参见以上预测性实施例5的方法。如果母本是携带者,并且已知拷贝减少的区域,这将更容易进行。如果母本不是携带者,可能最佳的是在整个DMD基因的多个紧密间隔的序列使用测序来计算拷贝数。
预测性实施例9-父本试验
概述:基本方法是寻找存在于父本中但不存在于母本中的等位基因的存在。有两种一般方法来达到这一点。可从SNP开始,其中常见的等位基因的频率约为70-75%,以使有约50%的机会母本是主要等位基因的纯合子。从约48个SNP开始,其中约一半(24个)的母本将是常见等位基因的纯合子,并且有50%的机会父本将是次要等位基因的杂合子或纯合子。类似于寻找突变,对母本血液中的次要等位基因的存在进行简单评分,但也将存在的量进行量化仅为了确认它是来自父本的次要等位基因。第二种方法是从频率约50%的等位基因开始,然后有50%的机会母本是一个等位基因的纯合子,然后有75%的机会父本在该位置上将具有另一个等位基因。区别父本的信息量较低,但是更多的位置将提供信息。
检测SNP等位基因标记的详细方案:
步骤1:在2个上游第一寡核苷酸探针(5’通用引物U1、然后UniTaq A1i、然后3’末端的靶特异性序列和SNP1碱基,或通用引物U1,然后UniTaq A2i、然后3’末端的靶特异性序列和SNP2碱基)、下游第二寡核苷酸探针(5’的20个碱基的额外突出,其中8-10个碱基与通用引物U2’序列的3’末端互补、然后靶特异性序列--UniTaq Bi’--通用引物U2’)、Taq聚合酶和热稳定的连接酶(优选来自菌株AK16D)的存在下,使来自血清的基因组DNA变性(94℃1分钟)。进行一个或多个LDR反应,其中退火温度在60℃用于连接(10分钟)和75℃(1分钟)之间循环一次或多次。对于存在的每个SNP这将允许连接事件发生。
步骤2:加入热启动dNTP的通用引物U1、通用引物U2。在55oC(活化dNTP)孵育以使未连接的下游探针与和3’末端互补的8-10个碱基自我形成发夹,其延伸以产生更长的发夹,使这些下游探针难以进一步扩增。然后,使PCR扩增进行8-20个循环。理想地,在复合连接探针上的通用引物尾U1和U2稍微短于通用引物U1和U2。这允许以较低循环温度(即55℃退火),然后以较高的循环温度(即65℃退火)进行初始通用扩增,使得通用引物U1和U2优先结合至所需产物(与结合至不正确产物的复合连接探针相比)。另外,通用引物U1和U2含有共同的短序列(即6-10个碱基)以避免引物二聚体形成。这些条件扩增以下序列的片段:
通用引物U1–UniTaq A1i–上游靶标-SNP1-下游靶标–UniTaqBi’–通用引物U2’
通用引物U1–UniTaq A2i–上游靶标-SNP2-下游靶标–UniTaqBi’–通用引物U2’
步骤3:打开管,稀释10至100倍并等份分配至Taqman孔中,每孔含有以下引物:形式F1-UniTaq Bi–Q-UniTaq A1i和F2-UniTaqBi–Q-UniTaq A2i的通用引物U2和UniTaq特异性引物。(其中F1和F2是被淬灭剂Q淬灭的荧光染料)。在这些条件下,将形成以下产物:
F1-UniTaq Bi–Q-UniTaq A1i–上游靶标-SNP1-下游靶标–UniTaq Bi’–通用引物U2’
F2-UniTaq Bi–Q-UniTaq A2i–上游靶标-SNP2-下游靶标–UniTaq Bi’–通用引物U2’
这将形成发夹,使得UniTaq Bi序列与UniTaq Bi’序列配对。当通用引物U2结合至通用引物U2’序列时,聚合酶的5’ 3’核酸外切酶活性消化UniTaq Bi序列,如果SNP1起始存在时释放F1荧光染料,如果SNP2起始存在时释放F2荧光染料。
在替代方法中,使用Zipcode阵列、Zipcode Taqman或传统Taqman检测(参见预测性实施例1)可进行SNP检测以形成以下产物。
通用引物U1–Zipcode A1i–上游靶标-SNP1-下游靶标–通用引物U2’
通用引物U1–Zipcode A2i–上游靶标-SNP2-下游靶标–通用引物U2’
在替代方法中,使用分开的Zipcode序列(参见预测性实施例1)可进行SNP检测以形成以下产物:
通用引物U1–第1个1/2Zipcode Zi–短Ci–上游靶标-SNP1-下游靶标–短Ci’–第2个1/2Zipcode Zi-通用引物U2’
通用引物U1–第1个1/2Zipcode Zi–短Ci–上游靶标-SNP2-下游靶标–短Ci’–第2个1/2Zipcode Zi-通用引物U2’
尽管对于说明的目的已经详细描述了本发明,可以理解此类细节仅为此目的,并且在不背离由以下权利要求所限定的本发明的精神和范围,本领域技术人员可以在其中进行变化。
Claims (79)
1.一种用于鉴定样本中一个或多个靶核苷酸序列存在的方法,其包括:
提供可能含有所述一个或多个靶核苷酸序列的样本;
提供一个或多个寡核苷酸探针组,每组包含(a)具有靶特异性部分的第一寡核苷酸探针,和(b)具有靶特异性部分的第二寡核苷酸探针,其中探针组的所述第一和第二寡核苷酸探针被配置为在所述靶核苷酸序列上彼此相邻杂交,在所述第一和第二寡核苷酸探针之间形成接合,并且其中,在探针组中,所述第二寡核苷酸探针的所述靶特异性部分在所述接合处具有与所述第一寡核苷酸探针重叠的相同核苷酸;
在使探针组的第一和第二寡核苷酸探针在相邻位置上以碱基特异性方式与其相应的靶核苷酸序列(如果存在于样本中)杂交有效的条件下,使所述样本和所述一个或多个寡核苷酸探针组接触,其中杂交后,在包含所述重叠的相同核苷酸的接合处所述第二寡核苷酸探针的所述重叠的相同核苷酸形成侧翼;
用具有5’核酸酶活性的酶切割所述第二寡核苷酸探针的所述重叠的相同核苷酸,从而释放在所述第二寡核苷酸探针的5’末端的磷酸;
将所述一个或多个寡核苷酸探针组的第一和第二寡核苷酸探针在所述接合处连接在一起以形成连接的产物序列;
检测所述样本中的所述连接产物序列;和
基于所述检测鉴定所述样本中一个或多个靶核苷酸序列的存在。
2.根据权利要求1所述的方法,其还包括:
在所述接触之前扩增所述样本中的所述靶核苷酸序列。
3.根据权利要求1所述的方法,其中所述检测包括:
对所述样本中的所述连接产物序列进行测序。
4.根据权利要求1所述的方法,其中所述检测包括:
根据大小分离所述连接产物序列。
5.根据权利要求1所述的方法,其中探针组中所述寡核苷酸探针中的一个还包含zip-code部分,其中在相同的杂交条件下所述zip-code部分与其互补的捕获寡核苷酸杂交,所述方法还包括:
提供所述捕获寡核苷酸的集合和
在使每个连接产物序列的所述zip-code部分与所述集合中其互补的捕获寡核苷酸杂交有效的条件下,其具有最小的非特异性杂交并且在相同的杂交条件下,使所述连接产物序列与所述捕获寡核苷酸的集合接触,由此所述检测发生在所述连接产物序列与其互补的捕获寡核苷酸杂交后。
6.根据权利要求5所述的方法,其中所述集合中捕获寡核苷酸的每种类型包含大于16个核苷酸的核苷酸序列,并且不同于所述集合中捕获寡核苷酸的其它类型的核苷酸序列,当彼此比对时,区别至少为25%。
7.根据权利要求5所述的方法,其中所述捕获寡核苷酸的集合被固定在固体载体上。
8.根据权利要求7所述的方法,其中所述固体载体呈选自由以下组成的组的形式:珠粒、载玻片、盘、膜、薄膜、微量滴定板及其组合。
9.根据权利要求7所述的方法,其中所述固体载体包含位置阵列和被固定在所述位置阵列上的所述捕获寡核苷酸的集合。
10.根据权利要求1所述的方法,其中所述探针组的所述第一寡核苷酸探针还包含5’引物特异性部分并且探针组的所述第二寡核苷酸探针还包含3’引物特异性部分,其中每个连接产物序列包含所述5’引物特异性部分、所述靶特异性部分和所述3’引物特异性部分。
11.根据权利要求10所述的方法,其还包括:
提供一个或多个寡核苷酸引物组,每组包含(a)包含与所述连接产物序列的所述5’引物特异性部分相同的核苷酸序列的第一寡核苷酸引物和(b)包含与所述连接产物序列的所述3’引物特异性部分互补的核苷酸序列的第二寡核苷酸引物;
将所述连接产物序列、所述一个或多个寡核苷酸引物组和DNA聚合酶共混以形成聚合酶链式反应混合物;和
使所述聚合酶链式反应混合物经历包括变性处理、杂交处理和延伸处理的一个或多个聚合酶链式反应循环,从而形成初级延伸产物,由此所述检测包括对所述初级延伸产物的检测。
12.根据权利要求11所述的方法,其中引物组的所述第一或第二寡核苷酸引物中的一个包含可检测的标记,由此所述检测包括对标记的初级延伸产物的检测。
13.根据权利要求11所述的方法,其中所述检测包括:
在所述经历后对所述延伸产物进行测序。
14.根据权利要求11所述的方法,其中所述检测包括:
根据大小分离所述连接产物序列。
15.根据权利要求11所述的方法,其中探针组中所述第一和第二寡核苷酸探针中的一个或两个还包含zip-code或其部分,其中在相同杂交条件下所述zip-code与互补的捕获寡核苷酸杂交。
16.根据权利要求15所述的方法,其还包括:
提供捕获寡核苷酸的集合,其中每个捕获寡核苷酸与互补的zipcode部分杂交,并且包含彼此分离的淬灭剂分子和可检测的标记;
向所述聚合酶链式反应混合物中加入所述捕获寡核苷酸的集合;和
在所述经历期间,使所述集合的捕获寡核苷酸与其互补的所述连接产物序列或其互补序列的zip-code部分杂交,由此从所述杂交的捕获寡核苷酸切割所述淬灭剂分子和/或所述可检测的标记,由此所述检测包括对所述切割的可检测标记的检测。
17.根据权利要求15所述的方法,其还包括:
提供捕获寡核苷酸的集合,其中每个捕获寡核苷酸与互补的zipcode部分杂交,并且包含彼此分离的淬灭剂分子和可检测的标记;
提供能够与所述初级延伸产物杂交的一个或多个次级寡核苷酸引物组;
将所述捕获寡核苷酸的集合、所述一个或多个次级寡核苷酸引物组、所述初级延伸产物和聚合酶共混,以形成次级聚合酶链式反应混合物;
使所述次级聚合酶链式反应混合物经历包括变性处理、杂交处理和延伸处理的一个或多个聚合酶链式反应循环,其中在杂交处理中所述集合的捕获寡核苷酸与其互补的所述初级延伸产物的zip-code部分杂交并且所述次级寡核苷酸引物与所述初级延伸产物杂交,其中在延伸处理中所述杂交的引物延伸从而形成次级延伸产物;和
在所述延伸处理期间,从所述杂交的捕获寡核苷酸切割所述淬灭剂分子和/或所述可检测的标记,由此所述检测包括对所述切割的可检测标记的检测。
18.根据权利要求16或17所述的方法,其中所述集合中捕获寡核苷酸的每种类型包含不同于所述集合中捕获寡核苷酸的其它类型的核苷酸序列的核苷酸序列,当彼此比对时,区别至少为25%。
19.根据权利要求15所述的方法,其还包括:
提供所述捕获寡核苷酸的集合,其中所述集合的每个捕获寡核苷酸与互补的zip-code部分杂交和
在使每个初级延伸产物的所述zip-code部分与所述集合中其互补的捕获寡核苷酸杂交有效的条件下,其具有最小的非特异性杂交并且在相同的杂交条件下,在所述经历后使所述初级延伸产物与所述捕获寡核苷酸的集合接触,由此所述检测发生在所述初级延伸产物与其互补的捕获寡核苷酸杂交后。
20.根据权利要求19所述的方法,其中所述集合中捕获寡核苷酸的每种类型包含大于16个核苷酸并且不同于所述集合中捕获寡核苷酸的其它类型的核苷酸序列的核苷酸序列,当彼此比对时,区别至少为25%。
21.根据权利要求19所述的方法,其中所述一个或多个寡核苷酸引物组的所述寡核苷酸引物中的一个还包含可检测的标记从而形成标记的初级延伸产物。
22.根据权利要求19所述的方法,其中所述捕获寡核苷酸的集合被固定在固体载体上。
23.根据权利要求23所述的方法,其中所述固体载体呈选自由以下组成的组的形式:珠粒、载玻片、盘、膜、薄膜、微量滴定板及其组合。
24.根据权利要求23所述的方法,其中所述固体载体包含位置阵列,其中所述捕获寡核苷酸的集合被固定在所述位置阵列上。
25.根据权利要求15所述的方法,其中所述第一寡核苷酸探针还包含所述zip-code的第一部分和所述第一zip-code部分3’的第一标签部分,并且所述第二寡核苷酸探针还包含所述zip-code的第二部分和所述第二zip-code部分5’的第二标签部分,其中当寡核苷酸探针组的所述第一和第二zip-code部分相邻定位时形成全长zip-code,并且其中寡核苷酸探针组的所述第一和第二标签部分彼此互补,所述方法还包括:
提供与所述第一zip-code部分的一部分和所述第二zip-code部分的一部分互补的捕获寡核苷酸的集合,其中所述集合的每个捕获寡核苷酸包含彼此分离的淬灭剂分子和可检测的标记;
使所述初级延伸产物和所述捕获寡核苷酸的集合经历对以下有效的条件:(i)特定的初级延伸产物的所述第一和第二标签部分相互杂交以与相邻定位的第一和第二zip-code部分形成发夹式延伸产物和(ii)所述集合中的所述捕获寡核苷酸与互补的相邻定位的所述发夹式延伸产物的第一和第二zip-code部分杂交;和
从杂交的捕获寡核苷酸切割所述淬灭剂分子或所述可检测的标记,由此所述检测包括对与所述淬灭剂分子分离的所述可检测标记的检测。
26.根据权利要求15所述的方法,其中(i)所述第一寡核苷酸探针还包含对于每个不同的寡核苷酸探针组而不同的第二引物特异性部分、所述zip-code的第一部分和所述第一zip-code部分3’的第一标签部分,和(ii)所述第二寡核苷酸探针还包含所述zip-code的第二部分和所述第二zip-code部分5’的第二标签部分,其中当寡核苷酸探针组的所述第一和第二zip-code部分相邻定位时形成全长zip-code,并且其中寡核苷酸探针组的所述第一和第二标签部分彼此互补,所述方法还包括:
提供一个或多个次级引物组,每组包含(i)具有(a)与所述第一寡核苷酸探针的所述第二引物特异性部分相同的核苷酸序列、(b)与相邻定位的寡核苷酸探针组的第一和第二zip-code部分互补的捕获寡核苷酸部分、(c)被所述捕获寡核苷酸部分分离的淬灭剂分子和可检测的标记的第一次级寡核苷酸引物,和(ii)具有与所述第二初级寡核苷酸引物相同的核苷酸序列的第二次级寡核苷酸引物;
将所述初级延伸产物、所述一个或多个次级寡核苷酸引物组和聚合酶共混以形成第二聚合酶链式反应混合物;
使所述第二聚合酶链式反应混合物经历一个或多个聚合酶链式反应循环从而形成次级延伸产物;
使所述次级延伸产物经历对以下有效的条件:特定的次级延伸产物的所述第一和第二标签部分相互杂交以与相邻定位的第一和第二zip-code部分形成发夹式次级延伸产物和(ii)特定的发夹式次级延伸产物的所述捕获寡核苷酸部分与互补的相邻定位的所述发夹式延伸产物的第一和第二zip-code部分杂交;和
从所述发夹式次级延伸产物的所述捕获寡核苷酸部分切割所述淬灭剂分子或所述可检测的标记,由此所述检测包括对与所述淬灭剂分子分离的所述可检测标记的检测。
27.根据权利要求11所述的方法,其中所述第二寡核苷酸探针还包含unitaq检测部分,从而形成包含所述5’引物特异性部分、所述靶特异性部分、所述unitaq检测部分和所述3’引物特异性部分的连接产物序列,所述方法还包括:
提供一个或多个unitaq检测探针,其中每个unitaq检测探针与互补的unitaq检测部分杂交并且包含彼此分离的淬灭剂分子和可检测的标记;
向所述聚合酶链式反应混合物中加入所述一个或多个unitaq检测探针;和
在所述经历期间,使所述一个或多个unitaq检测探针与所述连接产物序列或其互补序列上的互补的unitaq检测部分杂交,由此在所述延伸处理期间从所述一个或多个unitaq检测探针切割所述淬灭剂分子和所述可检测的标记,由此所述检测包括对所述切割的可检测标记的检测。
28.根据权利要求11所述的方法,其中所述第二寡核苷酸探针还包含unitaq检测部分,由此形成的所述初级延伸产物序列包含所述5’引物特异性部分、所述靶特异性部分、所述unitaq检测部分和所述3’引物特异性部分,所述方法还包括:
提供一个或多个unitaq检测探针,其中每个unitaq检测探针与互补的unitaq检测部分杂交并且包含彼此分离的淬灭剂分子和可检测的标记;
提供能够与所述初级延伸产物杂交的一个或多个次级寡核苷酸引物组;
将所述一个或多个unitaq检测探针、所述一个或多个次级寡核苷酸引物组、所述初级延伸产物和聚合酶共混,以形成次级聚合酶链式反应混合物;
使所述次级聚合酶链式反应混合物经历包括变性处理、杂交处理和延伸处理的一个或多个聚合酶链式反应循环,其中在杂交处理中所述一个或多个unitaq检测探针与其互补的所述延伸产物的unitaq检测部分杂交并且所述次级寡核苷酸引物与所述初级延伸产物杂交,其中在延伸处理中所述杂交的引物延伸从而形成次级延伸产物;
在所述延伸处理期间,从所述一个或多个杂交的unitaq检测探针切割所述淬灭剂分子和/或所述可检测的标记,由此所述检测包括对所述切割的可检测标记的检测。
29.根据权利要求27或28所述的方法,其中所述unitaq检测探针通过另外的部分偶联至所述次级寡核苷酸引物的5’末端。
30.根据权利要求11所述的方法,其中(i)所述第二寡核苷酸探针还包含unitaq检测部分,从而形成包含所述5’引物特异性部分、所述靶特异性部分、所述unitaq检测部分和所述3’引物特异性部分的连接产物序列,(ii)所述第一寡核苷酸引物还包含与所述连接产物序列的所述unitaq检测部分互补的unitaq检测探针,以及被所述unitaq检测探针分离的淬灭剂分子和可检测的标记,和(iii)在所述经历期间形成的所述初级延伸产物包含所述可检测的标记、所述unitaq检测探针、所述淬灭剂分子、所述5’引物特异性部分、所述靶特异性部分、所述unitaq检测部分和所述3’引物特异性部分,所述方法还包括:
使初级延伸产物经历对特定延伸产物的所述unitaq检测探针与其互补的unitaq检测部分杂交有效的条件,从而形成发夹式延伸产物;和
从所述发夹式延伸产物的所述unitaq检测探针切割所述淬灭剂分子或所述可检测的标记,由此所述检测包括对所述标记的发夹式延伸产物或所述切割的可检测标记的检测。
31.根据权利要求1所述的方法,其中所述一个或多个寡核苷酸探针组的所述第一和第二寡核苷酸探针还分别包含第一和第二标签部分,其中寡核苷酸探针组的所述第一和第二标签部分彼此互补,并且其中每个不同寡核苷酸探针组的所述第一和第二标签部分具有不同的核苷酸序列,所述方法还包括:
在所述连接后使所述样本经历对特定连接产物序列的所述第一和第二标签部分杂交有效的条件,从而形成发夹式连接产物序列;和
在所述经历后从所述样本中除去未连接的寡核苷酸探针。
32.根据权利要求31所述的方法,其中所述探针组的所述第一寡核苷酸探针还包含5’引物特异性部分并且探针组的所述第二寡核苷酸探针还包含3’引物特异性部分,所述方法还包括:
提供一个或多个寡核苷酸引物组,每组包含(a)包含与所述连接产物序列的所述5’引物特异性部分相同的核苷酸序列的第一寡核苷酸引物和(b)包含与所述连接产物序列的所述3’引物特异性部分互补的核苷酸序列的第二寡核苷酸引物;
在所述消化后将所述连接产物序列、所述一个或多个寡核苷酸引物组和DNA聚合酶共混以形成聚合酶链式反应混合物;和
使所述聚合酶链式反应混合物经历一个或多个聚合酶链式反应循环,从而形成初级延伸产物,由此所述检测包括对所述初级延伸产物的检测。
33.根据权利要求32所述的方法,其中引物组的所述第一或第二寡核苷酸引物中的一个包含可检测的标记,由此所述检测包括对标记的初级延伸产物的检测。
34.根据权利要求11所述的方法,其还包括:
在所述经历之前从包含连接产物序列的所述样本中封闭未连接的寡核苷酸探针,以防止未连接的寡核苷酸探针延伸或扩增。
35.根据权利要求34所述的方法,其中所述第二寡核苷酸探针还包含所述接合处所述重叠的相同核苷酸5’的核苷酸侧翼,其中所述核苷酸侧翼的至少一部分与所述第二寡核苷酸探针的所述3’引物特异性部分的至少一部分互补,并且其中在不存在连接时所述核苷酸侧翼的互补区与未连接的第二寡核苷酸探针的所述3’引物特异性部分相互杂交以形成发夹式第二寡核苷酸探针。
36.根据权利要求35所述的方法,其还包括:
在所述经历期间,使所述发夹式第二寡核苷酸探针的所述3’引物特异性部分延伸以形成不能与所述第二寡核苷酸引物杂交的延伸的发夹式第二寡核苷酸探针。
37.根据权利要求11所述的方法,其中所述第一寡核苷酸探针的所述5’末端偶联至所述第二寡核苷酸探针的所述3’末端,从而形成偶联的寡核苷酸探针,所述偶联的寡核苷酸探针形成包含所述5’引物特异性部分、所述靶特异性部分和所述3’引物特异性部分的环状连接产物序列。
38.根据权利要求37所述的方法,其中所述偶联探针在所述部分内还包含聚合酶阻断剂,其中所述第一寡核苷酸探针的所述5’末端偶联至所述第二寡核苷酸探针的所述3’末端,并且其中在所述经历期间形成非环状延伸产物。
39.根据权利要求37所述的方法,其中所述偶联探针在所述部分内还包含可切割的核苷酸或核苷酸类似物,其中所述第一寡核苷酸探针的所述5’末端偶联至所述第二寡核苷酸探针的所述3’末端,并且其中在所述经历期间形成非环状延伸产物。
40.根据权利要求37所述的方法,其中所述偶联寡核苷酸探针还包含与所述3’靶特异性部分互补的片段,其中在不存在连接时所述偶联探针的所述3’靶特异性部分与所述互补片段杂交以形成发夹式偶联寡核苷酸探针。
41.根据权利要求40所述的方法,其还包括:
在所述经历期间,使所述偶联的发夹式寡核苷酸探针的所述3’靶特异性部分延伸,以形成阻止所述第二寡核苷酸引物与其互补序列结合的延伸的偶联的发夹式寡核苷酸探针。
42.根据权利要求1所述的方法,其中所述一个或多个寡核苷酸探针组还包含具有靶特异性靶部分的第三寡核苷酸探针,其中探针组的所述第二和第三寡核苷酸探针被配置为在所述靶核苷酸序列上彼此相邻杂交,在所述接触期间在所述第二和第三寡核苷酸探针之间形成接合,并且其中,在探针组中,所述第三寡核苷酸探针的所述靶特异性部分在所述接合处具有与探针组中所述第二寡核苷酸探针重叠的相同核苷酸,其在所述切割期间被除去以使在所述接合处在所述第二和第三寡核苷酸探针之间连接以形成包含探针组的所述第一、第二和第三寡核苷酸探针的连接产物序列。
43.根据权利要求1所述的方法,其中所述样本选自由以下组成的组:组织、细胞、血清、血液、血浆、羊水、唾液、尿液、体液、身体分泌物、身体排泄物、无细胞循环核酸、妊娠女性的无细胞循环胎儿核酸、循环肿瘤细胞、肿瘤、肿瘤活检和胞外体。
44.根据权利要求1所述的方法,其中所述一个或多个靶核苷酸序列是包含一个或多个核苷酸碱基插入、缺失、易位、突变和/或损坏的核苷酸碱基的低丰度核酸分子。
45.根据权利要求44所述的方法,其中具有一个或多个核苷酸碱基插入、缺失、易位、突变和/或损坏的核苷酸碱基的所述低丰度核酸分子从具有与所述低丰度核酸分子类似的核苷酸序列但没有所述一个或多个核苷酸碱基插入、缺失、易位、突变和/或损坏的碱基的所述样本中的过量核酸分子中被鉴定和区别。
46.根据权利要求45所述的方法,其中所述其中所述第一寡核苷酸探针在碱基位置包含错配核苷酸或核苷酸类似物,所述碱基位置是来自所述第二和第一寡核苷酸探针之间的所述接合的两个或三个碱基。
47.根据权利要求45所述的方法,其中所述第二寡核苷酸探针包含所述第二和第一寡核苷酸探针之间的所述接合处的所述重叠的相同核苷酸的3’的一个或多个硫代磷酸修饰的核苷酸碱基。
48.根据权利要求45所述的方法,其中所述第二寡核苷酸探针包含所述第二和第一寡核苷酸探针之间的所述接合处的所述重叠的核苷酸的5’的一个或多个硫代磷酸修饰的核苷酸碱基。
49.根据权利要求45所述的方法,其中对所述一个或多个低丰度靶核苷酸序列的拷贝数相对于具有与所述低丰度核酸分子类似的核苷酸序列的所述样本中的过量核酸分子的拷贝数进行定量。
50.根据权利要求1所述的方法,其中对所述一个或多个靶核苷酸序列进行定量。
51.根据权利要求50所述的方法,其中对所述一个或多个靶核苷酸序列相对于所述样本中的其它核苷酸序列进行定量。
52.根据权利要求50所述的方法,其中对一个或多个靶核苷酸序列的所述相对拷贝数进行定量。
53.根据权利要求1所述的方法,其还包括:
基于所述鉴定诊断或预后疾病状态。
54.根据权利要求1所述的方法,其还包括:
基于所述鉴定区分基因型或疾病易感性。
55.一种用于鉴定样本中一个或多个靶核苷酸序列存在的方法,所述方法包括:
提供可能含有所述靶核苷酸序列的样本;
提供一个或多个寡核苷酸探针组,每组包含(a)具有靶特异性部分的第一寡核苷酸探针,和(b)具有5’非靶特异性侧翼部分和含有一个或多个硫代磷酸修饰的核苷酸碱基的靶特异性部分的第二寡核苷酸探针,其中探针组的所述第一和第二寡核苷酸探针被配置为在所述靶核苷酸序列上杂交;
在使探针组的第一和第二寡核苷酸探针以碱基特异性方式与其相应的靶核苷酸序列(如果存在于样本中)杂交的有效条件下,使所述样本和所述一个或多个寡核苷酸探针组接触;
用具有5’核酸酶活性的酶切割所述第二寡核苷酸探针的所述5’非靶特异性侧翼部分,从而释放所述第二寡核苷酸的所述靶特异性部分的第一核苷酸碱基的5’磷酸;
将所述一个或多个寡核苷酸探针组的第一和第二寡核苷酸探针连接在一起以形成含有所述靶特异性部分和所述一个或多个硫代磷酸修饰的核苷酸碱基的连接产物序列;
检测所述样本中的连接产物序列;和
基于所述检测鉴定所述样本中所述一个或多个靶核苷酸序列的存在。
56.根据权利要求55所述的方法,其还包括:
在所述切割之前用聚合酶延伸所述第一寡核苷酸探针以与所述第二寡核苷酸探针形成接合,其中所述第二寡核苷酸探针的所述靶特异性部分在所述接合处具有与所述延伸的第一寡核苷酸探针重叠的相同核苷酸。
57.根据权利要求55所述的方法,其中所述第一或第二寡核苷酸探针中的至少一个还包含可检测的标记,其中所述检测包括对所述标记的连接产物序列的检测。
58.根据权利要求55所述的方法,其中所述检测包括:
对所述样本中的所述连接产物序列进行测序。
59.根据权利要求55所述的方法,其中所述检测包括:
根据大小分离所述连接产物序列。
60.根据权利要求55所述的方法,其中所述第二寡核苷酸探针的所述一个或多个硫代磷酸修饰的核苷酸碱基中的至少一个是所述第一靶特异性核苷酸碱基的3’。
61.根据权利要求55所述的方法,其中探针组的所述第一寡核苷酸探针还包含5’引物特异性部分并且探针组的所述第二寡核苷酸探针还包含3’引物特异性部分,其中每个连接产物序列包含所述5’引物特异性部分、具有一个或多个硫代磷酸的所述靶特异性部分和所述3’引物特异性部分。
62.根据权利要求61所述的方法,其还包括:
提供一个或多个寡核苷酸引物组,每组包含(a)包含与所述连接产物序列的所述5’引物特异性部分相同的核苷酸序列的第一寡核苷酸引物和(b)包含与所述连接产物序列的所述3’引物特异性部分互补的核苷酸序列的第二寡核苷酸引物;
将所述连接产物序列、所述一个或多个寡核苷酸引物组和聚合酶共混以形成聚合酶链式反应混合物;和
使所述聚合酶链式反应混合物经历一个或多个聚合酶链式反应循环,从而形成延伸产物;由此所述检测包括对所述延伸产物的检测。
63.根据权利要求62所述的方法,其还包括:
在所述经历之前从包含连接产物序列的所述样本中封闭未连接的寡核苷酸探针,以防止未连接的探针延伸或扩增。
64.根据权利要求62所述的方法,其中所述第二寡核苷酸探针的所述5’核苷酸侧翼的至少一部分与所述第二寡核苷酸探针的所述3’引物特异性部分的至少一部分互补,并且其中,在不存在连接时,未连接的第二寡核苷酸探针的所述5’核苷酸侧翼的互补区与所述3’引物特异性部分相互杂交以形成发夹式的第二寡核苷酸探针。
65.根据权利要求64所述的方法,其还包括:
在所述经历期间,使所述发夹式第二寡核苷酸探针的所述3’引物特异性部分延伸,以形成阻止所述第二寡核苷酸引物与其互补序列结合的延伸的发夹式第二寡核苷酸探针。
66.根据权利要求62所述的方法,其中所述检测包括:
在所述经历后对所述延伸产物进行测序。
67.根据权利要求55所述的方法,其中所述样本选自由以下组成的组:组织、细胞、血清、血液、血浆、羊水、唾液、尿液、体液、身体分泌物、身体排泄物、无细胞循环核酸、妊娠女性的无细胞循环胎儿核酸、循环肿瘤细胞、肿瘤、肿瘤活检和胞外体。
68.根据权利要求55所述的方法,其中所述一个或多个靶核苷酸序列是包含一个或多个核苷酸碱基插入、缺失、易位、突变和/或损坏的核苷酸碱基的低丰度核酸分子。
69.根据权利要求68所述的方法,其中具有一个或多个核苷酸碱基插入、缺失、易位、突变和/或损坏的核苷酸碱基的所述低丰度核酸分子从具有与所述低丰度核酸分子类似的核苷酸序列但没有所述一个或多个核苷酸碱基插入、缺失、易位、突变和/或损坏的碱基的所述样本中的过量核酸分子中被鉴定和区别。
70.根据权利要求55所述的方法,其中对所述一个或多个靶核苷酸序列进行定量。
71.根据权利要求70所述的方法,其中对所述一个或多个靶核苷酸序列相对于所述样本中的其它核苷酸序列进行定量。
72.根据权利要求70所述的方法,其中对所述一个或多个靶核苷酸序列的相对拷贝数进行定量。
73.根据权利要求69所述的方法,其中对所述一个或多个低丰度靶核苷酸序列的拷贝数相对于具有与所述低丰度核酸分子类似的核苷酸序列的所述样本中的过量核酸分子的拷贝数进行定量。
74.根据权利要求55所述的方法,所述方法进一步包括:
基于所述鉴定诊断或预后疾病状态。
75.根据权利要求55所述的方法,所述方法进一步包括:
基于所述鉴定区分基因型或疾病易感性。
76.一种用于鉴定样本中一个或多个靶核苷酸序列存在的方法,其包括:
提供可能含有所述一个或多个靶核苷酸序列的样本;
提供一个或多个寡核苷酸探针组,每组包含(i)包含5’引物特异性部分、zip-code部分的第一部分、所述第一zip-code部分的3’第一标签部分和靶特异性部分的第一寡核苷酸探针,和(ii)包含3’引物特异性部分、所述zip-code部分的第二部分、所述第二zip-code部分的5’第二标签部分和靶特异性部分的第二寡核苷酸探针,其中当寡核苷酸探针组的所述第一和第二zip-code部分相邻定位时形成全长zip-code,并且其中寡核苷酸探针组的所述第一和第二标签部分彼此互补;
在使探针组的第一和第二寡核苷酸探针以碱基特异性方式与其相应的靶核苷酸序列(如果存在于样本中)杂交的有效条件下,使所述样本和所述一个或多个寡核苷酸探针组接触;
将所述一个或多个探针组的第一和第二寡核苷酸探针连接在一起以形成连接产物序列;
提供一个或多个寡核苷酸引物组,每组包含(a)包含与所述连接产物序列的所述5’引物特异性部分相同的核苷酸序列的第一寡核苷酸引物和(b)包含与所述连接产物序列的所述3’引物特异性部分互补的核苷酸序列的第二寡核苷酸引物;
将所述连接产物序列、所述一个或多个寡核苷酸引物组和DNA聚合酶共混以形成聚合酶链式反应混合物;
使所述聚合酶链式反应混合物经历一个或多个聚合酶链式反应循环,从而形成初级延伸产物;
提供与所述第一zip-code部分的一部分和所述第二zip-code部分的一部分互补的捕获寡核苷酸的集合,其中所述集合的每个捕获寡核苷酸包含彼此分离的淬灭剂分子和可检测的标记;
使所述初级延伸产物和所述捕获寡核苷酸的集合经历对以下有效的条件:(i)特定的初级延伸产物的所述第一和第二标签部分相互杂交以与相邻定位的第一和第二zip-code部分形成发夹式延伸产物和(ii)所述集合的所述捕获寡核苷酸与互补的相邻定位的所述发夹式延伸产物的第一和第二zip-code部分杂交;
从所述杂交的捕获寡核苷酸切割所述淬灭剂分子或所述可检测的标记;
检测与所述淬灭剂分子分离的所述可检测的标记;和
基于所述检测鉴定所述样本中所述一个或多个靶核苷酸序列的存在
77.一种用于鉴定样本中一个或多个靶核苷酸序列存在的方法,其包括:
提供可能含有所述一个或多个靶核苷酸序列的样本;
提供一个或多个寡核苷酸探针组,每组包含(i)包含5’引物特异性部分、zip-code部分的第一部分、所述第一zip-code部分的3’第一标签部分和靶特异性部分的第一寡核苷酸探针,和(ii)包含3’引物特异性部分、所述zip-code部分的第二部分、所述第二zip-code部分的5’第二标签部分和靶特异性部分的第二寡核苷酸探针,其中当寡核苷酸探针组的所述第一和第二zip-code部分相邻定位时形成全长zip-code,并且其中寡核苷酸探针组的所述第一和第二标签部分彼此互补;
在使探针组的第一和第二寡核苷酸探针以碱基特异性方式与其相应的靶核苷酸序列(如果存在于样本中)杂交的有效条件下,使所述样本和所述一个或多个寡核苷酸探针组接触;
将所述一个或多个探针组的第一和第二寡核苷酸探针连接在一起以形成连接产物序列;
提供一个或多个寡核苷酸引物组,每组包含(i)具有(a)与所述第一寡核苷酸探针的所述第二引物特异性部分相同的核苷酸序列、(b)与相邻定位的寡核苷酸探针组的第一和第二zip-code部分互补的捕获寡核苷酸部分、(c)被所述捕获寡核苷酸部分分离的淬灭剂分子和可检测的标记的第一寡核苷酸引物,(ii)包含与所述连接产物序列的所述3’引物特异性部分互补的核苷酸序列的第二寡核苷酸引物;
将所述连接产物序列、所述一个或多个寡核苷酸引物组和DNA聚合酶共混以形成聚合酶链式反应混合物;
使所述聚合酶链式反应混合物经历一个或多个聚合酶链式反应循环,从而形成初级延伸产物;
使所述初级延伸产物经历对以下有效的条件:特定的初级延伸产物的所述第一和第二标签部分相互杂交以与相邻定位的第一和第二zip-code部分形成发夹式初级延伸产物和(ii)特定的发夹式初级延伸产物的所述捕获寡核苷酸部分与互补的相邻定位的所述发夹式延伸产物的第一和第二zip-code部分杂交;
从所述发夹式初级延伸产物的捕获寡核苷酸部分切割所述淬灭剂分子或所述可检测的标记;
检测与所述淬灭剂分子分离的所述可检测的标记;和
基于所述检测鉴定所述样本中所述一个或多个靶核苷酸序列的存在
78.一种用于鉴定样本中一个或多个靶核苷酸序列的存在的试剂盒,其包括:
具有5’核酸酶活性的酶;
连接酶;和
一个或多个寡核苷酸探针组,每组包含(a)具有靶特异性部分的第一寡核苷酸探针,和(b)具有靶特异性部分的第二寡核苷酸探针,其中探针组的所述第一和第二寡核苷酸探针被配置为在所述靶核苷酸序列上彼此相邻杂交,在所述第一和第二寡核苷酸探针之间形成接合,并且其中,在探针组中,所述第二寡核苷酸探针的所述靶特异性部分在所述接合处具有与所述第一寡核苷酸探针重叠的相同核苷酸。
79.一种用于鉴定样本中一个或多个靶核苷酸序列的存在的试剂盒,其包括:
具有5’核酸酶活性的酶;
连接酶;和
一个或多个寡核苷酸探针组,每组包含(a)具有靶特异性部分的第一寡核苷酸探针,和(b)具有5’非靶特异性侧翼部分和含有一个或多个硫代磷酸修饰的核苷酸碱基的靶特异性部分的第二寡核苷酸探针,其中探针组的所述第一和第二寡核苷酸探针被配置为在所述靶核苷酸序列上杂交。
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261598343P | 2012-02-14 | 2012-02-14 | |
US61/598,343 | 2012-02-14 | ||
US201261605057P | 2012-02-29 | 2012-02-29 | |
US61/605,057 | 2012-02-29 | ||
US201261644405P | 2012-05-08 | 2012-05-08 | |
US61/644,405 | 2012-05-08 | ||
PCT/US2013/026180 WO2013123220A1 (en) | 2012-02-14 | 2013-02-14 | Method for relative quantification of nucleic acid sequence, expression, or copy changes, using combined nuclease, ligation, and polymerase reactions |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104204228A true CN104204228A (zh) | 2014-12-10 |
Family
ID=48984705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380018363.1A Pending CN104204228A (zh) | 2012-02-14 | 2013-02-14 | 使用组合的核酸酶、连接和聚合酶反应用于核酸序列的相对定量、表达或拷贝变化的方法 |
Country Status (10)
Country | Link |
---|---|
US (4) | US9598728B2 (zh) |
EP (1) | EP2814986B1 (zh) |
JP (2) | JP2015508655A (zh) |
CN (1) | CN104204228A (zh) |
AU (2) | AU2013221480B2 (zh) |
CA (1) | CA2863257C (zh) |
ES (1) | ES2655509T3 (zh) |
IL (1) | IL233908A0 (zh) |
SG (1) | SG11201404899VA (zh) |
WO (1) | WO2013123220A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107532207A (zh) * | 2015-04-10 | 2018-01-02 | 空间转录公司 | 生物样本的空间区别、多重核酸分析 |
CN108456716A (zh) * | 2017-02-19 | 2018-08-28 | 南京科维思生物科技股份有限公司 | 用于检测靶基因突变体变异的方法、组合物和试剂盒 |
CN108795930A (zh) * | 2018-07-09 | 2018-11-13 | 博奥生物集团有限公司 | 一种用于低丰度dna突变的富集技术及其应用 |
CN109337887A (zh) * | 2018-10-24 | 2019-02-15 | 中国医药集团总公司四川抗菌素工业研究所 | 一种Nucyep酶的编码基因、重组表达载体、重组工程菌及其制备方法和应用 |
CN114645081A (zh) * | 2020-12-17 | 2022-06-21 | 厦门大学 | 一种检测基因元件的方法和试剂盒 |
CN114672543A (zh) * | 2022-04-06 | 2022-06-28 | 中国药科大学 | 一种高特异核酸多重可视化检测的方法 |
CN115312121A (zh) * | 2022-09-29 | 2022-11-08 | 北京齐碳科技有限公司 | 靶基因位点检测方法、装置、介质及程序产品 |
Families Citing this family (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9424392B2 (en) | 2005-11-26 | 2016-08-23 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US11111544B2 (en) | 2005-07-29 | 2021-09-07 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US11111543B2 (en) | 2005-07-29 | 2021-09-07 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
KR101866401B1 (ko) | 2010-04-05 | 2018-06-11 | 프로그노시스 바이오사이언스, 인코포레이티드 | 공간적으로 엔코딩된 생물학적 검정 |
US10787701B2 (en) | 2010-04-05 | 2020-09-29 | Prognosys Biosciences, Inc. | Spatially encoded biological assays |
US20190300945A1 (en) | 2010-04-05 | 2019-10-03 | Prognosys Biosciences, Inc. | Spatially Encoded Biological Assays |
US11939634B2 (en) | 2010-05-18 | 2024-03-26 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20190010543A1 (en) | 2010-05-18 | 2019-01-10 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US11322224B2 (en) | 2010-05-18 | 2022-05-03 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US11332785B2 (en) | 2010-05-18 | 2022-05-17 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US11408031B2 (en) | 2010-05-18 | 2022-08-09 | Natera, Inc. | Methods for non-invasive prenatal paternity testing |
US10316362B2 (en) | 2010-05-18 | 2019-06-11 | Natera, Inc. | Methods for simultaneous amplification of target loci |
EP2572003A4 (en) | 2010-05-18 | 2016-01-13 | Natera Inc | METHOD FOR NONINVASIVE PRANATAL PLOIDIE ASSIGNMENT |
US11326208B2 (en) | 2010-05-18 | 2022-05-10 | Natera, Inc. | Methods for nested PCR amplification of cell-free DNA |
US9677118B2 (en) | 2014-04-21 | 2017-06-13 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US11339429B2 (en) | 2010-05-18 | 2022-05-24 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US11332793B2 (en) | 2010-05-18 | 2022-05-17 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US11203786B2 (en) | 2010-08-06 | 2021-12-21 | Ariosa Diagnostics, Inc. | Detection of target nucleic acids using hybridization |
BR112013020220B1 (pt) | 2011-02-09 | 2020-03-17 | Natera, Inc. | Método para determinar o estado de ploidia de um cromossomo em um feto em gestação |
GB201106254D0 (en) | 2011-04-13 | 2011-05-25 | Frisen Jonas | Method and product |
US20140100126A1 (en) | 2012-08-17 | 2014-04-10 | Natera, Inc. | Method for Non-Invasive Prenatal Testing Using Parental Mosaicism Data |
EP2909337B1 (en) | 2012-10-17 | 2019-01-09 | Spatial Transcriptomics AB | Methods and product for optimising localised or spatial detection of gene expression in a tissue sample |
LT3013983T (lt) | 2013-06-25 | 2023-05-10 | Prognosys Biosciences, Inc. | Erdviniai koduoti biologiniai tyrimai, naudojant mikrofluidinį įrenginį |
WO2015026873A1 (en) | 2013-08-19 | 2015-02-26 | Singular Bio, Inc. | Assays for single molecule detection and use thereof |
US10221447B2 (en) | 2014-04-01 | 2019-03-05 | Cornell University | Detection of DNA methylation using combined nuclease ligation reactions |
AU2015249846B2 (en) | 2014-04-21 | 2021-07-22 | Natera, Inc. | Detecting mutations and ploidy in chromosomal segments |
EP3149195B1 (en) | 2014-06-02 | 2018-12-05 | Base4 Innovation Ltd | Nucleotide polymorphism detection method |
AU2015296602B2 (en) * | 2014-08-01 | 2021-09-16 | F. Hoffmann-La Roche Ag | Detection of target nucleic acids using hybridization |
US10683534B2 (en) | 2015-01-27 | 2020-06-16 | BioSpyder Technologies, Inc. | Ligation assays in liquid phase |
US11091810B2 (en) * | 2015-01-27 | 2021-08-17 | BioSpyder Technologies, Inc. | Focal gene expression profiling of stained FFPE tissues with spatial correlation to morphology |
US9856521B2 (en) * | 2015-01-27 | 2018-01-02 | BioSpyder Technologies, Inc. | Ligation assays in liquid phase |
JP6871160B2 (ja) | 2014-10-08 | 2021-05-12 | コーネル・ユニバーシティーCornell University | 核酸の発現、スプライス変異体、転座、コピー数、またはメチル化変化を識別及び定量化するための方法 |
US11094398B2 (en) | 2014-10-10 | 2021-08-17 | Life Technologies Corporation | Methods for calculating corrected amplicon coverages |
EP3209798B1 (en) * | 2014-10-23 | 2022-07-27 | Ricardo Mancebo | Reagents and methods for isothermal chain reaction |
CN113528623A (zh) * | 2015-02-18 | 2021-10-22 | 卓异生物公司 | 用于单分子检测的测定及其应用 |
CN104845967B (zh) | 2015-04-15 | 2020-12-11 | 苏州新海生物科技股份有限公司 | 寡聚核苷酸片段及使用其的选择性扩增目标核酸序列变异体的方法及应用 |
EP4428863A2 (en) | 2015-05-11 | 2024-09-11 | Natera, Inc. | Methods and compositions for determining ploidy |
US11485996B2 (en) | 2016-10-04 | 2022-11-01 | Natera, Inc. | Methods for characterizing copy number variation using proximity-litigation sequencing |
US10011870B2 (en) | 2016-12-07 | 2018-07-03 | Natera, Inc. | Compositions and methods for identifying nucleic acid molecules |
WO2019118926A1 (en) | 2017-12-14 | 2019-06-20 | Tai Diagnostics, Inc. | Assessing graft suitability for transplantation |
US11639928B2 (en) | 2018-02-22 | 2023-05-02 | 10X Genomics, Inc. | Methods and systems for characterizing analytes from individual cells or cell populations |
EP3781714A1 (en) | 2018-04-14 | 2021-02-24 | Natera, Inc. | Methods for cancer detection and monitoring by means of personalized detection of circulating tumor dna |
WO2019222716A1 (en) * | 2018-05-17 | 2019-11-21 | University Of Washington | Systems and methods for ligation |
US11525159B2 (en) | 2018-07-03 | 2022-12-13 | Natera, Inc. | Methods for detection of donor-derived cell-free DNA |
US11519033B2 (en) | 2018-08-28 | 2022-12-06 | 10X Genomics, Inc. | Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample |
US20220064630A1 (en) | 2018-12-10 | 2022-03-03 | 10X Genomics, Inc. | Resolving spatial arrays using deconvolution |
US11649485B2 (en) | 2019-01-06 | 2023-05-16 | 10X Genomics, Inc. | Generating capture probes for spatial analysis |
US11926867B2 (en) | 2019-01-06 | 2024-03-12 | 10X Genomics, Inc. | Generating capture probes for spatial analysis |
SG11202112246UA (en) * | 2019-05-03 | 2021-12-30 | Univ Cornell | Markers for identifying and quantifying of nucleic acid sequence mutation, expression, splice variant, translocation, copy number, or methylation changes |
WO2020243579A1 (en) | 2019-05-30 | 2020-12-03 | 10X Genomics, Inc. | Methods of detecting spatial heterogeneity of a biological sample |
WO2021092433A2 (en) | 2019-11-08 | 2021-05-14 | 10X Genomics, Inc. | Enhancing specificity of analyte binding |
US20210190770A1 (en) | 2019-12-23 | 2021-06-24 | 10X Genomics, Inc. | Compositions and methods for using fixed biological samples in partition-based assays |
ES2982420T3 (es) * | 2019-12-23 | 2024-10-16 | 10X Genomics Inc | Métodos para el análisis espacial mediante el uso de la ligazón con plantilla de ARN |
US11732299B2 (en) | 2020-01-21 | 2023-08-22 | 10X Genomics, Inc. | Spatial assays with perturbed cells |
US11702693B2 (en) | 2020-01-21 | 2023-07-18 | 10X Genomics, Inc. | Methods for printing cells and generating arrays of barcoded cells |
US12076701B2 (en) | 2020-01-31 | 2024-09-03 | 10X Genomics, Inc. | Capturing oligonucleotides in spatial transcriptomics |
US12110541B2 (en) | 2020-02-03 | 2024-10-08 | 10X Genomics, Inc. | Methods for preparing high-resolution spatial arrays |
US11898205B2 (en) | 2020-02-03 | 2024-02-13 | 10X Genomics, Inc. | Increasing capture efficiency of spatial assays |
US11732300B2 (en) | 2020-02-05 | 2023-08-22 | 10X Genomics, Inc. | Increasing efficiency of spatial analysis in a biological sample |
US11891654B2 (en) | 2020-02-24 | 2024-02-06 | 10X Genomics, Inc. | Methods of making gene expression libraries |
CN115916999A (zh) | 2020-04-22 | 2023-04-04 | 10X基因组学有限公司 | 用于使用靶向rna耗竭进行空间分析的方法 |
AU2021275906A1 (en) | 2020-05-22 | 2022-12-22 | 10X Genomics, Inc. | Spatial analysis to detect sequence variants |
EP4153775B1 (en) | 2020-05-22 | 2024-07-24 | 10X Genomics, Inc. | Simultaneous spatio-temporal measurement of gene expression and cellular activity |
WO2021242834A1 (en) | 2020-05-26 | 2021-12-02 | 10X Genomics, Inc. | Method for resetting an array |
US12031177B1 (en) | 2020-06-04 | 2024-07-09 | 10X Genomics, Inc. | Methods of enhancing spatial resolution of transcripts |
EP4421186A3 (en) | 2020-06-08 | 2024-09-18 | 10X Genomics, Inc. | Methods of determining a surgical margin and methods of use thereof |
EP4446430A2 (en) | 2020-06-10 | 2024-10-16 | 10X Genomics, Inc. | Methods for determining a location of an analyte in a biological sample |
WO2021263111A1 (en) | 2020-06-25 | 2021-12-30 | 10X Genomics, Inc. | Spatial analysis of dna methylation |
US11981960B1 (en) | 2020-07-06 | 2024-05-14 | 10X Genomics, Inc. | Spatial analysis utilizing degradable hydrogels |
US11761038B1 (en) | 2020-07-06 | 2023-09-19 | 10X Genomics, Inc. | Methods for identifying a location of an RNA in a biological sample |
US11981958B1 (en) | 2020-08-20 | 2024-05-14 | 10X Genomics, Inc. | Methods for spatial analysis using DNA capture |
US11926822B1 (en) | 2020-09-23 | 2024-03-12 | 10X Genomics, Inc. | Three-dimensional spatial analysis |
US11827935B1 (en) | 2020-11-19 | 2023-11-28 | 10X Genomics, Inc. | Methods for spatial analysis using rolling circle amplification and detection probes |
US20230257801A1 (en) * | 2020-11-23 | 2023-08-17 | Pleno, Inc. | Encoded Dual-Probe Endonuclease Assays |
EP4121555A1 (en) | 2020-12-21 | 2023-01-25 | 10X Genomics, Inc. | Methods, compositions, and systems for capturing probes and/or barcodes |
JPWO2022138736A1 (zh) * | 2020-12-25 | 2022-06-30 | ||
EP4298244A1 (en) | 2021-02-23 | 2024-01-03 | 10X Genomics, Inc. | Probe-based analysis of nucleic acids and proteins |
WO2022256503A1 (en) | 2021-06-03 | 2022-12-08 | 10X Genomics, Inc. | Methods, compositions, kits, and systems for enhancing analyte capture for spatial analysis |
WO2023034489A1 (en) | 2021-09-01 | 2023-03-09 | 10X Genomics, Inc. | Methods, compositions, and kits for blocking a capture probe on a spatial array |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020137036A1 (en) * | 1999-10-29 | 2002-09-26 | Sorge Joseph A. | Methods for detection of a target nucleic acid by capture |
US20050142543A1 (en) * | 2000-04-14 | 2005-06-30 | Francis Barany | Method of designing addressable array for detection of nucleic acid sequence differences using ligase detection reaction |
US20050239089A1 (en) * | 2003-06-06 | 2005-10-27 | Johnson Martin D | Mobility cassettes |
US20060234252A1 (en) * | 2004-07-02 | 2006-10-19 | Applera Corporation | Methods and kits for methylation detection |
US20070092880A1 (en) * | 2003-07-16 | 2007-04-26 | Crothers Donald M | Invasive cleavage reaction with electrochemical readout |
US20070275375A1 (en) * | 2003-06-17 | 2007-11-29 | Keygene N.V. | Means and Method for the Detection of Target Nucleotide Sequences Using Ligation Assays With Improved Oligonucleotide Probe Pairs |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5573907A (en) | 1990-01-26 | 1996-11-12 | Abbott Laboratories | Detecting and amplifying target nucleic acids using exonucleolytic activity |
US5854033A (en) * | 1995-11-21 | 1998-12-29 | Yale University | Rolling circle replication reporter systems |
GB9609441D0 (en) | 1996-05-04 | 1996-07-10 | Zeneca Ltd | Process |
US7534568B2 (en) * | 1999-10-29 | 2009-05-19 | Hologic Inc. | Methods for detection of a target nucleic acid by forming a cleavage structure with a cleavage resistant probe |
DE60125243T2 (de) * | 2000-07-03 | 2007-05-31 | Applera Corp., Foster City | Polynukleotid-sequenzassay |
US7309573B2 (en) * | 2000-11-21 | 2007-12-18 | Stratagene California | Methods for detection of a nucleic acid by sequential amplification |
US7153658B2 (en) | 2002-09-19 | 2006-12-26 | Applera Corporation | Methods and compositions for detecting targets |
EP1578952B1 (en) | 2002-12-12 | 2011-11-23 | Nanosphere, Inc. | Direct snp detection with unamplified dna |
ATE399884T1 (de) | 2004-03-24 | 2008-07-15 | Applera Corp | Codierungs- und decodierungsreaktionen zur bestimmung von target-polynukleotiden |
ZA200901742B (en) * | 2006-10-06 | 2010-06-30 | Johnson & Johnson Res Pty Ltd | Moleculor switches and methods for their use |
US20090156412A1 (en) * | 2007-12-17 | 2009-06-18 | Helicos Biosciences Corporation | Surface-capture of target nucleic acids |
US20110136116A1 (en) * | 2008-04-08 | 2011-06-09 | Cornell University | Detection of target nucleic acid sequences using fluorescence resonance energy transfer |
CN102421918B (zh) | 2009-03-12 | 2016-01-20 | 布兰代斯大学 | 用于pcr的试剂和方法 |
US8916349B2 (en) | 2009-11-23 | 2014-12-23 | Becton, Dickinson And Company | Assay method for target nucleic acid by signal amplification using probe hybridization and restriction |
EP2534263B1 (en) * | 2010-02-09 | 2020-08-05 | Unitaq Bio | Methods and compositions for universal detection of nucleic acids |
WO2012054933A2 (en) * | 2010-10-22 | 2012-04-26 | Fluidigm Corporation | Universal probe assay methods |
-
2013
- 2013-02-14 CA CA2863257A patent/CA2863257C/en active Active
- 2013-02-14 AU AU2013221480A patent/AU2013221480B2/en active Active
- 2013-02-14 WO PCT/US2013/026180 patent/WO2013123220A1/en active Application Filing
- 2013-02-14 EP EP13749841.6A patent/EP2814986B1/en active Active
- 2013-02-14 ES ES13749841.6T patent/ES2655509T3/es active Active
- 2013-02-14 JP JP2014557776A patent/JP2015508655A/ja active Pending
- 2013-02-14 US US14/378,268 patent/US9598728B2/en active Active
- 2013-02-14 CN CN201380018363.1A patent/CN104204228A/zh active Pending
- 2013-02-14 SG SG11201404899VA patent/SG11201404899VA/en unknown
-
2014
- 2014-07-31 IL IL233908A patent/IL233908A0/en active IP Right Grant
-
2017
- 2017-02-06 US US15/425,516 patent/US10338062B2/en active Active
- 2017-04-05 JP JP2017075189A patent/JP6479083B2/ja active Active
-
2018
- 2018-11-22 AU AU2018267633A patent/AU2018267633A1/en not_active Abandoned
-
2019
- 2019-05-24 US US16/422,538 patent/US11209424B2/en active Active
-
2021
- 2021-12-16 US US17/553,182 patent/US20220178916A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020137036A1 (en) * | 1999-10-29 | 2002-09-26 | Sorge Joseph A. | Methods for detection of a target nucleic acid by capture |
US20050142543A1 (en) * | 2000-04-14 | 2005-06-30 | Francis Barany | Method of designing addressable array for detection of nucleic acid sequence differences using ligase detection reaction |
US20050239089A1 (en) * | 2003-06-06 | 2005-10-27 | Johnson Martin D | Mobility cassettes |
US20070275375A1 (en) * | 2003-06-17 | 2007-11-29 | Keygene N.V. | Means and Method for the Detection of Target Nucleotide Sequences Using Ligation Assays With Improved Oligonucleotide Probe Pairs |
US20070092880A1 (en) * | 2003-07-16 | 2007-04-26 | Crothers Donald M | Invasive cleavage reaction with electrochemical readout |
US20060234252A1 (en) * | 2004-07-02 | 2006-10-19 | Applera Corporation | Methods and kits for methylation detection |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107532207A (zh) * | 2015-04-10 | 2018-01-02 | 空间转录公司 | 生物样本的空间区别、多重核酸分析 |
CN107532207B (zh) * | 2015-04-10 | 2021-05-07 | 空间转录公司 | 生物样本的空间区别、多重核酸分析 |
CN108456716A (zh) * | 2017-02-19 | 2018-08-28 | 南京科维思生物科技股份有限公司 | 用于检测靶基因突变体变异的方法、组合物和试剂盒 |
CN108795930A (zh) * | 2018-07-09 | 2018-11-13 | 博奥生物集团有限公司 | 一种用于低丰度dna突变的富集技术及其应用 |
CN109337887A (zh) * | 2018-10-24 | 2019-02-15 | 中国医药集团总公司四川抗菌素工业研究所 | 一种Nucyep酶的编码基因、重组表达载体、重组工程菌及其制备方法和应用 |
CN109337887B (zh) * | 2018-10-24 | 2021-04-27 | 成都大学 | 一种Nucyep的编码基因、重组表达载体、重组工程菌及其制备方法和应用 |
CN114645081A (zh) * | 2020-12-17 | 2022-06-21 | 厦门大学 | 一种检测基因元件的方法和试剂盒 |
CN114672543A (zh) * | 2022-04-06 | 2022-06-28 | 中国药科大学 | 一种高特异核酸多重可视化检测的方法 |
CN115312121A (zh) * | 2022-09-29 | 2022-11-08 | 北京齐碳科技有限公司 | 靶基因位点检测方法、装置、介质及程序产品 |
Also Published As
Publication number | Publication date |
---|---|
CA2863257C (en) | 2021-12-14 |
AU2013221480A1 (en) | 2014-08-21 |
JP2017184740A (ja) | 2017-10-12 |
CA2863257A1 (en) | 2013-08-22 |
WO2013123220A1 (en) | 2013-08-22 |
US11209424B2 (en) | 2021-12-28 |
JP6479083B2 (ja) | 2019-03-06 |
EP2814986A4 (en) | 2015-12-09 |
US20150038336A1 (en) | 2015-02-05 |
AU2013221480B2 (en) | 2018-08-23 |
US20190346430A1 (en) | 2019-11-14 |
EP2814986B1 (en) | 2017-10-25 |
US9598728B2 (en) | 2017-03-21 |
US10338062B2 (en) | 2019-07-02 |
US20170212103A1 (en) | 2017-07-27 |
IL233908A0 (en) | 2014-09-30 |
AU2018267633A1 (en) | 2018-12-13 |
US20220178916A1 (en) | 2022-06-09 |
JP2015508655A (ja) | 2015-03-23 |
ES2655509T3 (es) | 2018-02-20 |
SG11201404899VA (en) | 2014-10-30 |
EP2814986A1 (en) | 2014-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104204228A (zh) | 使用组合的核酸酶、连接和聚合酶反应用于核酸序列的相对定量、表达或拷贝变化的方法 | |
JP7209762B2 (ja) | 核酸の発現、スプライス変異体、転座、コピー数、またはメチル化変化を識別及び定量化するための方法 | |
ES2935285T3 (es) | Método para identificación y enumeración de cambios en la secuencia de ácidos nucleicos, expresión, copia, o metilación de ADN, usando reacciones combinadas de nucleasa, ligasa, polimerasa y secuenciación | |
ES2746237T3 (es) | Método para la cuantificación relativa de cambios en la metilación del ADN, usando reacciones combinadas de nucleasa, ligamiento, y polimerasa | |
US20140051585A1 (en) | Methods and compositions for reducing genetic library contamination | |
CN105200097A (zh) | 改进的等位基因特异性扩增 | |
ES2807222T3 (es) | Detección de metilación de ADN usando reacciones combinadas de ligamiento y nucleasa | |
KR20230141826A (ko) | 합성 폴리뉴클레오티드 및 대립유전자를 선택적으로 증폭하기 위한 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20141210 |