CN104150506A - 制备介孔zsm-5沸石的方法 - Google Patents

制备介孔zsm-5沸石的方法 Download PDF

Info

Publication number
CN104150506A
CN104150506A CN201310179956.8A CN201310179956A CN104150506A CN 104150506 A CN104150506 A CN 104150506A CN 201310179956 A CN201310179956 A CN 201310179956A CN 104150506 A CN104150506 A CN 104150506A
Authority
CN
China
Prior art keywords
zeolite
mesoporous zsm
preparation according
glue
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310179956.8A
Other languages
English (en)
Other versions
CN104150506B (zh
Inventor
王德举
郭友娣
王辉
黄琴琴
刘师前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201310179956.8A priority Critical patent/CN104150506B/zh
Publication of CN104150506A publication Critical patent/CN104150506A/zh
Application granted granted Critical
Publication of CN104150506B publication Critical patent/CN104150506B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明涉及一种制备介孔ZSM-5沸石的方法,主要解决现有技术中制备介孔ZSM-5沸石流程复杂,成本较高的技术问题。本发明通过将硅源和铝源以及相应的矿化剂按摩尔配比为XNa2O:YAl2O3:100SiO2:ZH2O进行混合搅拌成胶,再向胶液中添加所需量的沸石晶种和导向剂并混和均匀,然后经过水热晶化制得介孔ZSM-5沸石的方法,较好地解决了该问题,可用于介孔ZSM-5沸石的生产制备中。

Description

制备介孔ZSM-5沸石的方法
技术领域
本发明涉及一种制备介孔ZSM-5沸石的方法。
背景技术
沸石是由硅氧四面体和铝氧四面体通过共价键相互连接构成的微孔结晶硅铝酸盐。沸石不但具有大的比表面和高的水热稳定性,而且骨架结构中的铝氧四面体会导致骨架带负电荷,通过离子交换后和高温焙烧沸石可以转变为固体酸催化剂。因为这些独特的性质,沸石在催化、吸附和离子交换等传统领域中应用广泛,特别在工业催化领域。但是沸石本身的一些缺陷限制了它在更大范围内的应用,如在涉及大分子的催化反应中,尺寸较大的反应分子由于扩散限制难以到达沸石微孔内活性位,从而不能达到预期的催化效果。
近年来具有短的微孔通道和多级孔道结构的沸石成为材料和催化领域的研究热点之一。这类材料可提供较多的外表面活性位,具有较高的晶内扩散速度,可以使反应物分子易于到达催化活性位,并且生成的产物能够很快从孔道扩散出去。因此这类材料在提高催化剂的利用率,增强大分子的转化能力,减少产物的深度反应,以及降低催化剂结焦失活速度等方面都具有更优越的性能。
介孔沸石材料是指以结晶的微孔沸石为基础,其中含有丰富介孔/大孔,有利于大分子的扩散和传质传热。因为介孔沸石是以结晶的微孔沸石为基础,因此具有良好的酸性和水热稳定性;又因为其中含有丰富介孔/大孔,有利于大分子的扩散和传质传热,因此在催化领域是极有应用价值的催化材料。近年来已经发展了多种方法在沸石材料中引入介孔。目前的主要方法主要是通过脱除化学元素(硅、铝)或者使用介观尺寸模板的方法进行制备。
J. C. Groen等(J. C. Groen, L. A. A. Peffer, J. A. Moulijn, et al, Chem. Eur. J., 2005, 11(17): 4983)对ZSM-5在碱性介质中脱硅过程中可以形成介孔,介孔表面积增加,孔体积也相应增大,在实验条件下硅铝比(Si/Al)为25-50的ZSM-5沸石经过脱硅处理可以形成10nm左右的介孔,介孔表面积高达235 m2 g-1
A. Boisen等(A. Boisen, I. Schmidt, A. Carlsson, et al, Chem. Commun., 2003, (8): 958 -959.)以多壁碳纳米管为硬模板制备了介孔ZSM-5沸石,该方法制备的介孔ZSM-5沸石具有6-15nm范围的介孔,这和碳纳米管的直径尺寸相吻合,外表面积120 m2g-1是BET比表面积的三分之一。
选择合适的具有特定结构的超分子模板在合成沸石中也会导致介孔的产生。利用小分子的有机铵和介观的阳离子聚合物双重模板作用,可以合成多级孔道结构的介孔沸石。F. S. Xiao等(F. S. Xiao, L. F. Wang, C. Y. Yin,et al. Angew. Chem. Int. Ed., 2006, 45(19): 3090-3093.)在四丙基氢氧化铵和聚二甲基二烯丙基氯化铵与丙烯酰胺的共聚物的存在下合成了具有介孔结构的ZSM-5沸石。
从上述已有的一些方法来看,脱除化学元素虽然可以形成介孔,但是会造成沸石骨架的破坏或者孔道的部分堵塞,并且流程复杂;对于使用介观尺寸模板制备介孔沸石的方法,不管使用纳米碳黑或介孔碳等硬模板,还是有机大分子等软模板,制备过程相对复杂,模板利用率低,成本较高,仍然需要进一步改进。
发明内容
本发明所要解决的技术问题是现有技术中制备介孔ZSM-5沸石流程复杂,成本较高的技术问题,提出了一种新的介孔ZSM-5沸石的制备方法。该方法制备介孔ZSM-5沸石具有步骤简单,模板剂的使用量低,成本较低的优点。
为解决上述技术问题,本发明采用的技术方案如下:一种制备介孔ZSM-5沸石的方法,以水玻璃、硅溶胶或白碳黑为硅源,铝盐或铝酸盐为铝源,以及无机碱为原料,按摩尔配比为X Na2O:YAl2O3:100 SiO2:Z H2O进行混合搅拌成胶液,其中,X= 2~30,Y= 0~10,Z= 1000~5000,再向胶液中添加沸石晶种和导向剂并混和均匀,在晶化温度为100~240℃,晶化时间为8~240小时下合成,沸石晶种加入量为胶液重量的0.1~5.0 %,导向剂的加入量为胶液重量的1.0~5.0 %。
上述技术方案中,在晶化胶液中添加的沸石晶种优选为纳米Silicalite-1沸石,其晶粒尺寸优选为不大于100 nm,更优选为30~100 nm;在晶化胶液中添加的导向剂优选为选自二元有机胺、含有机硅基团的烷基胺化合物或四烷基铵中的至少一种;二元有机胺优选为选自1,4-丁二胺、1,6-己二胺中的至少一种;含有机硅基团的烷基胺化合物优选为N-三甲氧基硅基丙基-N,N,N-三乙基溴化铵;四烷基铵优选为选自四乙基铵化合物、四丙基铵化合物、四丁基铵化合物中的至少一种;反应晶化温度优选为140~180℃;反应晶化时间优选为8~120小时;沸石晶种加入量优选为胶液重量的 0.5~ 5.0%,导向剂的加入量优选为胶液重量的2.0~ 5.0%。
本发明向晶化胶液中添加纳米做为晶种,Silicalite-1含有大量的沸石初级结构和次级结构单元,在后面的合成过程中作为ZSM-5沸石晶化生长的晶核,诱导沸石生长,同时也会促进形成新的沸石晶核,一方面大大减少了模板剂的用量,另一方面加快晶化速度缩短了晶化时间,取得了较好的技术效果。在此基础上,胶液中添加的导向剂可以促进晶种的定向聚集以及形成的晶核沿着某个方向择优生长,并最终形成具有开放介孔的ZSM-5沸石,制备材料的外比表面可达167.8m2g-1,介孔孔容可达0.256cm3g-1,取得了较好的技术效果。
下面通过实施例对本发明作进一步阐述,但是这些实施例不是对本发明的范围进行限制。
附图说明
图1为实例8产品的XRD图谱。
图2为实例8产品的TEM图。
 
具体实施方式
【实例1】
将硅源、铝源、NaOH以及去离子水按照X Na2O: Y Al2O3: 100 SiO2: Z H2O的摩尔配比混合搅拌成胶,其中X=6,Y=0.83,Z=1500,搅拌均匀后再向其中添加重量百分比计0.5% 的纳米Silicalite-1沸石晶种和1.0%的结构导向剂1,6-己二胺,纳米Silicalite-1沸石的晶粒尺寸为30 nm。上述混合物搅拌均匀,然后在密闭晶化釜中进行晶化,晶化温度为160°C,晶化时间为8小时,产物经过滤洗涤、烘干、焙烧得到产品。具体的合成条件见表1。沸石样品的表征结果见表2。
【实例2】
将硅源、铝源、NaOH以及去离子水按照X Na2O: Y Al2O3: 100 SiO2: Z H2O的摩尔配比混合搅拌成胶,其中X=6,Y=0.83,Z=1500,搅拌均匀后再向其中添加重量百分比计0.5% 的纳米Silicalite-1沸石晶种和1.0%的结构导向剂1,6-己二胺,纳米Silicalite-1沸石的晶粒尺寸为30 nm。上述混合物搅拌均匀,然后在密闭晶化釜中进行晶化,晶化温度为160°C,晶化时间为24小时,产物经过滤洗涤、烘干、焙烧得到产品。具体的合成条件见表1。沸石样品的表征结果见表2。
【实例3】
将硅源、铝源、NaOH以及去离子水按照X Na2O: Y Al2O3: 100 SiO2: Z H2O的摩尔配比混合搅拌成胶,其中X=6,Y=0.83,Z=1500,搅拌均匀后再向其中添加重量百分比计0.5% 的纳米Silicalite-1沸石晶种和1.0%的结构导向剂1,6-己二胺,纳米Silicalite-1沸石的晶粒尺寸为30 nm。上述混合物搅拌均匀,然后在密闭晶化釜中进行晶化,晶化温度为160°C,晶化时间为72小时,产物经过滤洗涤、烘干、焙烧得到产品。具体的合成条件见表1。沸石样品的表征结果见表2。
【实例4】
将硅源、铝源、NaOH以及去离子水按照X Na2O: Y Al2O3: 100 SiO2: Z H2O的摩尔配比混合搅拌成胶,其中X=28,Y=3.75,Z=4000,搅拌均匀后再向其中添加重量百分比计1.0% 的纳米Silicalite-1沸石晶种和2.0%的结构导向剂1,4-丁二胺,纳米Silicalite-1沸石的晶粒尺寸为50 nm。上述混合物搅拌均匀,然后在密闭晶化釜中进行晶化,晶化温度为140°C,晶化时间为48小时,产物经过滤洗涤、烘干、焙烧得到产品。具体的合成条件见表1。沸石样品的表征结果见表2。
【实例5】
将硅源、铝源、NaOH以及去离子水按照X Na2O: Y Al2O3: 100 SiO2: Z H2O的摩尔配比混合搅拌成胶,其中X=8,Y=8,Z=2500,搅拌均匀后再向其中添加重量百分比计0.5% 的纳米Silicalite-1沸石晶种和2.0%的结构导向剂四乙基溴化铵,纳米Silicalite-1沸石的晶粒尺寸为30 nm。上述混合物搅拌均匀,然后在密闭晶化釜中进行晶化,晶化温度为140°C,晶化时间为72小时,产物经过滤洗涤、烘干、焙烧得到产品。具体的合成条件见表1。沸石样品的表征结果见表2。
【实例6】
将硅源、铝源、NaOH以及去离子水按照X Na2O: Y Al2O3: 100 SiO2: Z H2O的摩尔配比混合搅拌成胶,其中X=3,Y=2.5,Z=1500,搅拌均匀后再向其中添加重量百分比计0.5% 的纳米Silicalite-1沸石晶种和2.5%的结构导向剂四丙基溴化铵,纳米Silicalite-1沸石的晶粒尺寸为100 nm。上述混合物搅拌均匀,然后在密闭晶化釜中进行晶化,晶化温度为170°C,晶化时间为120小时,产物经过滤洗涤、烘干、焙烧得到产品。具体的合成条件见表1。沸石样品的表征结果见表2。
【实例7】
将硅源、铝源、NaOH以及去离子水按照X Na2O: Y Al2O3: 100 SiO2: Z H2O的摩尔配比混合搅拌成胶,其中X=6,Y=06,Z=1500,搅拌均匀后再向其中添加重量百分比计0.5% 的纳米Silicalite-1沸石晶种和2.0%的结构导向剂四丁基溴化铵,纳米Silicalite-1沸石的晶粒尺寸为50 nm。上述混合物搅拌均匀,然后在密闭晶化釜中进行晶化,晶化温度为180°C,晶化时间为48小时,产物经过滤洗涤、烘干、焙烧得到产品。具体的合成条件见表1。沸石样品的表征结果见表2。
【实例8】
将硅源、铝源、NaOH以及去离子水按照X Na2O: Y Al2O3: 100 SiO2: Z H2O的摩尔配比混合搅拌成胶,其中X=15,Y=2,Z=5500,搅拌均匀后再向其中添加重量百分比计5.0% 的纳米Silicalite-1沸石晶种和5.0%的结构导向剂N-三甲氧基硅基丙基-N,N,N-三乙基溴化铵,纳米Silicalite-1沸石的晶粒尺寸为30 nm。上述混合物搅拌均匀,然后在密闭晶化釜中进行晶化,晶化温度为160°C,晶化时间为48小时,产物经过滤洗涤、烘干、焙烧得到产品。具体的合成条件见表1。沸石样品的表征结果见表2。
图1为实例8产品的XRD图谱,图1中较高的XRD衍射峰显示了实例8所得产品为高结晶度的ZSM-5沸石。图2为实例8产品的TEM图,图2显示实例8产物中含有丰富的介孔。
【比较例1】
将硅源、铝源、NaOH以及去离子水按照X Na2O: Y Al2O3: 100 SiO2: Z H2O的摩尔配比混合搅拌成胶,其中X=6,Y=0.83,Z=1500,搅拌均匀后在密闭晶化釜中进行晶化,晶化温度为160°C,晶化时间为8小时,产物经过滤洗涤、烘干、焙烧得到产品。具体的合成条件见表1。沸石样品的表征结果见表2。
【比较例2】 
将硅源、铝源、NaOH以及去离子水按照X Na2O: Y Al2O3: 100 SiO2: Z H2O的摩尔配比混合搅拌成胶,其中X=6,Y=0.83,Z=1500,搅拌均匀后再向其中添加重量百分比计0.5% 的纳米Silicalite-1沸石晶种,纳米Silicalite-1沸石的晶粒尺寸为30 nm。上述混合物搅拌均匀,然后在密闭晶化釜中进行晶化,晶化温度为160°C,晶化时间为8小时,产物经过滤洗涤、烘干、焙烧得到产品。具体的合成条件见表1。沸石样品的表征结果见表2。
【比较例3】
将硅源、铝源、NaOH以及去离子水按照X Na2O: Y Al2O3: 100 SiO2: Z H2O的摩尔配比混合搅拌成胶,其中X=6,Y=0.83,Z=1500,搅拌均匀后再向其中添加重量百分比计1.0%的结构导向剂1,6-己二胺。上述混合物搅拌均匀,然后在密闭晶化釜中进行晶化,晶化温度为180°C,晶化时间为120小时,产物经过滤洗涤、烘干、焙烧得到产品。具体的合成条件见表1。沸石样品的表征结果见表2。
表1
表2

Claims (10)

1.一种制备介孔ZSM-5沸石的方法,以水玻璃、硅溶胶或白碳黑为硅源,铝盐或铝酸盐为铝源,以及无机碱为原料,按摩尔配比为X Na2O:YAl2O3:100 SiO2:Z H2O进行混合搅拌成胶液,其中,X= 2~30,Y= 0~10,Z= 1000~5000,再向胶液中添加沸石晶种和导向剂并混和均匀,在晶化温度为100~240℃,晶化时间为8~240小时下合成,沸石晶种加入量为胶液重量的0.1~5.0 %,导向剂的加入量为胶液重量的1.0~5.0 %。
2.根据权利要求1所述的制备介孔ZSM-5沸石的方法,其特征在于在晶化胶液中添加的沸石晶种为纳米Silicalite-1沸石,其晶粒尺寸不大于100 nm。
3.根据权利要求2所述的制备介孔ZSM-5沸石的方法,其特征在于所述纳米Silicalite-1沸石的晶粒尺寸为30~100 nm。
4.根据权利要求1所述的制备介孔ZSM-5沸石的方法,其特征在于在晶化胶液中添加的导向剂选自二元有机胺、含有机硅基团的烷基胺化合物或四烷基铵中的至少一种。
5.根据权利要求4所述的制备介孔ZSM-5沸石的方法,其特征在于所述二元有机胺选自1,4-丁二胺、1,6-己二胺中的至少一种。
6.根据权利要求4所述的制备介孔ZSM-5沸石的方法,其特征在于所述含有机硅基团的烷基胺化合物为N-三甲氧基硅基丙基-N,N,N-三乙基溴化铵。
7.根据权利要求4所述的制备介孔ZSM-5沸石的方法,其特征在于所述四烷基铵选自四乙基铵化合物、四丙基铵化合物、四丁基铵化合物中的至少一种。
8.根据权利要求1所述的制备介孔ZSM-5沸石的方法,其特征在于反应晶化温度为140~180℃。
9.根据权利要求1所述的制备介孔ZSM-5沸石的方法,其特征在于反应晶化时间为8~120小时。
10.根据权利要求1所述的制备介孔ZSM-5沸石的方法,其特征在于沸石晶种加入量为胶液重量的 0.5~ 5.0%,导向剂的加入量为胶液重量的2.0~ 5.0%。
CN201310179956.8A 2013-05-16 2013-05-16 制备介孔zsm-5沸石的方法 Active CN104150506B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310179956.8A CN104150506B (zh) 2013-05-16 2013-05-16 制备介孔zsm-5沸石的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310179956.8A CN104150506B (zh) 2013-05-16 2013-05-16 制备介孔zsm-5沸石的方法

Publications (2)

Publication Number Publication Date
CN104150506A true CN104150506A (zh) 2014-11-19
CN104150506B CN104150506B (zh) 2016-02-10

Family

ID=51876177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310179956.8A Active CN104150506B (zh) 2013-05-16 2013-05-16 制备介孔zsm-5沸石的方法

Country Status (1)

Country Link
CN (1) CN104150506B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107804857A (zh) * 2016-09-08 2018-03-16 中国石油化工股份有限公司 一种介孔zsm‑5沸石的制备方法
CN110885089A (zh) * 2019-11-20 2020-03-17 南京沃力化工技术咨询有限公司 硅铝比小于23的zsm-5分子筛合成方法
CN112520754A (zh) * 2019-09-19 2021-03-19 中国石油化工股份有限公司 富铝zsm-5分子筛及其合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613113A (zh) * 2009-05-31 2009-12-30 华东理工大学 一种一步法合成纳米多级孔mfi分子筛的方法
CN101983921A (zh) * 2010-12-01 2011-03-09 复旦大学 纳米微晶有序堆积的zsm-5沸石合成方法
US20120027673A1 (en) * 2010-07-30 2012-02-02 University Of Iowa Research Foundation Synthesis of hierarchical nanocrystalline zeolites with controlled particle size and mesoporosity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613113A (zh) * 2009-05-31 2009-12-30 华东理工大学 一种一步法合成纳米多级孔mfi分子筛的方法
US20120027673A1 (en) * 2010-07-30 2012-02-02 University Of Iowa Research Foundation Synthesis of hierarchical nanocrystalline zeolites with controlled particle size and mesoporosity
CN101983921A (zh) * 2010-12-01 2011-03-09 复旦大学 纳米微晶有序堆积的zsm-5沸石合成方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107804857A (zh) * 2016-09-08 2018-03-16 中国石油化工股份有限公司 一种介孔zsm‑5沸石的制备方法
CN112520754A (zh) * 2019-09-19 2021-03-19 中国石油化工股份有限公司 富铝zsm-5分子筛及其合成方法
CN112520754B (zh) * 2019-09-19 2022-12-09 中国石油化工股份有限公司 富铝zsm-5分子筛及其合成方法
CN110885089A (zh) * 2019-11-20 2020-03-17 南京沃力化工技术咨询有限公司 硅铝比小于23的zsm-5分子筛合成方法
CN110885089B (zh) * 2019-11-20 2021-06-11 南京沃力化工技术咨询有限公司 硅铝比小于23的zsm-5分子筛合成方法

Also Published As

Publication number Publication date
CN104150506B (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
CN103848439B (zh) 一种zsm-5型分子筛的合成方法
KR101614544B1 (ko) 나노 크기의 결정성 zsm-5 핵을 사용한 zsm-5의 제조 방법
CN107282096B (zh) 一种ssz-13分子筛催化剂及其制备方法与应用
KR20150005538A (ko) 베타형 제올라이트 및 그의 제조 방법
CN102491366A (zh) 一种中空式zsm-5纳米沸石的制备方法
KR102035397B1 (ko) 마이크로다공성 및 메조다공성 계층적 구조의 mfi 제올라이트, 이의 제조방법 및 이의 촉매 용도
CN102795635A (zh) 多级孔沸石材料及其制备方法和应用
CN102190316A (zh) 介孔丝光沸石的合成方法
CN105016355A (zh) 一种FeZSM-5分子筛及其合成方法
CN102001681A (zh) 一种zsm-5沸石的合成方法
CN103880036B (zh) 一种介孔丝光沸石的合成方法
CN104150506B (zh) 制备介孔zsm-5沸石的方法
CN112209397A (zh) 高锌硅比cha型拓扑结构锌硅分子筛及其合成方法
CN107511169B (zh) Zsm-5分子筛催化剂、制备方法及应用
CN102198950B (zh) 一种高硅铝比NaY分子筛的制备方法
CN103073019B (zh) 一种多级孔沸石分子筛的制备方法
CN103418425B (zh) 甲醇转化制丙烯的催化剂及其制备方法
CN104107708B (zh) 甲醇转化制丙烯和芳烃催化剂及其制备方法和用途
CN108275694A (zh) Bec分子筛的合成方法、合成的bec分子筛及其用途
CN105905919A (zh) 一种中孔eu-1沸石分子筛及其制备方法
JP5901817B2 (ja) 重質炭化水素油の接触分解、水素化分解触媒用ヘテロ接合多孔性結晶体
CN101618877B (zh) 一种微孔-介孔分级结构材料及其制备方法
CN103145145A (zh) 一种以a型沸石为硅源合成sapo-34分子筛的方法
CN105253898A (zh) 一种纳米zsm-5分子筛聚集体的制备方法
JP2010155759A (ja) メソポーラスアルミノシリケートの合成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant