CN104103814A - Mo0.5W0.5S2纳米瓦/石墨烯电化学贮锂复合电极及制备方法 - Google Patents

Mo0.5W0.5S2纳米瓦/石墨烯电化学贮锂复合电极及制备方法 Download PDF

Info

Publication number
CN104103814A
CN104103814A CN201410339860.8A CN201410339860A CN104103814A CN 104103814 A CN104103814 A CN 104103814A CN 201410339860 A CN201410339860 A CN 201410339860A CN 104103814 A CN104103814 A CN 104103814A
Authority
CN
China
Prior art keywords
graphene
ammonium
nanometer watt
electrode
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410339860.8A
Other languages
English (en)
Other versions
CN104103814B (zh
Inventor
陈卫祥
马琳
黄国创
王臻
叶剑波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201410339860.8A priority Critical patent/CN104103814B/zh
Publication of CN104103814A publication Critical patent/CN104103814A/zh
Application granted granted Critical
Publication of CN104103814B publication Critical patent/CN104103814B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种Mo0.5W0.5S2-纳米瓦/石墨烯电化学贮锂复合电极及其制备方法,其步骤是:将氧化石墨烯超声分散在去离子水中,搅拌下先加入双子表面活性剂,再依次L-半胱氨酸和硫代钼酸铵和硫代钨酸铵,将上述得到的混合分散体系转移到水热反应釜中于230℃下水热反应20-24h后,自然冷却,离心收集固体产物,去离子水洗涤,干燥,热处理制备得到Mo0.5W0.5S2纳米瓦/石墨烯复合纳本材料,然后与乙炔黑及聚偏氟乙烯调成浆料,涂到铜箔上滚压得到电极。本发明制备的Mo0.5W0.5S2纳米瓦/石墨烯电化学贮锂复合电极具有高的电化学贮锂容量,优异的循环性能和增强的倍率特性,具有广泛的应用前景。

Description

Mo0.5W0.5S2纳米瓦/石墨烯电化学贮锂复合电极及制备方法
技术领域
本发明涉及电化学贮锂电极及其制备方法,尤其涉及Mo0.5W0.5S2纳米瓦/石墨烯电化学贮锂复合电极制备方法,属于新能源材料和能源贮存与转换技术领域。
背景技术
锂离子电池具有高的比能量、无记忆效应、环境友好等优异性能, 在移动电话和笔记本电脑等便携式移动电器中得到了广泛的应用。作为动力电池,锂离子电池在电动自行车、电动汽车和智能电网等方面也具有广泛的应用前景。目前锂离子电池的负极材料主要采用石墨材料(如:石墨微球、天然改性石墨和人造石墨等),这些石墨材料具有较好的循环稳定性能,但是其容量较低,石墨的理论容量为372 mAh/g。新一代锂离子电池对电极材料的容量和循环稳定性能提出了更高的要求,锂离子电池的性能很大程度上取决于电极材料的项目,尤其是负极材料的性能,不仅要求负极材料具有高的电化学贮锂比容量,而且具有优异的循环稳定性能和高倍率特性。
       二维纳米材料以其独特的形貌具有众多优异的特性,其研究引起了人们的极大兴趣。石墨烯是最典型的二维纳米材料,其独特的二维纳米片结构使其众多独特的物理、化学和力学等性能,具有重要的科学研究意义和广泛的技术应用前景。石墨烯具有极高的比表面积、高的导电和导热性能、高的电荷迁移率,优异的力学性能,这些优异的特性使得石墨烯在微纳米电子器件、储能材料和新型的催化剂载体等方面具有广泛的应用前景,最近石墨烯及其材料作为电化学贮锂的应用得到了人们的极大关注。
MoS2和WS2具有与石墨类似的层状结构,其层内是很强的共价键结合的S-M-S(M=Mo, W),层与层之间则是较弱的范德华力,这种结构使得MoS2和WS2可以通过插入反应在其层间引入外来的原子或离子,MoS2和WS2可以作为插入反应的主体材料。因此,MoS2和WS2是一种有发展前途的电化学储锂和电化学储镁的电极材料(G. X. Wang, S. Bewlay, J. Yao, et al., Electrochem. Solid State, 2004,7:A321;X. L. Li , Y. D. Li, J. Phys. Chem. B, 2004,108:13893)。
石墨烯的发现及其研究取得的巨大成功激发了人们对其他无机二维纳米材料研究的极大兴趣,如单层或少层数的过渡金属二硫化物等。最近,石墨烯概念已经从碳材料扩展到其他层状结构的无机化合物,也就是对于层状结构的无机材料,当其层数减少时(8层以下),尤其是减少到单层时, 其电子性质或能带结构会产生明显的变化,从而导致其显示了与相应体相材料不同的物理和化学特性。除了石墨烯外,研究表明当体相MoS2和WS2减少到少层数(尤其是单层时),显示了与体相材料明显不同的物理、化学和电子学特性。有研究报道单层或少层数的MoS2和WS2具有更好的电化学贮锂性能。但是作为电化学贮锂的电极材料,MoS2和WS2的层与层之间低的导电性能影响了其应用的性能。
 由于MoS2和WS2纳米片与石墨烯具有类似的二维纳米片形貌,两者在微观形貌和晶体结构上具有很好的相似性。如果将MoS2或WS2纳米片与石墨烯复合制备两者的复合材料,石墨烯纳米片的高导电性能可以进一步提高复合材料的导电性能,增强电化学贮锂电极反应过程中的电子传递,可以进一步改善复合材料的电化学贮锂性能。与普通MoS2和WS2纳米片比较,小的纳米瓦状形貌的MoS2和WS2不仅具有较多的边缘,可以提供更多的短的锂离子扩散通道,而且负载在石墨烯上,与电解液具有更多的接触面积。因此MoS2和WS2纳米瓦/石墨烯的复合纳米材料可以显示显著增强的电化学贮锂性能。
另外,研究还发现作为电化学贮锂电极材料,MoS2纳米材料比WS2纳米材料具有较高的电化学贮锂可逆容量,而WS2纳米材料比MoS2纳米材料具有更好的大电流充放电性能,因此,MoS2和WS2两种材料复合的异质层状材料应该具有电化学贮锂好的综合性能。因此,Mo0.5W0.5S2纳米瓦与石墨烯的复合纳米材料作为电化学贮锂电极材料具有广泛的应用和增强的电化学性能。
但是,到目前为止,用Mo0.5W0.5S2纳米瓦/石墨烯复合纳米材料作为电化学活性物质的电化学贮锂复合电极及其制备还未见报道。本发明首先用氧化石墨烯、硫代钼酸铵和硫代钨酸铵等为原料,通过双子表面活性剂协助的水热方法和随后的热处理,制备了Mo0.5W0.5S2纳米瓦/石墨烯的复合纳米材料,然后用Mo0.5W0.5S2纳米瓦/石墨烯的复合纳米材料作为电化学贮锂的活性物质,制备了电化学贮锂的复合电极。这种制备Mo0.5W0.5S2纳米瓦/石墨烯复合纳米材料电化学贮锂复合电极的方法具有简单、方便和易于扩大工业化应用的有点。
发明内容
本发明的目的在于提供一种Mo0.5W0.5S2纳米瓦/石墨烯电化学贮锂复合电极及其制备方法,该复合电极的电化学贮锂活性物质为Mo0.5W0.5S2-纳米瓦/石墨烯的复合纳米材料,复合纳米材料中Mo0.5W0.5S2纳米瓦与石墨烯的物质的量之比为1:2,所述Mo0.5W0.5S2纳米瓦为少层数的层状结构,平均层数为3层,复合电极的组分及其质量百分比含量为:Mo0.5W0.5S2纳米瓦/石墨烯复合纳米材料80-85%,乙炔黑5-10%,聚偏氟乙烯10%。
上述技术方案中少层数的层状结构是指层数在6层或6层以下的层状结构。
上述Mo0.5W0.5S2纳米瓦/石墨烯电化学贮锂复合电极的制备方法按以下步骤进行:
(1)将氧化石墨烯超声分散在去离子水中,加入双子表面活性剂N-十二烷基亚丙基二胺双溴化铵(见附图1),并充分搅拌,然后依次加入L-半胱氨酸、硫代钼酸铵和硫代钨酸铵,并不断搅拌使L-半胱氨酸、硫代钼酸铵和硫代钨酸铵完全溶解,L-半胱氨酸、硫代钼酸铵和硫代钨酸铵用量的物质的量之比为5:0.5:0.5,硫代钼酸铵和硫代钨酸铵与氧化石墨烯的物质的量之比为0.5:0.5:2;
(2)将步骤(1)得到的混合分散体系转移到水热反应釜中,并加入去离子水调整体积至水热反应釜标称体积的80%,双子表面活性剂N-十二烷基亚丙基二胺双溴化铵的浓度为0.01~0.02 mol/L,氧化石墨烯的含量为30-65 mmol/L, 将该反应釜放入恒温烘箱里,在230-250℃下水热反应24 h后,让其自然冷却至室温,用离心分离收集水热固体产物,并用去离子水充分洗涤,在100℃下真空干燥, 将得到的水热固体产物在氮气/氢气混合气氛中在800℃下热处理2 h,混合气体中氢气体积分数为10%,最后制备得到Mo0.5W0.5S2纳米瓦/石墨烯的复合纳米材料;
(3)将上述制备的Mo0.5W0.5S2纳米瓦/石墨烯复合纳米材料作为电极的电化学贮锂活性物质,与乙炔黑及质量分数5%的聚偏氟乙烯的N-甲基吡咯烷酮溶液在搅拌下充分混合调成均匀的浆料,各组分质量百分比为:Mo0.5W0.5S2纳米瓦/石墨烯复合纳米材料80-85%,乙炔黑5-10%,聚偏氟乙烯10%,将该浆料均匀地涂到作为集流体的铜箔上,干燥,滚压得到电极。
上述的氧化石墨烯采用改进的Hummers 方法制备。
本发明的用双子表面活性剂N-十二烷基亚丙基二胺双溴化铵协助的水热方法制备Mo0.5W0.5S2纳米瓦/石墨烯复合纳米材料的方法具有以下优点:氧化石墨烯表面和边缘带有很多含氧官能团(如羟基,羰基,羧基),这些含氧官能团使氧化石墨烯更容易地分散在水或有机液体中,但是这些含氧官能团使氧化石墨烯表面带有负电荷,使得氧化石墨烯与带有负电荷的MoS4 2-和WS4 2-离子不相容,本发明通过静电作用先将双子表面活性剂N-十二烷基亚丙基二胺双溴化铵吸附到氧化石墨烯表面,使其带有部分正电荷,由于静电作用,MoS4 2-和WS4 2-离子就很容易与吸附了双子表面活性剂的氧化石墨烯相互作用结合在一起。更重要的是,与普通的单阳离子表面活性剂相比,双子表面活性剂N-十二烷基亚丙基二胺双溴化铵中有2个带正电荷的季铵亲水基团,具有足够的亲水性,与带负电的氧化石墨烯之间具有更强的相互静电作用;N-十二烷基亚丙基二胺双溴化铵还有2条疏水的长烷基链基团(见附图1),其疏水性更强。N-十二烷基亚丙基二胺双溴化铵吸附在石墨烯表面,其疏水基团以弯曲的不规则的“刷子头”形式存在(见附图2),这种结构形式导致了水热过程和热处理后负载在石墨烯表面的Mo0.5W0.5S2具有纳米瓦的形貌。这种小尺寸的Mo0.5W0.5S2纳米瓦具有较多的边缘,作为电化学贮锂材料,可以提供更多的短的锂离子扩散通道,有助于增强其电化学贮锂性能;另外,Mo0.5W0.5S2纳米瓦/石墨烯复合材料可以增加其与电解液的接触面积,可以进一步有助于改善其电化学性能。因此本发明用Mo0.5W0.5S2纳米瓦/石墨烯复合材料作为电化学活性物质制备的电化学贮锂电极具有高的电化学贮锂容量,优异的循环性能和显著增强大电流充放电特性。
附图说明
 图1 双子表面活性剂N-十二烷基亚丙基二胺双溴化铵结构示意图。
图2双子表面活性剂吸附在氧化石墨烯表面的示意图。
图3实施例1制备得到的Mo0.5W0.5S2纳米瓦/石墨烯复合纳米材料的XRD图(a), SEM形貌图(b)和透射电镜照片(c,d)。
图4 实施例1的对比例制备的Mo0.5W0.5S2纳米片与石墨烯复合纳米材料的TEM和HRTEM照片。
 
具体实施方式
以下结合实施例进一步说明本发明。
下述实例中的氧化石墨烯采用改进的Hummers 方法制备:在0oC冰浴下,将10.0 mmol (0.12 g)石墨粉搅拌分散到50 mL浓硫酸中,不断搅拌下慢慢加入KMnO4,所加KMnO4的质量是石墨粉的4倍,搅拌50分钟,当温度上升至35℃时,慢慢加入50 mL去离子水,再搅拌30分钟,加入15 mL 质量分数30%的H2O2,搅拌30分钟,经过离心分离,依次用质量分数5%的HCl溶液、去离子水和丙酮反复洗涤后得到氧化石墨烯。
 实施例1
1)将2.5 mmol 氧化石墨烯超声分散在60 mL去离子水中,再加入0.8 mmol双子表面活性剂N-十二烷基亚丙基二胺双溴化铵,并充分搅拌,然后依次加入0.76 g (6.25 mmol)L-半胱氨酸、0.625 mmol 硫代钼酸铵和0.625 mmol硫代钨酸铵,并不断搅拌使L-半胱氨酸、硫代钼酸铵和硫代钨酸铵完全溶解,用去离子水调整体积至约80 mL;
2)将所得到的混合液转移到100 mL的水热反应釜中,将该反应釜放入恒温烘箱里,230℃下水热反应24 h后,让其自然冷却至室温,用离心分离收集固体产物,并用去离子水充分洗涤,在100℃下真空干燥,将所得到的固体产物在氮气/氢气混合气氛中在800℃下热处理2h,混合气体中氢气的体积分数为10%, 制备得到Mo0.5W0.5S2纳米瓦/石墨烯的复合纳米材料,复合纳米材料中Mo0.5W0.5S2与石墨烯物质的量之比为1:2, 用XRD,SEM和TEM对所制备得到Mo0.5W0.5S2纳米瓦/石墨烯的复合纳米材料进行表征,XRD分析结果(见附图3(a))表明复合纳米材料中Mo0.5W0.5S2为少层数的层状结构,平均层数为3层;SEM形貌(见附图3(b))和透射电镜照片(见附图3(c,d))也显示了负载在石墨烯上的Mo0.5W0.5S2具有小的纳米瓦形貌,其层数在2-4层,多数为3层,与XRD分析一致; 
3)将上述制备的Mo0.5W0.5S2纳米瓦/石墨烯复合纳米材料作为电化学贮锂的电极活性物质,与乙炔黑及质量分数5%的聚偏氟乙烯的N-甲基吡咯烷酮溶液在搅拌下充分混合调成均匀的浆料,将该浆料均匀地涂到作为集流体的铜箔上,110℃下真空干燥,再滚压得到Mo0.5W0.5S2纳米瓦/石墨烯电化学贮锂复合电极,复合电极中各组分质量百分比为:Mo0.5W0.5S2纳米瓦/石墨烯复合纳米材料80%,乙炔黑10%,聚偏氟乙烯10%。
电化学贮锂性能测试:用锂片作为对电极,电解液为1.0 M LiPF6 的 EC/DMC溶液 (1:1 ,体积比),隔膜是聚丙烯膜(Celguard-2300),在充满氩气的手提箱中组装成二电极测试电池,电池恒电流充放电测试在程序控制的自动充放电仪器上进行,充放电电流密度100 mA/g,电压范围0.005~ 3.00 V;高倍率充放电性能的测试:在充放电电流为1000 mA/g时测试其电化学贮锂比容量,作为其高倍率充放电特性的量度。
电化学测试结果显示:Mo0.5W0.5S2纳米片/石墨烯复合电极的电化学贮锂初始可逆容量为1285 mAh/g, 50和100次循环后可逆容量为1255 和1236 mAh/g,显示了高的比容量和优异的循环稳定性能;在大电流充放电时(充放电电流为1000 mA/g),其容量为892 mAh/g,大大高于石墨材料的理论容量(372 mA/g),显示了其增强的高倍率充放电特性。
对比例
采用十二烷基三甲基溴化铵阳离子表面活性剂,按上述类似方法制备了Mo0.5W0.5S2纳米片/石墨烯电化学贮锂复合电极,具体制备过程如下:
将2.5 mmol 氧化石墨烯超声分散在60 mL去离子水中,再加入1.6 mmol十二烷基三甲基溴化铵阳离子表面活性剂,并充分搅拌,然后依次加入0.76g (6.19 mmol)L-半胱氨酸、0.625 mmol硫代钼酸铵和0.625mmol硫代钨酸铵,并不断搅拌使L-半胱氨酸和硫代钼酸铵和硫代钨酸铵完全溶解,用去离子水调整体积至约80 mL, 将所得到的混合液转移到100 mL的水热反应釜中,将该反应釜放入恒温烘箱里,230℃下水热反应24 h后,让其自然冷却至室温,用离心分离收集固体产物,并用去离子水充分洗涤,在100℃下真空干燥,将所得到的固体产物在氮气/氢气混合气氛中在800℃下热处理2h,混合气体中氢气的体积分数为10%, 制备得到Mo0.5W0.5S2纳米片/石墨烯的纳米复合材料,复合纳米材料中Mo0.5W0.5S2与石墨烯的物质的量之比为1:2。用XRD,SEM和TEM对最后制备得到Mo0.5W0.5S2纳米片/石墨烯的纳米复合材料进行表征,XRD分析结果表明复合纳米材料中Mo0.5W0.5S2为层状结构,其平均层数为7层, TEM和HRTEM照片(见附图4)显示了负载在石墨烯上的Mo0.5W0.5S2为纳米片形貌,其厚度和平面大小不如前面的Mo0.5W0.5S2纳米瓦的均匀,Mo0.5W0.5S2纳米片的平均层数为6-7层,与XRD分析一致。
 按上述步骤3)的过程制备Mo0.5W0.5S2纳米片/石墨烯电化学贮锂复合电极。电化学测试结果显示:Mo0.5W0.5S2纳米片/石墨烯电化学贮锂复合电极电化学贮锂初始可逆容量为915 mAh/g,50和100次循环后可逆容量为903和862 mAh/g;在大电流充放电时(充放电电流为1000 mA/g),其容量为672 mAh/g。

Claims (3)

1.一种Mo0.5W0.5S2纳米瓦/石墨烯电化学贮锂复合电极,其特征在于,该复合电极的电化学贮锂活性物质为Mo0.5W0.5S2-纳米瓦/石墨烯的复合纳米材料,复合纳米材料中Mo0.5W0.5S2纳米瓦和石墨烯的物质的量之比为1:2,所述Mo0.5W0.5S2纳米瓦为少层数的层状结构,复合电极的组分及其质量百分比含量为:Mo0.5W0.5S2纳米瓦/石墨烯复合纳米材料80-85%,乙炔黑5-10%,聚偏氟乙烯10%。
2.根据权利要求1所述的Mo0.5W0.5S2纳米瓦/石墨烯电化学贮锂复合电极,其特征在于,所述Mo0.5W0.5S2纳米瓦的平均层数为3层。
3.一种权利要求1或2所述Mo0.5W0.5S2纳米瓦/石墨烯电化学贮锂复合电极的制备方法, 其特征在于, 其制备方法按以下步骤进行:
(1)将氧化石墨烯超声分散在去离子水中,加入双子表面活性剂N-十二烷基亚丙基二胺双溴化铵,并充分搅拌,然后依次加入L-半胱氨酸、硫代钼酸铵和硫代钨酸铵,并不断搅拌使L-半胱氨酸、硫代钼酸铵和硫代钨酸铵完全溶解,L-半胱氨酸、硫代钼酸铵和硫代钨酸铵用量的物质的量之比为5:0.5:0.5,硫代钼酸铵、硫代钨酸铵与氧化石墨烯的物质的量之比为0.5: 0.5: 2;
(2)将步骤(1)得到的混合分散体系转移到水热反应釜中,并加入去离子水调整体积至水热反应釜标称体积的80%,双子表面活性剂N-十二烷基亚丙基二胺双溴化铵的浓度为0.01~0.02 mol/L,氧化石墨烯的含量为30-65 mmol/L, 将该反应釜放入恒温烘箱里,在230℃下水热反应24 h后,让其自然冷却至室温,用离心分离收集水热反应固体产物,并用去离子水充分洗涤,在100℃下真空干燥, 将得到的水热反应固体产物在氮气/氢气混合气氛中在800℃下热处理2 h,混合气体中氢气体积分数为10%,最后制备得到Mo0.5W0.5S2纳米瓦/石墨烯的复合纳米材料;
(3)将上述制备的Mo0.5W0.5S2纳米瓦/石墨烯复合纳米材料作为电极的电化学贮锂活性物质,与乙炔黑及质量分数5%的聚偏氟乙烯的N-甲基吡咯烷酮溶液在搅拌下充分混合调成均匀的浆料,将该浆料均匀地涂到作为集流体的铜箔上,干燥,滚压得到电极。
CN201410339860.8A 2014-07-17 2014-07-17 Mo0.5W0.5S2纳米瓦/石墨烯电化学贮锂复合电极及制备方法 Expired - Fee Related CN104103814B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410339860.8A CN104103814B (zh) 2014-07-17 2014-07-17 Mo0.5W0.5S2纳米瓦/石墨烯电化学贮锂复合电极及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410339860.8A CN104103814B (zh) 2014-07-17 2014-07-17 Mo0.5W0.5S2纳米瓦/石墨烯电化学贮锂复合电极及制备方法

Publications (2)

Publication Number Publication Date
CN104103814A true CN104103814A (zh) 2014-10-15
CN104103814B CN104103814B (zh) 2016-05-25

Family

ID=51671769

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410339860.8A Expired - Fee Related CN104103814B (zh) 2014-07-17 2014-07-17 Mo0.5W0.5S2纳米瓦/石墨烯电化学贮锂复合电极及制备方法

Country Status (1)

Country Link
CN (1) CN104103814B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793253A (zh) * 2018-05-07 2018-11-13 皖西学院 一种一维过渡金属硫属化物纳米线及其储能应用
CN109390567A (zh) * 2017-08-14 2019-02-26 中原大学 电池负极材料的组成物
CN114203984A (zh) * 2021-11-08 2022-03-18 南京航空航天大学 一种WS2@MoS2@C/rGO电极材料及制备方法和应用
CN114242964A (zh) * 2021-11-08 2022-03-25 南京航空航天大学 一种锂离子电池负极用电极材料及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683648A (zh) * 2012-06-08 2012-09-19 浙江大学 少层数MoS2/石墨烯电化学贮锂复合电极的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683648A (zh) * 2012-06-08 2012-09-19 浙江大学 少层数MoS2/石墨烯电化学贮锂复合电极的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. V. KRIVOSHEEVA ET AL.: "Electronic and optical properties of two-dimensional MoS2, WS2, and Mo0.5W0.5S2 from first-principles.", 《PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109390567A (zh) * 2017-08-14 2019-02-26 中原大学 电池负极材料的组成物
CN108793253A (zh) * 2018-05-07 2018-11-13 皖西学院 一种一维过渡金属硫属化物纳米线及其储能应用
CN114203984A (zh) * 2021-11-08 2022-03-18 南京航空航天大学 一种WS2@MoS2@C/rGO电极材料及制备方法和应用
CN114242964A (zh) * 2021-11-08 2022-03-25 南京航空航天大学 一种锂离子电池负极用电极材料及制备方法
CN114242964B (zh) * 2021-11-08 2023-05-09 南京航空航天大学 一种锂离子电池负极用电极材料及制备方法

Also Published As

Publication number Publication date
CN104103814B (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
CN102683647B (zh) 锂离子电池类石墨烯MoS2/石墨烯复合电极的制备方法
CN102683648B (zh) 少层数MoS2/石墨烯电化学贮锂复合电极的制备方法
CN102142537B (zh) 一种石墨烯/MoS2复合纳米材料锂离子电池电极及制备方法
CN102142538B (zh) 一种石墨烯/MoS2与无定形碳的锂离子电池电极及制备方法
CN102723463B (zh) 一种锂离子电池单层MoS2/石墨烯复合电极的制备方法
CN104124434B (zh) 多边缘MoS2纳米片/石墨烯电化学贮锂复合电极及制备方法
CN104091922B (zh) Mo0.5W0.5S2纳米瓦/石墨烯电化学贮钠复合电极及制备方法
CN102709520B (zh) 锂离子电池MoS2纳米带与石墨烯复合电极及其制备方法
CN104103814A (zh) Mo0.5W0.5S2纳米瓦/石墨烯电化学贮锂复合电极及制备方法
CN104091915B (zh) 一种高容量和循环稳定的电化学贮钠复合电极及制备方法
CN104124435B (zh) 多边缘MoS2纳米片/石墨烯电化学贮钠复合电极及制备方法
CN104091926B (zh) Ws2纳米瓦/石墨烯电化学贮钠复合电极及制备方法
CN104091916B (zh) MoS2带孔纳米片/石墨烯电化学贮钠复合电极及制备方法
CN104091924B (zh) Mo0.5W0.5S2纳米瓦/石墨烯电化学贮镁复合电极及制备方法
CN104091928B (zh) MoS2带孔纳米片/石墨烯电化学贮锂复合电极及制备方法
CN104091929B (zh) Ws2纳米瓦/石墨烯电化学贮镁复合电极及制备方法
CN104103833B (zh) 多边缘ws2/石墨烯电化学贮镁复合电极及制备方法
CN104091954B (zh) 多边缘ws2/石墨烯电化学贮钠复合电极及制备方法
CN104091927B (zh) Ws2带孔纳米片/石墨烯电化学贮镁复合电极及制备方法
CN104103834B (zh) Ws2带孔纳米片/石墨烯电化学贮钠复合电极及制备方法
CN104103810B (zh) 多边缘ws2/石墨烯电化学贮锂复合电极及制备方法
CN104091925B (zh) 多边缘MoS2纳米片/石墨烯电化学贮镁复合电极及制备方法
CN104103811B (zh) MoS2带孔纳米片/石墨烯电化学贮镁复合电极及制备方法
CN104103830B (zh) 一种高容量和循环稳定的电化学贮锂复合电极及制备方法
CN104103806B (zh) Ws2纳米瓦/石墨烯电化学贮锂复合电极及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160525

Termination date: 20200717

CF01 Termination of patent right due to non-payment of annual fee