CN104119971A - 一种煤催化气化方法 - Google Patents

一种煤催化气化方法 Download PDF

Info

Publication number
CN104119971A
CN104119971A CN201410363062.9A CN201410363062A CN104119971A CN 104119971 A CN104119971 A CN 104119971A CN 201410363062 A CN201410363062 A CN 201410363062A CN 104119971 A CN104119971 A CN 104119971A
Authority
CN
China
Prior art keywords
district
hydrogen
coal
catalytic
hydropyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410363062.9A
Other languages
English (en)
Inventor
郑岩
胡利彦
康守国
李克忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENN Science and Technology Development Co Ltd
Original Assignee
ENN Science and Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENN Science and Technology Development Co Ltd filed Critical ENN Science and Technology Development Co Ltd
Priority to CN201410363062.9A priority Critical patent/CN104119971A/zh
Publication of CN104119971A publication Critical patent/CN104119971A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Industrial Gases (AREA)

Abstract

本发明实施例提供了一种煤催化气化方法,属于煤催化气化领域,可以提高甲烷收率及碳转化率。所述煤催化气化方法,包括:将所述反应器主体根据其内部温度不同从上至下依次分为加氢热解区、催化气化区和燃烧区;向所述燃烧区中通入含氧气体,以使所述含氧气体与所述燃烧区中的煤发生燃烧反应和气化反应生成二氧化碳、一氧化碳和氢气;向所述催化气化区中通入氢气,以抑制所述一氧化碳参与水煤气变换反应,而促进一氧化碳参与甲烷化反应。本发明可用于利用流化床反应器的煤催化气化技术中。

Description

一种煤催化气化方法
技术领域
本发明涉及煤催化气化领域,尤其涉及一种煤催化气化方法。
背景技术
煤催化气化技术是指煤在相对较低的温度下与水蒸汽等气化剂在催化剂的催化作用下发生气化反应,以生成高浓度甲烷的气化技术。与其它煤气化技术相比,煤催化气化技术具有制备的甲烷含量高、反应温度低等优点。
煤制天然气技术在最初阶段由两步法制得,但由于两步法技术需要空分、气化、变换和甲烷化四个工段,工艺复杂、投资巨大,使得其并不适用于大规模的煤制天然气工艺中。相比之下,采用将煤在相对较低的温度下与气化剂在催化剂的催化作用下进行气化反应,生成高浓度甲烷的一步法煤制天然气技术颇受青睐。在现有的一步法技术中,大多采用外供热方式,即需要大量过热蒸汽及循环部分产品气一氧化碳、氢气进入气化炉发生甲烷化反应放热来提供系统所需热量,但该方式能耗较大,设备投资高,采用该方式供热用于小规模研发阶段尚可,但要实现产业化并无经济优势。并且,在该方法中,循环通入的产品气一氧化碳和氢气不仅会抑制气化反应,降低碳转化率,还会因反应器主体内的一氧化碳主要参与水煤气变换反应而抑制甲烷化反应以降低甲烷的收率。
针对上述问题,提供一种能够同时提高甲烷收率及碳转化率的煤催化气化方法是本领域技术人员所面临的重要课题。
发明内容
本发明实施例提供了一种煤催化气化方法,可以提高甲烷收率及碳转化率。
为达到上述目的,本发明的实施例采用如下技术方案:
一种煤催化气化方法,包括:
将所述反应器主体根据其内部温度不同从上至下依次分为加氢热解区、催化气化区和燃烧区;
向所述燃烧区中通入含氧气体,所述含氧气体与所述燃烧区中的煤发生燃烧反应和气化反应生成二氧化碳、一氧化碳和氢气;
向所述催化气化区中通入氢气,所述氢气抑制一氧化碳参与水煤气变换反应,而促进一氧化碳参与甲烷化反应。
可选的,所述方法还包括:
向所述加氢热解区中通入氢气,所述氢气与进入所述反应器主体的煤发生加氢热解反应,生成轻质焦油,同时发生甲烷化反应生成甲烷。
进一步的,在所述加氢热解区中,氢气与所述加氢热解区中煤的质量比为0.001:1-0.01:1。
可选的,向所述催化气化区中通入的氢气温度与所述催化气化区的温度相同,向所述加氢热解区中通入的氢气温度与所述加氢热解区的温度相同。
可选的,所述含氧气体包括氧气和过热蒸汽。
进一步的,所述含氧气体中氧气浓度为3-20%。
可选的,所述催化气化区的温度为500-800℃。
进一步的,在所述催化气化区中,氢气与所述催化气化区中煤的质量比为0.001:1-0.025:1。
可选的,所述加氢热解区的温度为400-600℃。
可选的,所述燃烧区的温度为800-1000℃。
本发明提供了一种煤催化气化方法,在该方法中,对有氧气化进行了改进,一方面通过在反应器主体内通入氢气,通过抑制反应器主体内的水煤气变换反应可确保更多的一氧化碳参与甲烷化反应,从而提高甲烷收率,技术经济性更佳;另一方面由于氧气的通入,不仅可以提高燃烧区中的碳的转化率,还可在反应器主体内实现内部供热代替外部过热蒸汽供热,更有利于煤催化气化技术实现工业化。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种煤催化气化方法,包括:
将所述反应器主体根据其内部温度不同从上至下依次分为加氢热解区、催化气化区和燃烧区;
在本步骤中,煤催化气化反应所采用的反应器主体(即流化床气化炉)的反应压力为2.0-4.5MPa,并且根据反应器主体内温度的不同可分为三个区,分别为上段的加氢热解区、中段的催化气化区和下段的燃烧区。其中,在反应器主体内主要发生的反应如下:
C+O2→CO2        燃烧反应
C+H2O→H2+CO     气化反应
CO+H2O→CO2+H2   水煤气变换反应
3H2+CO→CH4+H2O  甲烷化反应
在煤催化气化反应中,煤与催化剂的混合物由反应器主体上段的加氢热解区进入,气化剂主要为含氧气体,经由分布板进入反应器主体下段的燃烧区。煤料从反应器主体上段的加氢热解区投入,从上之下依次经过各个区,并与各个区中的混合气体发生反应,最终成为低碳含量的残渣由排渣管排出。其中,煤料在各个区中的形态依次为:在加氢热解区中,由于是刚投入的煤料,所以为原始的煤形态;在催化气化区中,由于煤料在加氢热解区加氢热解后,落入催化气化区中的形态称为半焦;在燃烧区中,同理,煤在催化气化区中发生气化反应后,落入燃烧区中的形态称为煤焦。需要说明的是,在本实施例中,催化剂主要为碱金属、碱土金属化合物,可以理解的是,本领域技术人员还可选用其它的催化剂,本实施例中对于催化剂的选择并不作限定。
在反应器主体内,煤料经由反应器主体从上至下运动,而气化剂经由反应器主体从下至上运动,在本实施例中,我们按照煤的运动方向进行描述。
向加氢热解区中通入氢气,以使所述氢气与进入所述反应器主体的煤发生加氢热解反应,生成轻质焦油,同时发生甲烷化反应生成甲烷。
加氢热解区位于反应器主体的最上部,在该区中气相中蒸汽含量与反应器主体下部的蒸汽含量相比相对较低,而CO、H2浓度较高,使得从热力学平衡角度来看更易发生甲烷化反应。煤与催化剂(主要为碱金属、碱土金属化合物)混合后由反应器主体上段的加氢热解区进入,在该区中的气体主要包括从反应器主体中段的催化气化区进入的一氧化碳、氢气、二氧化碳和未完全分解的蒸汽,此时,向加氢热解区通入氢气,由于加氢热解区的温度在400-600℃左右,在此温度范围内煤粉主要与通入的氢气发生加氢热解反应,此时,通入的氢气可饱和煤热解产生的自由基,避免自由基间相互聚合发生二次反应,使自由基与氢结合生成轻质焦油,同时由于该区中相比其它两个区而言温度较低,可进一步确保甲烷化反应的发生,增加甲烷收率以及高价值的附加产物轻质焦油的收率。需要说明的是,在该区中通入的氢气温度也在400-600℃的范围内,以更好地实现与该区中温度的匹配。
可以理解的是,向加氢热解区通入氢气的形式可以有很多种,如以射流管、喷嘴或以进料吹送气形式通入氢气,本发明实施例不对氢气的通入形式作任何限定,只要能将氢气较好地通入即可。更可以理解的是,在该区中通入氢气,是为了在促进甲烷化反应的同时,更是为了可以获得高产值的轻质焦油,所以在该区中通入氢气是本方法的优选方案,本领域技术人员可根据实际的生产情况确定是否有必要在该方案中继续通入氢气。在本步骤中,氢气与加氢热解区中煤的质量比为0.001:1-0.01:1。在该比例下,可确保氢气更好地诱导加氢热解区发生甲烷化反应,从而增加甲烷收率以及焦油收率。可以理解的是,本领域技术人员可根据生产实际情况在上述范围内选择氢气与煤的质量比。
向催化气化区中通入氢气,以抑制所述一氧化碳参与水煤气变换反应,而促进一氧化碳参与甲烷化反应。
催化气化区位于反应器主体内的靠下部位,气固接触时间尚短,所以在该区中主要发生的还是碳水吸热反应、水煤气变换反应及甲烷化反应。经加氢热解区热解所得的半焦进入反应器主体内中段的催化气化区,催化气化区温度范围在500-800℃,在该区中气化剂主要是下段燃烧区反应产生的一氧化碳、氢气、二氧化碳和未完全分解的蒸汽。为了能够确保更多的一氧化碳能够与氢气发生甲烷化反应,此时,向催化气化区中通入氢气,以抑制一氧化碳参与水煤气变换反应。需要说明的是,在该区中通入的氢气温度在500-800℃的范围内,其目的是为了更好地实现与该区中温度的匹配。
可以理解的是,向催化气化区通入氢气的形式可以有很多种,如以射流管、喷嘴或以进料吹送气形式通入氢气,本发明实施例不对氢气的通入形式作任何限定,只要能将氢气较好地通入即可。
在本步骤中,氢气与催化气化区中煤的质量比为0.001:1-0.025:1。在该比例下,可更好地确保氢气通入量与该区中的半焦及产物气体(燃烧区中生成的气体)实现物料匹配,达到抑制水煤气变换反应,促进一氧化碳更多参与甲烷化反应,从而提高甲烷收率。可以理解的是,本领域技术人员可根据生产实际情况在上述范围内选择氢气与煤的质量比。
向燃烧区中通入含氧气体,以使所述含氧气体与所述燃烧区中的煤发生燃烧反应和气化反应生成二氧化碳、一氧化碳和氢气。
燃烧区位于反应器主体的最下方,在该区中主要存在的是较大颗粒的煤料,且这些较大颗粒多为煤料在与大量气化剂接触发生气化反应后剩余的含碳量较低、含灰含量高的煤焦,燃烧区的温度在800-1000℃左右,此时,向燃烧区中通入含氧气体,可使煤焦更好地发生反应。进一步的,由于本发明实施例中含氧气体包括氧气和过热蒸汽,所以煤焦也主要是和氧气发生燃烧反应生成二氧化碳、和蒸汽发生气化反应生成氢气和一氧化碳。由于燃烧反应是放热反应,所以由其放出的大量热还可为气化反应提供反应所需热量,使得反应器主体内可实现内部供热代替外部过热蒸汽供热,待煤焦中的活性碳反应完毕后,最终碳含量低的残渣由排渣管排出。
可以理解的是,含氧气体中氧气浓度为3-20%。将氧气浓度设在该比例范围内,也是保证通入的含氧气体与煤料反应后产生的热量能够维持该反应区的能量平衡的同时,避免因氧气浓度过高发生强放热反应释放大量反应热而导致局部高温煤颗粒相互粘结结渣。
本发明提供了一种煤催化气化方法,在该方法中对有氧气化进行了改进,一方面通过在反应器主体内的不同区通入氢气,通过抑制反应器主体内的水煤气变换反应可确保更多的一氧化碳参与甲烷化反应,从而提高甲烷收率,技术经济性更佳;另一方面由于氧气的通入,不仅可以提高燃烧区中的碳的转化率,还可在反应器主体内实现内部供热代替外部过热蒸汽供热,更有利于煤催化气化技术实现工业化。
为了更好地说明本发明所提供的煤催化气化技术,下面将以实施例的方式作具体阐述。将通过对比实验来验证本发明所提供的煤催化气化技术的优势,具体实验条件见表1。
对比例1为采用过热蒸汽催化气化工艺,实验结果显示碳转化率为72%,甲烷气体组成为14.4%,焦油收率0.4kg/h。
对比例2为通入部分氧气提供气化所需热量,实验结果显示碳转化率提高至90%,甲烷气体组成为16.5%,焦油收率0.4kg/h。
实施例1为在反应器主体上段和中段分别通入1Nm3/h氢气(对应氢气与煤的质量比为0.0046:1),实验结果显示碳转化率为92%,甲烷气体组成提高至20.5%,焦油收率提高至0.6kg/h。
实施例2改变中段氢气量,提高氢气量至2.3Nm3/h((对应氢气与煤的质量比为0.01:1),实验结果显示碳转化率为90%,略低于实施例1,甲烷气体组成提高至22.0%,焦油收率为0.6kg/h。
实施例3为在反应器主体上段通入0.23Nm3/h氢气(对应氢气与煤的质量比为0.001:1),中段通入5.6Nm3/h氢气(对应氢气与煤的质量比为0.025:1),实验结果显示碳转化率为90%,甲烷气体组成为22.6%,焦油收率0.7kg/h。
实施例4为在反应器主体上段通入2.3Nm3/h氢气(对应氢气与煤的质量比为0.01:1),中段通入0.23Nm3/h氢气(对应氢气与煤的质量比为0.001:1),实验结果显示碳转化率为91%,甲烷气体组成22.4%,焦油收率0.6kg/h。
由以上实验可知,在催化气化区和加氢热解区通入氢气可提高产物气体中甲烷收率和焦油收率;在燃烧区中通入含氧气体后可明显提高碳转化率。
显然,上述实施例仅仅是为清楚地说明本技术方案所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围。

Claims (10)

1.一种煤催化气化方法,其特征在于,包括:
将所述反应器主体根据其内部温度不同从上至下依次分为加氢热解区、催化气化区和燃烧区;
向所述燃烧区中通入含氧气体,所述含氧气体与所述燃烧区中的煤发生燃烧反应和气化反应生成二氧化碳、一氧化碳和氢气;
向所述催化气化区中通入氢气,所述氢气抑制一氧化碳参与水煤气变换反应,而促进一氧化碳参与甲烷化反应。
2.根据权利要求1所述的煤催化气化方法,其特征在于,所述方法还包括:
向所述加氢热解区中通入氢气,所述氢气与进入所述反应器主体的煤发生加氢热解反应,生成轻质焦油,同时发生甲烷化反应生成甲烷。
3.根据权利要求2所述的煤催化气化方法,其特征在于,在所述加氢热解区中,氢气与所述加氢热解区中煤的质量比为0.001:1-0.01:1。
4.根据权利要求2所述的煤催化气化方法,其特征在于,向所述催化气化区中通入的氢气温度与所述催化气化区的温度相同,向所述加氢热解区中通入的氢气温度与所述加氢热解区的温度相同。
5.根据权利要求1所述的煤催化气化方法,其特征在于,所述含氧气体包括氧气和过热蒸汽。
6.根据权利要求5所述的煤催化气化方法,其特征在于,所述含氧气体中氧气浓度为3-20%。
7.根据权利要求1所述的煤催化气化方法,其特征在于,所述催化气化区的温度为500-800℃。
8.根据权利要求1所述的煤催化气化方法,其特征在于,在所述催化气化区中,氢气与所述催化气化区中煤的质量比为0.001:1-0.025:1。
9.根据权利要求1所述的煤催化气化方法,其特征在于,所述加氢热解区的温度为400-600℃。
10.根据权利要求1所述的煤催化气化方法,其特征在于,所述燃烧区的温度为800-1000℃。
CN201410363062.9A 2014-07-28 2014-07-28 一种煤催化气化方法 Pending CN104119971A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410363062.9A CN104119971A (zh) 2014-07-28 2014-07-28 一种煤催化气化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410363062.9A CN104119971A (zh) 2014-07-28 2014-07-28 一种煤催化气化方法

Publications (1)

Publication Number Publication Date
CN104119971A true CN104119971A (zh) 2014-10-29

Family

ID=51765608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410363062.9A Pending CN104119971A (zh) 2014-07-28 2014-07-28 一种煤催化气化方法

Country Status (1)

Country Link
CN (1) CN104119971A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106398767A (zh) * 2016-09-07 2017-02-15 新奥科技发展有限公司 气化炉及煤气化工艺
CN106590712A (zh) * 2016-12-30 2017-04-26 新奥科技发展有限公司 一种煤加氢催化气化方法及装置
CN107312572A (zh) * 2017-08-18 2017-11-03 新奥科技发展有限公司 一种煤催化气化方法
CN110713844A (zh) * 2019-10-17 2020-01-21 中国科学院山西煤炭化学研究所 一种催化加氢气化两步法联产甲烷和轻质液体焦油的方法
CN113122335A (zh) * 2021-04-21 2021-07-16 新奥科技发展有限公司 生物质与煤共气化系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB673170A (en) * 1950-01-05 1952-06-04 Consolidation Coal Co Improvements in or relating to the process of making gas from carbonaceous solid fuels
CN101525118A (zh) * 2008-03-07 2009-09-09 周开根 垃圾、生物质原料生产合成气的气化工艺
CN101792680A (zh) * 2009-09-14 2010-08-04 新奥科技发展有限公司 煤的综合利用方法及系统
CN102559310A (zh) * 2010-12-08 2012-07-11 杭州林达化工科技有限公司 用焦炉气等工业废气进行煤碳加氢气化制天然气等烃类的方法
CN103571541A (zh) * 2012-07-30 2014-02-12 新奥科技发展有限公司 一种联产甲烷和焦油的催化气化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB673170A (en) * 1950-01-05 1952-06-04 Consolidation Coal Co Improvements in or relating to the process of making gas from carbonaceous solid fuels
CN101525118A (zh) * 2008-03-07 2009-09-09 周开根 垃圾、生物质原料生产合成气的气化工艺
CN101792680A (zh) * 2009-09-14 2010-08-04 新奥科技发展有限公司 煤的综合利用方法及系统
CN102559310A (zh) * 2010-12-08 2012-07-11 杭州林达化工科技有限公司 用焦炉气等工业废气进行煤碳加氢气化制天然气等烃类的方法
CN103571541A (zh) * 2012-07-30 2014-02-12 新奥科技发展有限公司 一种联产甲烷和焦油的催化气化方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106398767A (zh) * 2016-09-07 2017-02-15 新奥科技发展有限公司 气化炉及煤气化工艺
CN106590712A (zh) * 2016-12-30 2017-04-26 新奥科技发展有限公司 一种煤加氢催化气化方法及装置
CN106590712B (zh) * 2016-12-30 2019-08-02 新奥科技发展有限公司 一种煤加氢催化气化方法及装置
CN107312572A (zh) * 2017-08-18 2017-11-03 新奥科技发展有限公司 一种煤催化气化方法
CN107312572B (zh) * 2017-08-18 2020-04-21 新奥科技发展有限公司 一种煤催化气化方法
CN110713844A (zh) * 2019-10-17 2020-01-21 中国科学院山西煤炭化学研究所 一种催化加氢气化两步法联产甲烷和轻质液体焦油的方法
CN113122335A (zh) * 2021-04-21 2021-07-16 新奥科技发展有限公司 生物质与煤共气化系统及方法

Similar Documents

Publication Publication Date Title
Zhang et al. Exergy analysis of hydrogen production from steam gasification of biomass: A review
De Sales et al. Experimental study on biomass (eucalyptus spp.) gasification in a two-stage downdraft reactor by using mixtures of air, saturated steam and oxygen as gasifying agents
CN103923705B (zh) 生物质气化制取富氢气体的装置及方法
CN102079685B (zh) 两级气化炉煤气化制甲烷的方法
CN104119971A (zh) 一种煤催化气化方法
Di et al. Thermodynamic analysis on the parametric optimization of a novel chemical looping methane reforming in the separated productions of H2 and CO
CN105176594B (zh) 一种用于褐煤气化制还原气的装置及方法
CN106590761B (zh) 煤催化气化制富甲烷合成气的流化床反应装置及反应方法
Yang et al. Mechanism of lignite-to-pure syngas low temperature chemical looping gasification synergistic in situ S capture
Liu et al. Steady state modelling of steam-gasification of biomass for H2-rich syngas production
CN108504394A (zh) 催化热解-气化一体化反应装置和方法
Qin et al. Efficient strategy of utilizing alkaline liquid waste boosting biomass chemical looping gasification to produce hydrogen
CN104178227B (zh) 一种煤粉的流化床干馏方法及装置
CN205035331U (zh) 一种用于褐煤气化制还原气的装置
CN102234545B (zh) 一种含炭质材料气化制合成气的方法
CN2608507Y (zh) 两段粉煤循环流化床气化装置
CN101285008A (zh) 二氧化碳代替或部分代替水蒸汽制气的方法
CN103896209B (zh) 一种由煤、天然气与二氧化碳催化重整生产合成气的方法
CN105964242B (zh) 一种煤气化催化剂及其制备方法和应用
CN101781593A (zh) 一种由煤制甲烷的方法
CN101767801B (zh) 用高炉生产磷酸的炉煤气制备合成氨的工艺
CN106748655A (zh) 一种高效降低钢铁联合企业co2排放的方法
CN104178228B (zh) 一种煤粉的流化床干馏方法与装置
CN107142128B (zh) 生物质循环流化床气化联合h2吸附强化水汽变换制氢
CN108059977B (zh) 一种近零排放、co2资源化利用的化石能源利用方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20141029

RJ01 Rejection of invention patent application after publication