CN104145448B - 降低具有gmii的以太网设备的功耗的方法及收发机 - Google Patents

降低具有gmii的以太网设备的功耗的方法及收发机 Download PDF

Info

Publication number
CN104145448B
CN104145448B CN201280071117.8A CN201280071117A CN104145448B CN 104145448 B CN104145448 B CN 104145448B CN 201280071117 A CN201280071117 A CN 201280071117A CN 104145448 B CN104145448 B CN 104145448B
Authority
CN
China
Prior art keywords
lpi
transmission rate
gmii
signals
modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280071117.8A
Other languages
English (en)
Other versions
CN104145448A (zh
Inventor
郁宏春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN104145448A publication Critical patent/CN104145448A/zh
Application granted granted Critical
Publication of CN104145448B publication Critical patent/CN104145448B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3209Monitoring remote activity, e.g. over telephone lines or network connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • H04L49/351Switches specially adapted for specific applications for local area network [LAN], e.g. Ethernet switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Communication Control (AREA)
  • Small-Scale Networks (AREA)

Abstract

公开了用于实现针对在传统模式下操作的以太网收发机的低功率空闲(LPI)信令的方法和装置,所述方法和装置允许高速度收发机当即使收发机在较低速度模式下操作时也能保持能量高效以太网(EEE)功能性。在一些实施例中,当以太网设备的介质独立接口(MII)以第一传输速率来操作时,以太网设备可以在接收到常规的LPI信号时进入LPI模式,以及当MII以低于第一传输速率的第二传输速率来操作时,以太网设备可以在接收到修改的LPI信号时进入LPI模式。

Description

降低具有 GMII 的以太网设备的功耗的方法及收发机
技术领域
概括地说,本实施例涉及电子通信,具体地说,本实施例涉及以太网通信系统。
背景技术
在允许计算机和/或其它网络设备形成局域网(LAN)的技术中,以太网已经成为主要的联网技术,并且在IEEE 802.3标准家族中进行了标准化。以太网标准随着时间进行了演变,因此现在存在不同的以太网协议的变形,以支持更高的带宽、改进的介质接入控制、不同的物理介质信道和/或其它功能。例如,现在IEEE 802.3具有涵盖范围从10Mbit/s、100Mbit/s、1Gbit/s到10Gbit/s以及甚至更高的速度(或传输速率)的变形,并且具有管理物理信道(诸如同轴电缆、光导纤维和非屏蔽的/屏蔽的双绞线电缆)的变形。
一个与以太网设备相关联的关注的问题是功率消耗。由于以太网通信的同时双向(例如,全双工)特性,当在以太网设备和/或网络中使用的收发机以非常高的速度(例如,1Gbit/s或10Gbit/s)来操作时,会消耗大量的功率。因此,如果在相关联的数据链路上有很少或没有数据在发送,那么可以指示收发机进入低功率模式以降低功耗。例如,在IEEE802.3az标准中描述的能量高效以太网(EEE)使用低功率空闲(LPI)信号,当没有数据要发送时,所述LPI信号可以将这样的收发机的发射机部分安置到“睡眠”模式。虽然LPI信号的生效(assertion)可以在睡眠模式期间停用发射机部分,但是收发机的接收机部分典型地保持运作,因此即使发射机部分处于睡眠模式也允许收发机接收数据。睡眠模式可以通过使LPI信号失效(de-asserting)(或提供“正常空闲”信号)以“唤醒”收发机的发射机部分来终止,从而允许收发机重新开始数据传输。
典型地,较新的以太网变形被要求以较低的速度来操作,以提供与传统设备和/或与较旧的以太网标准的向后兼容。对于收发机而言,重复在以 较低的速度操作时发送的数据是很常见的。例如,当能够实现1Gbit/s速度的收发机在100Mbit/s模式下操作时,可以只是将对数据的传输重复10次,以及当在10Mbit/s模式下操作时,将对数据的传输重复100次。然而,因为以太网标准的许多变形是在实现EEE(例如,IEEE 802.3az)标准之前开发的,所以当这样的收发机以较低的速度(例如,以100Mbit/s)来操作时,被设计为触发针对高速度收发机(例如,能够实现1Gbit/s)的睡眠模式的LPI信号来可能无法正常工作。类似地,当这样的收发机出于任何其它可适用的原因来执行数据重复和/或组合技术时,LPI信号可能无法正常工作,所述原因包括例如组合若干信道以创造更高的带宽,和/或使用专用8bit/10bit串行器/解串器(8B/10B SerDes)来发送数据。
因此,需要实现针对在传统模式下(例如,以较低的速度)操作的高速度以太网收发机的LPI信令。
发明内容
本发明的一个方面涉及一种降低耦合到网络的以太网设备的功耗的方法,所述以太网设备具有耦合在介质访问控制(MAC)层和物理(PHY)层之间的千兆比特介质独立接口(GMII),所述方法包括:当所述GMII以第一传输速率进行操作时,在接收到常规的低功率空闲(LPI)信号之后进入LPI模式;以及当所述GMII以第二传输速率进行操作时,在接收到修改的LPI信号之后进入所述LPI模式,其中,所述第二传输速率低于所述第一传输速率。
本发明的另一个方面涉及一种具有耦合在介质访问控制(MAC)层和物理(PHY)层之间的千兆比特介质独立接口(GMII)的以太网收发机,其中,所述以太网收发机包括:处理器;以及存储器,其耦合到所述处理器并且具有存储在其中的计算机可执行指令,当所述计算机可执行指令被执行时使得所述收发机执行以下操作:当所述GMII以第一传输速率进行操作时,在接收到常规的低功率空闲(LPI)信号之后进入LPI模式;以及当所述GMII以第二传输速率进行操作时,在接收到修改的LPI信号之后进入所述LPI模式,其中,所述第二传输速率低于所述第一传输速率。
附图说明
本实施例是通过举例的方式示出的,并且不旨在被附图中的图形所限制,其中:
图1是在其中可以实现本实施例的通信系统的框图;
图2是表示图1的网络设备的开放系统互联(OSI)模型的框图;
图3是根据一些实施例的图1的网络设备的功能框图;以及
图4是示出针对图3的网络设备的一些实施例的示例性LPI检测操作的流程图。
贯穿附图,相同的参考标号指代相应的部分。
具体实施方式
公开了用于实现针对在传统模式下操作的以太网收发机的低功率空闲(LPI)信令的方法和装置,所述方法和装置允许高速度收发机当即使收发机在较低速度模式下操作时也能保持能量高效以太网(EEE)功能性。在一些实施例中,当以太网设备的介质独立接口(MII)以第一传输速率来操作时,以太网设备可以在接收到常规的LPI信号时进入LPI模式,以及当MII以第二且较低的传输速率来操作时,以太网设备可以在接收到修改的LPI信号时进入LPI模式。
在下面的描述中,阐述了大量的具体细节,诸如具体组件、电路和过程的例子,以提供对本公开内容的彻底理解。此外,在下面的描述中以及出于解释的目的,阐述了具体术语以提供对本实施例的彻底理解。然而,对于本领域的技术人员而言显而易见的是,实践本实施例可以不要求这些具体细节。在其它情况下,以框图的形式示出了公知的电路和设备,以避免模糊本公开内容。本文中使用的术语“耦合的”意思是直接连接到或通过一个或多个介于中间的组件或电路来连接。在本文中描述的各种总线上提供的任何信号可以是与其它信号时间复用的,以及可以是在一个或多个公共总线上提供的。另外地,电路元件之间或软件块之间的互连可以被示出为总线,或示出为单一的信号线。每个总线可以替代地是单一的信号线,以及每个单一的信号线可以替代地是总线,以及单一的线或总线可以表示用于组件之间的通信的大量物理或逻辑机构中的任意一个或多个。本实施 例不应当被解释为限定于本文中描述的具体例子,而是应当包括在本实施例的范围内由所附权利要求所限定的所有实施例。
图1是在其中可以实现本实施例的示例性通信系统100的框图。通信系统100被示出为包括两个网络设备110(a)和110(b),所述两个网络设备通过建立的数据链路120彼此耦合。网络设备110(a)和110(b)可以通过数据链路120来交换数据。网络设备110(a)和110(b)可以是任何合适的具有联网能力的设备,所述设备包括例如计算机、交换机、路由器、集线器、网关、接入点等。此外,根据本实施例,网络设备110(a)和110(b)可以包括能够连接到有线或无线网络的任何电子设备,所述电子设备包括例如移动电话、个人数字助理(PDA)、机顶盒或游戏控制台。当然,网络设备110(a)和110(b)以及数据链路120仅仅是网络的示例性组件,如网络还可以包括任意数量的合适的设备,以形成较大的网络,所述网络包括例如局域网(LAN)、广域网(WAN)、无线LAN(WLAN),和/或可以连接到互联网。数据链路120可以是任意合适的物理介质信道,所述物理介质信道包括例如同轴电缆、光导纤维、和/或无屏蔽的/有屏蔽的双绞线。
如在IEEE 802.3标准族中所描述的,网络设备110(a)-110(b)可以使用以太网技术来彼此通信。更具体而言,针对本文中所描述的示例性实施例,网络设备110(a)-110(b)均被配备有以太网兼容的收发机(为了简单起见,未在图1中示出),所述收发机能够以至少1Gbit/s的速度来发送和接收数据分组,并且是向后兼容的以便以较低的速度(例如,100Mbit/s或10Mbit/s)来操作。在本文中出于讨论的目的,术语“较低的速度”和“传统模式”指的是小于1Gbit/s的传输速率,其包括100Mbit/s或10Mbit/s,而术语“高速度”和“较高的速度”指的是等于或大于1Gbit/s的传输速率。此外,当不发送任何数据时,网络设备110(a)-110(b)能够降低它们的收发机的功耗,并且因此与IEEE 802.3az标准(EEE)相兼容。
根据本实施例,当千兆比特介质独立接口(GMII)以第一传输速率来操作时,具有耦合在其介质访问控制(MAC)层和其物理(PHY)层之间的GMII的以太网设备可以在接收到常规的LPI信号时进入低功率空闲(LPI)模式(如由IEEE 802.3az所定义的),以及当GMII以低于第一传输速率的第二传输速率来操作时,所述以太网设备可以在接收到修改的LPI 信号时进入LPI模式。如在下面更详细地解释的,当以较低的速度来操作时,通过防止LPI信号被解码操作造成失真,修改的LPI信号允许以太网设备进入LPI模式,所述解码操作典型地与传输速率从大约1Gbit/s的高速度到大约100Mbit/s或更低的较低的速度的降低相关联。在一些实施例中,以太网设备可以确定操作GMII的传输速率,以及响应于此,所述以太网设备选择性地产生要从MAC层提供给PHY层的常规的LPI信号或修改的LPI信号。此外,响应于确定的传输速率,以太网设备可以判断LPI信号是常规的LPI信号还是修改的LPI信号。以这种方式,本实施例可以实现针对在传统模式下操作的以太网收发机的LPI信令。
图2是分别表示图1的网络设备110(a)和110(b)的开放系统互联模型200(a)-200(b)的框图。如在图1中,网络设备110(a)-110(b)通过建立的数据链路(或物理信道)120彼此耦合。如图2中所示的,OSI模型200被划分成7个逻辑层:(1)应用层221;(2)表示层222;(3)会话层223;(4)传输层224;(5)网络层225;(6)数据链路层226;和(7)物理层227。虽然出于本文中讨论的目的,OSI模型200可以用于表示网络设备110(a)和110(b),但是应当指出的是,其它合适的设备可以用于表示根据本实施例配置的以太网设备。
OSI层的层级越高,其距离终端用户越近;OSI层的层级越低,其距离物理信道越近。例如,在OSI模型层级的顶部的是应用层221,所述应用层221直接与终端用户的软件应用交互(为了简单起见,在图2中未示出)。相反,在OSI模型层级的底部的是物理层227,所述物理层227定义了在网络设备和物理通信介质之间的关系,诸如用于以太网数据传输的双绞线。
更具体而言,物理(PHY)层227提供了针对在网络设备110和物理信道120之间的交互作用的电气的和物理的规范,包括像引脚布局和信号电压的细节。数据链路层226提供了针对在网络设备110(a)和110(b)之间的数据传输的功能的和/或程序上的细节,诸如寻址和信道访问控制机制。数据链路层226具有两个子层,所述两个子层是在顶部(在层级方面)的逻辑链路控制(LLC)层和在底部的介质访问控制层(MAC)。为了简单起见,在下面的讨论中,数据链路层226有时在本文中被称为MAC层。虽然为了简单起见没有在图2中示出,但是在MAC层226和PHY层227之 间存在接口,以促进在两个层之间的信息交换。出于讨论的目的,该接口在本文中被称为介质独立接口(MII)。然而,应当指出的是,根据传输速率和其它实现方式细节,MII可以包括不同的、当前可用的或将来开发的变形,所述变形包括例如附加单元接口(AUI)、MII、简化的MII、千兆比特MII(GMII)、简化的GMII、串行的GMII(SGMII)、四芯导线SGMII(QSGMII)和/或10GMII。
MII允许网络设备110(a)和110(b)使用相同的MAC设备226与不同类型的物理信道120(或PHY设备227)连接。MII经由MII总线将MAC设备226连接到不同类型的PHY设备。当以1Gbit/s(例如,利用GMII、SGMII和/或QSGMII)的速度来操作时,MII总线利用125MHz的时钟以每时钟周期8比特(或一个字节)来传送数据。然而,根据MII规范,当以100Mbit/s的速度来操作时,MII总线利用25MHz的时钟仅以每时钟周期4比特(或半字节)来传送数据,或者当以10Mbit/s的速度来操作时,利用2.5MHz的时钟以每时钟周期4比特来传送数据。因此,为了允许向后兼容性,当在传统模式下操作时(例如,100Mbit/s或10Mbit/s),能够以1Gbit/s或更高的速度来操作的MII将半字节复制成一个字节。
在用于数据传输的正常操作期间,半字节到一个字节的复制过程运作良好。然而,当较高速度的MII(例如,GMII,SGMII和/或QSGMII)对半字节进行结合或复制,以形成用于较低传输速率(例如100Mbit/s或10Mbit/s)的字节时,旨在用于使PHY设备进入“睡眠”模式的LPI信号可能失真,因此使得LPI信令失败。更具体而言,根据IEEE 802.3az标准(EEE),在MAC层和PHY层之间(经由MII)的LPI信号可以被定义为{发送使能TX_EN=“FALSE”(例如,逻辑“0”),发送错误TX_ER=“TRUE”(例如,逻辑“1”),以及发送数据TX_DATA=1}。因此,在MAC设备以较低的速度(例如,100Mbit/s)来操作的情况下,这意味着MAC设备每个时钟周期仅发送半字节(4比特),针对LPI信令的发送数据TX_DATA是4’b0001。由于相同的原因,在MAC设备以较高的速度(例如1Gbit/s)来操作的情况下,这意味着MAC设备每个时钟周期发送一个字节(8比特),针对LPI信令的发送数据TX_DATA是8’b0000_0001。然而,当MAC设备以较低的速度(例如,100Mbit/s)来操作时,并且当通过较高速度的MII (例如,GMII,SGMII和/或QSGMII)将相应的LPI信号发送给PHY设备时,由于半字节到一个字节的复制,发送数据TX_DATA变为8’b0001_0001,这不能被PHY设备识别为进入LPI睡眠模式的指示符(例如,因为PHY设备典型地响应于TX_DATA=8’b0000_0001来检测LPI模式)。
根据本实施例,当GMII以第一传输速率(例如,以1Gbit/s)来操作时,具有耦合在MAC层226和PHY层227之间的较高速度的MII(例如,GMII,SGMII和/或QSGMII)的网络设备110可以在接收到常规的LPI信号时进入低功率空闲(LPI)模式(如由IEEE 802.3az所定义的),以及当GMII以第二或较低的传输速率(例如,100Mbit/s或10Mbit/s)来操作时,所述网络设备可以在接收到修改的LPI信号时进入LPI模式。更具体而言,根据一些实施例,当GMII以较高的速度(例如,1Gbit/s或更高)来操作时,网络设备110的PHY层227(或相应的PHY设备)可以在接收到常规的LPI信号(TX_EN=1’b0;TX_EN=1’b1;TX_DATA=8’b0000_0001)时进入LPI模式,以及当GMII以较低的速度(例如,100Mbit/s或10Mbit/s)来操作时,网络设备110的PHY层227(或相应的PHY设备)可以在接收到修改的LPI信号(TX_EN=1’b0;TX_EN=1’b1;TX_DATA=8’b0001_0001)时进入LPI模式。利用识别常规的LPI信号和修改的LPI信号的能力,无论操作MII的速率为多少,MAC层226(或MAC设备)可以成功地指导PHY层227(或PHY设备)通过MII进入和/或退出LPI模式。以这种方式,本实施例可以实现针对在传统模式(诸如100Mbit/s或10Mbit/s)下操作的高速度以太网收发机的LPI信令。此外,针对一个实施例,修改的LPI信号可以被表示为用于纠正不一致的10比特逗号序列(comma sequence)K28.5和D5.2的组合(例如,串联),以及针对另外一个实施例,修改的LPI信号可以被表示为用于保持不一致的10比特逗号序列K28.5和D28.4的组合(例如,串联)。当然,用于表示针对本文中描述的实施例的修改的LPI信号的10比特逗号序列的特定组合仅仅是示例性的,以及可以针对实际的实施例来修改或以其它方式来改变。如在本文中使用的,GMII还可以是SGMII和/或QSGMII。
应当指出的是,修改的LPI信号(TX_EN=1’b0;TX_EN=1’b1; TX_DATA=8’b0001_0001)仅仅是示例性的,以及通过管理数据输入/输出(MDIO)总线来重新配置PHY层227(或相应的PHY设备)的相关联的控制和状态寄存器,可以改变或修改这些分配的符号以获得类似的结果。此外,值得注意的是,上文提及的技术和实施例与当前的高速度MII标准是兼容的,这是因为未经过修改的、常规的高速度MII(例如,GMII,SGMII和/或QSGMII)将会把修改的LPI信号识别为正常的空闲信号(例如,不会对常规的高速度MII的内部状态机造成不利影响的信号)。
图3是网络设备310的功能性框图,所述网络设备310是图1和图2的网络设备110(a)和110(b)的一个实施例。网络设备310包括处理器320、存储器330和以太网收发机电路340,所述以太网收发机电路340耦合到图2的物理信道120。存储器330可以是任意合适的存储元件或设备,所述存储元件或设备包括例如EEPROM或闪存。处理器320可以是能够执行例如存储在存储器330的一个或多个软件程序的脚本或指令的任何合适的处理器。虽然为了简单起见没有在图3中示出,但是网络设备310还可以包括公知的、存储频繁地使用的指令和/或数据的缓存存储器。
网络设备310还包括PHY层设备(或PHY设备)360和MAC层设备(或MAC设备)350。MAC设备350和PHY设备360经由介质独立接口(MII)370彼此耦合。虽然在图3中将以太网收发机340示出为被包括在PHY设备360中,但是针对其它实施例,收发机340可以是独立的设备或集成电路。
为了简单起见,在图3中仅示出了OSI七层模型中的MAC层或PHY层,其中这两层被示出为两个设备。因此,MAC设备350可以是实现MAC层(例如图2的层226)的功能的任何设备或集成电路,所述MAC设备350继而可以是独立的设备或者可以被集成到网络设备310内。类似地,PHY设备360可以是实现PHY层(例如图2的层227)的功能的任何设备或集成电路,所述PHY设备360继而可以是独立的设备或者被集成到网络设备310内。当然,如上文所提及的,应当指出的是,MAC层和PHY层被逻辑地划分成两个组件,并且这两层并不必需被物理地分离,或者并不必需在两个分开的设备或电路上实现。
在正常数据传输操作期间,当在网络设备310上的终端用户软件应用 通过网络(例如,向互联网)发送数据时,处理器320通过MAC设备350向PHY设备360发送数据(从OSI层的顶部)。随后,PHY设备360经由收发机340将数据发送到物理信道120上。
当处理器320确定对于PHY设备360而言进入LPI模式是所希望的时,例如,当在扩展的时间段内没有数据要发送时,处理器320通过MAC设备350向PHY设备360发送LPI信号。假设MII 370是较高速度的MII(例如,GMII,SGMII和/或QSGMII),那么根据MII 370正在操作于的速度模式,LPI信号可以是常规的LPI信号(TX_DATA=8’b0000_0001),或者可以是修改的LPI信号(TX_DATA=8’b0001_0001)。根据本实施例,PHY设备360可以在接收到常规的LPI信号或修改的LPI信号时进入LPI睡眠模式。更具体而言,当MII 370以较高的速度(例如,1Gbit/s)来操作时,PHY设备360可以在接收到常规的LPI信号时进入LPI睡眠模式,以及当MII 370以较低的速度(例如,100Mbit/s)来操作时,PHY设备360可以在接收到修改的LPI信号时进入LPI睡眠模式。以这种方式,本实施例可以实现针对在传统模式下操作的以太网收发机的LPI信令。
在一些实施例中,处理器320可以被配置为监控从收发机340接收的数据,以判断响应于数据传输速率来产生常规的LPI信号还是修改的LPI信号。在这些实施例中,当MII370正在以1Gbit/s或更高的较高速度来操作时,处理器320可以产生常规的LPI信号,以及当MII 370正在以100Mbit/s或10Mbit/s的较低的速度来操作时,处理器320可以产生修改的LPI信号。
特别地,MII 370是能够在MAC设备350和PHY设备360之间提供双向通信的接口。因此,虽然关于上文提及的技术的讨论专注于MAC设备350将LPI信号发送给PHY设备360,但是这些技术同样也可以应用到相反的方向。例如,MAC设备350可以在接收到常规的LPI信号(例如,数据有效RX_DV=1’b0;接收错误RX_ER=1’b1;接收数据RX_DATA=8’b0000_0001)或修改的LPI信号(数据有效RX_DV=1’b0;接收错误RX_ER=1’b1;接收数据RX_DATA=8’b0001_0001)时进入LPI睡眠模式。
作为补充或替代,处理器320可以首先检测MII 370正在操作的传输速率。如果MII370正在以1Gbit/s或更高的传输速率来操作,那么处理器320 可以发送常规的LPI信号,以使得PHY设备360进入LPI睡眠模式。如果MII 370正在以100Mbit/s或更少的传输速率来操作,那么处理器320发送修改的LPI信号,以使得PHY设备360进入LPI睡眠模式。然而,应当注意到的是,对MII 370正在操作的传输速率的检测不是实现本实施例所必需的。
图4是示出针对图3的网络设备的实施例的示例性LPI检测操作的流程图。首先,参照图3和图4二者,网络设备310判断当MII 370以第一速度(例如,1Gbit/s)来操作时是否发送了常规的LPI信号,以及在接收到常规的LPI信号时进入LPI模式(410)。所述判断可以由处理器320或由PHY 360来执行。此外,网络设备310可以判断当MII 370以第二或较低的速度(例如100Mbit/s)来操作时是否发送了修改的LPI信号,以及在接收到修改的LPI信号时进入LPI模式(420)。所述判断也可以由处理器320或PHY设备360来执行。以这种方式,如果检测到任何LPI信号,那么处理器320可以指示PHY设备360或MAC设备350或二者进入LPI睡眠模式(430)。
应当注意的是,仅为了简单起见,在本文中公开的实施例是相对于以较低速度来操作的高速度以太网收发机来描述的。应当注意的是,以较低的速度来操作不应当被解释为高速度以太网收发机在传统模式下操作的唯一的情况,以及本实施例也同样可适用于包括数据重复和/或组合技术的任何其它的情况。这些情况可以包括,例如,组合若干信道以创造更高的带宽、和/或使用专用8B/10B串行器解串器(SerDes)来发送数据。类似地,上文提及的半字节到一个字节的复制技术仅仅是包括数据重复和/或组合技术的操作的一个例子。本实施例可适用于包括数据重复和/或组合的任何其它合适的技术,所述技术包括组合和/或将半字节复制为一个字节的任何操作。
在前述的说明书中,参照其中的具体示例性实施例对本实施例进行了描述。然而,很明显的是,在不脱离如所附权利要求中所阐述的公开内容的更宽的精神和范围的情况下,可以对其进行各种修改和改变。说明书和附图相应地被视为是说明性的意义而不是限制性的意义。

Claims (20)

1.一种降低耦合到网络的以太网设备的功耗的方法,所述以太网设备具有耦合在介质访问控制(MAC)层和物理(PHY)层之间的千兆比特介质独立接口(GMII),所述方法包括:
当所述GMII以第一传输速率进行操作时,在接收到常规的低功率空闲(LPI)信号之后进入LPI模式;以及
当所述GMII以第二传输速率进行操作时,在接收到修改的LPI信号之后进入所述LPI模式,其中,所述第二传输速率低于所述第一传输速率。
2.根据权利要求1所述的方法,还包括:
确定所述GMII正在以其进行操作的传输速率;以及
响应于所确定的传输速率,选择性地产生所述常规的LPI信号或所述修改的LPI信号,用于从所述MAC层发送给所述PHY层。
3.根据权利要求2所述的方法,其中,所述常规的LPI信号是当所述GMII在1Gbit/s传输模式下进行操作时产生的,并且所述修改的LPI信号是当所述GMII在100Mbit/s传输模式或10Mbit/s传输模式下进行操作时产生的。
4.根据权利要求2所述的方法,还包括:
识别响应于所确定的传输速率是产生了所述常规的LPI还是所述修改的LPI。
5.根据权利要求1所述的方法,其中,当所述GMII以所述第一传输速率进行操作时,要每个时钟周期至少发送一个字节,并且其中,当所述GMII以所述第二传输速率进行操作时,要每个时钟周期发送半字节。
6.根据权利要求5所述的方法,其中,所述第一传输速率是1Gbit/s,并且其中,所述第二传输速率是10Mbit/s或100Mbit/s。
7.根据权利要求1所述的方法,其中,所述LPI模式与IEEE 802.3az标准相兼容。
8.根据权利要求1所述的方法,其中,所述常规的LPI信号包括TX_DATA=8’b0000_0001,并且所述修改的LPI信号包括TX_DATA=8’b0001_0001。
9.根据权利要求1所述的方法,其中,所述修改的LPI信号包括逗号序列K28.5和D5.2的组合。
10.根据权利要求1所述的方法,其中,所述修改的LPI信号包括逗号序列K28.5和D28.4的组合。
11.一种具有耦合在介质访问控制(MAC)层和物理(PHY)层之间的千兆比特介质独立接口(GMII)的以太网收发机,其中,所述以太网收发机包括:
处理器;以及
存储器,其耦合到所述处理器并且具有存储在其中的计算机可执行指令,当所述计算机可执行指令被执行时使得所述收发机执行以下操作:
当所述GMII以第一传输速率进行操作时,在接收到常规的低功率空闲(LPI)信号之后进入LPI模式;以及
当所述GMII以第二传输速率进行操作时,在接收到修改的LPI信号之后进入所述LPI模式,其中,所述第二传输速率低于所述第一传输速率。
12.根据权利要求11所述的以太网收发机,其中,所述指令还使得所述收发机执行以下操作:
确定所述GMII正在以其进行操作的传输速率;
当所述GMII正在以所述第一传输速率进行操作时,产生所述常规的LPI信号;以及
当所述GMII正在以所述第二传输速率进行操作时,产生所述修改的LPI信号。
13.根据权利要求11所述的以太网收发机,其中,所述常规的LPI信号是当所述GMII在1Gbit/s传输模式下操作时产生的,并且所述修改的LPI信号是当所述GMII在100Mbit/s传输模式或10Mbit/s传输模式下操作时产生的。
14.根据权利要求11所述的以太网收发机,其中,所述指令还使得所述收发机执行以下操作:
确定所述GMII的传输速率;以及
识别响应于所确定的传输速率是产生了所述常规的LPI还是所述修改的LPI。
15.根据权利要求11所述的以太网收发机,其中,当所述GMII以所述第一传输速率进行操作时,要每个时钟周期至少发送一个字节,并且其中,当所述GMII以所述第二传输速率进行操作时,要每个时钟周期发送半字节。
16.根据权利要求15所述的以太网收发机,其中,所述第一传输速率是1Gbit/s,并且其中,所述第二传输速率是10Mbit/s或100Mbit/s。
17.根据权利要求11所述的以太网收发机,其中,所述LPI模式与IEEE802.3az标准相兼容。
18.根据权利要求11所述的以太网收发机,其中,所述常规的LPI信号包括TX_DATA=8’b0000_0001,并且所述修改的LPI信号包括TX_DATA=8’b0001_0001。
19.根据权利要求11所述的以太网收发机,其中,所述修改的LPI信号包括逗号序列K28.5和D5.2的组合。
20.根据权利要求11所述的以太网收发机,其中,所述常规的LPI信号包括逗号序列K28.5和D28.4的组合。
CN201280071117.8A 2012-03-05 2012-03-05 降低具有gmii的以太网设备的功耗的方法及收发机 Expired - Fee Related CN104145448B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/071930 WO2013131231A1 (en) 2012-03-05 2012-03-05 Low power idle signaling for gigabit media independent interfaces operating in legacy modes

Publications (2)

Publication Number Publication Date
CN104145448A CN104145448A (zh) 2014-11-12
CN104145448B true CN104145448B (zh) 2017-10-31

Family

ID=49115850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280071117.8A Expired - Fee Related CN104145448B (zh) 2012-03-05 2012-03-05 降低具有gmii的以太网设备的功耗的方法及收发机

Country Status (7)

Country Link
US (1) US9552040B2 (zh)
EP (1) EP2823604B1 (zh)
JP (1) JP5969056B2 (zh)
KR (1) KR101750053B1 (zh)
CN (1) CN104145448B (zh)
IN (1) IN2014MN01669A (zh)
WO (1) WO2013131231A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734998B (zh) * 2013-12-20 2018-11-06 华为技术有限公司 一种网络设备及信息传输方法
JP6316033B2 (ja) 2014-03-14 2018-04-25 キヤノン株式会社 情報処理装置及びその制御方法、記憶媒体
US9866425B1 (en) * 2015-01-05 2018-01-09 Marvell International Ltd. Systems and methods for operations, administration and maintenance (OAM) in the physical coding sublayer (PCS)
KR102292827B1 (ko) * 2015-09-08 2021-08-23 현대자동차주식회사 네트워크에서 통신 노드의 동작 방법
US9801060B2 (en) * 2015-11-05 2017-10-24 Intel Corporation Secure wireless low-power wake-up
US9606604B1 (en) 2015-11-25 2017-03-28 Globalfoundries Inc. Energy efficient high-speed link and method to maximize energy savings on the energy efficient high-speed link
US10693725B1 (en) 2016-11-28 2020-06-23 Barefoot Networks, Inc. Dynamically reconfiguring data plane of forwarding element to account for operating temperature
US10530559B2 (en) * 2017-11-28 2020-01-07 Marvell World Trade Ltd. Ethernet transceiver with PHY-level signal-loss detector
CN113810153B (zh) * 2020-06-15 2022-11-08 华为技术有限公司 数据传输方法及装置
CN114301856B (zh) * 2021-12-29 2023-10-03 上海赫千电子科技有限公司 基于fpga的千兆gmii数据传输方法和装置
CN114500408A (zh) * 2022-01-13 2022-05-13 中汽创智科技有限公司 一种以太网络交换装置、数据处理装置和车辆

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653730A (zh) * 2002-05-16 2005-08-10 英特尔公司 低功耗光学传输系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9323311B2 (en) * 2006-06-22 2016-04-26 Broadcom Corporation Method and system for packet based signaling between A Mac and A PHY to manage energy efficient network devices and/or protocols
US20100115306A1 (en) * 2008-11-05 2010-05-06 Wael William Diab Method and system for control of energy efficiency and associated policies in a physical layer device
US7920597B2 (en) 2007-03-12 2011-04-05 Broadcom Corporation Method and system for low power idle signal transmission in ethernet networks
US8127164B2 (en) 2008-02-12 2012-02-28 Broadcom Corporation System and method for energy savings on a PHY/MAC interface for energy efficient ethernet
US8286007B2 (en) * 2008-02-13 2012-10-09 Broadcom Corporation Hybrid technique in energy efficient ethernet physical layer devices
US8982753B2 (en) * 2008-11-05 2015-03-17 Broadcom Corporation Method and system for low latency state transitions for energy efficiency
US8107365B2 (en) 2008-11-24 2012-01-31 Cisco Technology, Inc. Interim PHY solution for LPI compatibility with legacy devices
US8300655B2 (en) 2009-07-31 2012-10-30 Broadcom Corporation System and method for dynamic power control for energy efficient physical layer communication devices
WO2012001753A1 (ja) 2010-06-28 2012-01-05 パナソニック株式会社 アクセス制御装置
US20120257520A1 (en) 2011-04-11 2012-10-11 Yuan-Hwa Li Apparatus for power management in a network communication system
US8885506B2 (en) 2011-06-14 2014-11-11 Broadcom Corporation Energy efficiency ethernet with assymetric low power idle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653730A (zh) * 2002-05-16 2005-08-10 英特尔公司 低功耗光学传输系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Part3:Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications Amendment 5:Media Access Control Parameters,Physical Layers,and Management Parameters for Energy-Efficient Ethernet;IEEE Computer Society Sponsored by the LAN/MAN Standards Committ;《IEEE STD 802.3azTM-2010》;20101027;全文 *

Also Published As

Publication number Publication date
US9552040B2 (en) 2017-01-24
IN2014MN01669A (zh) 2015-05-29
EP2823604B1 (en) 2017-04-19
KR20140138811A (ko) 2014-12-04
KR101750053B1 (ko) 2017-06-22
US20150019887A1 (en) 2015-01-15
EP2823604A1 (en) 2015-01-14
WO2013131231A1 (en) 2013-09-12
CN104145448A (zh) 2014-11-12
JP5969056B2 (ja) 2016-08-10
EP2823604A4 (en) 2015-11-11
JP2015513859A (ja) 2015-05-14

Similar Documents

Publication Publication Date Title
CN104145448B (zh) 降低具有gmii的以太网设备的功耗的方法及收发机
EP1738533B1 (en) Transceiver with automatic configuration based on auto-negociation
US7065075B1 (en) Reduced pin gigabit media independent interface
US8660034B2 (en) Method and system for monitoring activity of a remote link partner to trigger training of Ethernet channels to support energy efficient Ethernet networks
US9042363B2 (en) Standby mode for use in a device having a multiple channel physical layer
US7920597B2 (en) Method and system for low power idle signal transmission in ethernet networks
US8064373B2 (en) Method and system for simplex or duplex transmission mode of an ethernet link in an energy efficient network
JPH10504435A (ja) トークンリング用マルチポートlanスイッチ
AU2005237495A1 (en) 10/100/1000/2500 Mbps serial media independent interface (SGMII)
CN101394288B (zh) 一种以太网设备端口镜像实现方法及装置
TWI500292B (zh) 具有節能功能的網路通訊裝置及方法
CN104238489B (zh) 网络通信控制装置、系统和方法
US9425824B2 (en) Configurable multi-mode media independent interface
US9606615B2 (en) Apparatus, method and computer program means for data transport with reduced power consumption during link idle times
US20150326504A1 (en) Apparatus and method for encoding mdio into sgmii transmissions
US20130182717A1 (en) Method And System For A Power Reduction Scheme For Ethernet PHYS
CN112422219A (zh) 以太网接口和相关系统、方法和设备
US20150036699A1 (en) Multi-port serial media independent interface
CN106571903A (zh) 一种芯片间的通信方法及系统
US11805483B2 (en) Method and apparatus for restoring WUP mode for multi-speed ethernet device
CN107800584A (zh) 乙太网络物理层电路的自我测试方法与自我测试系统
CN206364823U (zh) 一种以太网传输设备及环形供电和数据链路网络
Li et al. Design of an Auto-Negotiation Logic for SGMII Applications
CN103812666A (zh) 具有节能功能的网络通信装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171031

Termination date: 20200305