CN104096388B - 一种从固液相反应体系中直接分离催化剂的方法 - Google Patents

一种从固液相反应体系中直接分离催化剂的方法 Download PDF

Info

Publication number
CN104096388B
CN104096388B CN201410363071.8A CN201410363071A CN104096388B CN 104096388 B CN104096388 B CN 104096388B CN 201410363071 A CN201410363071 A CN 201410363071A CN 104096388 B CN104096388 B CN 104096388B
Authority
CN
China
Prior art keywords
separator tube
centrifugal separator
solid
stage centrifugal
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410363071.8A
Other languages
English (en)
Other versions
CN104096388A (zh
Inventor
吴剑
宋仕芋
袁霞
罗和安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201410363071.8A priority Critical patent/CN104096388B/zh
Publication of CN104096388A publication Critical patent/CN104096388A/zh
Application granted granted Critical
Publication of CN104096388B publication Critical patent/CN104096388B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种从固液相反应体系中直接分离催化剂的方法,通过内置的离心分离装置对反应器内的固液相进行分离;在固定的时间间隔后,通过改变搅拌桨转速,将离心分离装置上的排渣阀打开,使重相排入反应器中,从而实现从固液相反应体系中直接分离催化剂。通过反应器内置的离心分离装置,简化了催化剂的分离流程。

Description

一种从固液相反应体系中直接分离催化剂的方法
技术领域
本发明涉及一种从固液相反应体系中直接分离催化剂的方法,更进一步说明是通过安装在反应器内的离心分离装置,在离心力作用下将液相中的固体催化剂与反应液进行分离,实现液固相反应体系的催化剂低成本和高效率的预分离或直接分离的方法。
背景技术
在固液相催化反应中,催化剂常以负载型或悬浮型这两种形态存在,虽然负载型催化剂的分离回收问题比较容易解决,但当细小的催化剂颗粒负载在载体上时,会不同程度的损失催化剂的活性位和比表面积,导致催化剂的催化活性和选择性降低。悬浮型催化剂的催化活性高于负载型催化剂,但悬浮型催化剂在使用时不可避免的涉及到催化剂与产物的分离问题,常用的催化剂分离方法有重力沉降、离心分离、膜过滤、磁分离、超临界萃取分离等等。重力沉降是利用重力和液固相密度差将催化剂颗粒与反应产物进行分离。中国专利CN1432560公开了一种在环己酮氨肟化过程中通过沉降器分离粒径为0.1~0.3μm钛硅分子筛的方法。重力沉降的不足是分离时间长,对于催化剂破损后产生的小粒径催化剂的分离效率低,同时分离设备尺寸较大,故一般无法布置在反应器内,增加了设备投资。
为了缩短分离催化剂的时间,离心分离是优先采用的分离方法。常见的离心机按照卸料方式包括三足式、卧式刮刀卸料式、卧式活塞推料式和离心力卸料式,其中三足式离心机缺点是生产能力低,人工上料卸料时劳动强度大,操作条件差,卧式刮刀卸料离心机的缺点是对固体颗粒的破碎严重、刮刀无法刮尽转鼓上的滤渣,卧式活塞推料离心机缺点是对悬浮液的浓度波动比较敏感,容易产生跑料现象,离心力卸料离心机的缺点是对物料的性质和溶液的浓度的变化非常敏感、适应性差,物料停留时间不易控制。中国专利CN1415423公开了一种具有双级转鼓和双级螺旋卸料的沉降式离心机:物料经双级转鼓加速旋转,固液两相得到分离,在差速器的作用下,使双级螺旋输送器以略高或略低于转鼓的转速将分离后的固相推出,液相从一、二级转鼓大端的溢流孔溢出。中国专利CN101113351公开了一种生物柴油的固体催化剂的生成方法:在固体酸或固体碱催化剂的存在条件下,将低碳醇与植物油混合,搅拌,加热,使其发生酯交换反应,反应完全后,用离心机将催化剂分离出去,然后将反应混合物静置,分为上下两层,上层为粗制产品。现有离心分离技术的离心分离器均置于反应器外部,对于间歇卸料式离心机,由于卸料不完全和周期循环操作造成固液相反应所需的催化剂用量增大,增加了生产成本,对于连续卸料式离心机也同样存在增加工艺流程和生产成本的问题。
旋流分离是一种利用流体旋转所产生的的离心力,在离心力场中实现对物料的分离或分选,将固体颗粒分离出来的分离装置。旋流分离由于没有运动部件,使得结构简单、单位处理量大。但是由于旋流分离需要泵等设备额外提供动力以便使物料在分离器内高速运动,使得分离过程能耗较大,同时物料的高速运动会造成分离设备和催化剂的磨损,使其在固液相催化反应催化剂分离方面的应用受到了限制。
膜过滤方法的分离效果通常较好。中国专利CN201231096公开了一种反应器内催化剂分离装置:通过安装在反应器内的过滤膜,使催化剂不被排出反应器的液体带出,始终留在反应器内。中国专利CN1394672公开了一种非均相悬浮钛纳米催化反应的催化剂膜分离方法:用泵连续抽取反应釜内的物料送入孔径为2~200nm的陶瓷、金属或其复合材料膜管中,利用膜的筛分原理,液相产品不断透过膜管被分离,悬浮态催化剂被截留在膜管内并随循环物料重新返回反应釜中。无机陶瓷膜的孔径较小,但是容易破损,金属膜虽然强度高,但是由于材料的限制使得其孔径较大,从而造成分离精度相对较低。过滤膜置于反应器内部的缺点是当过滤膜破损或失效后不便于在线更换,且由于反应器内部空间的限制,对过滤膜的尺寸和数量也有限制,而将过滤膜置于反应器外部虽然能克服以上缺点,但是也存在设备复杂、工艺流程长的不足,当催化剂粒径较小时,容易堵塞过滤膜的微孔,导致过滤阻力逐渐增大,使过滤操作难以持续进行,并且由于过滤膜的成本较高,也限制了膜过滤方法的工业应用范围。
磁分离技术主要有两种,一种是利用高梯度磁场产生磁场力,对强磁性物质进行分离;另一种方法是利用强磁场促进铁磁性物质的絮凝,从而增大颗粒的沉降速度,达到分离目的。中国专利CN1272491公开了一种己内酰胺加氢精制方法:在磁稳定床反应器,使用具有铁磁性的催化剂,由于磁场的磁化作用而相互吸引并稳定于反应器中不随反应物料动,从而克服了催化剂的分离问题。磁分离技术的缺点是需要用具有铁磁性的催化剂,或将催化剂负载于铁磁性的载体上,这限制了该技术的应用范围。
超临界萃取分离方法是利用超临界流作为溶剂将反应产物萃取出来,从而达到与催化剂分离的目的。该方法所需设备复杂,装置投资和操作费用都比较大。
因此,如何高效、低成本的分离固液相反应体系中的催化剂,成为固液相反应能否进行工业生产的关键。
发明内容
为了解决上述技术问题,本发明提供一种离心分离装置内置于反应器、分离流程简化的从固液相反应体系中直接分离催化剂的方法。
本发明的技术方案为:
一种从固液相反应体系中直接分离催化剂的方法,其特征是将固液相催化反应过程与催化剂的分离过程耦合于同一系统中,所采用的设备包括反应器和沿搅拌桨径向布置的离心分离装置,所述的离心分离装置包括离心分离单元和集液器,所述的离心分离单元的溢流管入口设置于反应器液相空间内;固液相反应体系中含有固体催化剂的反应液通过溢流管进入离心分离单元,在离心力的作用下进行固-液分离,重相向离心分离单元的排渣阀方向移动,轻相流入离心分离单元的轻液收集管后通过设置在反应器气相空间的集液器排出反应器;在固定的时间间隔后,通过改变搅拌桨转速,从而改变排渣阀所受到的离心力,将排渣阀打开后,使重相排入反应器中,从而实现在固液相反应体系中直接分离催化剂。
通过本发明的离心分离装置,固液相反应体系中的固体催化剂在离心分离装置内即可实现部分或完全分离,分离后的轻相通过轻液收集管进入集液器后排出反应器,通过改变搅拌桨转速控制排渣阀的开闭,将重相排入反应器中。
所述的从固液相反应体系中直接分离催化剂的方法中,可通过设计不同的溢流管入口距反应器底部的高度,调整不同反应过程所需的反应器内物料的停留时间。
所述的从固液相反应体系中直接分离催化剂的方法中,固液相反应体系操作压力为常压至2MPa,固液相反应体系中的固体催化剂粒径为0.1~100μm,催化剂质量浓度为0.1%~30%。
所述的从固液相反应体系中直接分离催化剂的方法中,离心分离单元沿搅拌桨径向等间距布置,离心分离单元包括一级或两级离心分离管、溢流管和轻液收集管,所述两级离心分离管包括一级离心分离管和二级离心分离管;所述溢流管与一级离心分离管相连;所述轻液收集管与一级离心分离管或二级离心分离管相连;离心分离管上设置的升液管与相邻离心分离管连接。
所述的从固液相反应体系中直接分离催化剂的方法中,溢流管入口轴线与溢流管旋转的速度切线方向夹角为0~90°;离心分离单元数量为2~10个;一级离心分离管数量为1~6根,一级离心分离管轴线与搅拌桨轴向夹角为10~80°,一级离心分离管长径比为10~200,二级离心分离管数量为0~6根,二级离心分离管轴线与搅拌桨轴向夹角为10~80°,二级离心分离管长径比为10~200。
所述的从固液相反应体系中直接分离催化剂的方法中,所述的排渣阀安装于一级、二级离心分离管端部,排渣阀在重力或弹力的作用下处于常闭状态。
所述的从固液相反应体系中直接分离催化剂的方法中,集液器布置在反应器的气相空间内,集液器包括圆环形的集液盘和与反应器外部相连的集液总管,集液盘截面为U型,集液总管截面为U型或O型,集液盘或集液总管上布置有泪孔,泪孔数目为0~20个。
发明人通过研究发现,本发明所述的从固液相反应体系中直接分离催化剂的方法中,通过在集液盘或集液总管上布置泪孔,可以减少催化剂的损失并保证在重相排入反应器过程中,反应器出口轻相流量稳定。当搅拌桨转速较低时,造成离心分离装置对催化剂分离尚不完全且分离装置内流体流速较低,因此进入集液器中的含有较多固体催化剂的轻相大部分将由泪孔重新流入反应器的液相空间。当提高搅拌桨转速使得排渣器打开并排出含有催化剂的重相时,造成离心分离装置内流体流速过高,使得进入集液器中的轻相流量超出额定值,此时,超出额定值部分的轻相将由泪孔重新流入反应器的液相空间,从而保障反应器出口轻相流量的稳定。
发明人通过研究发现,本发明所述的从固液相反应体系中直接分离催化剂的方法中,溢流管入口轴线与溢流管旋转的速度切线方向夹角的正确选择是保证能建立正常的催化剂分离循环的关键。为保证分离后的轻相能顺利通过轻液收集管的最高点,需要溢流管入口轴线与溢流管旋转的速度切线方向呈一定角度,用以给分离装置内的流体提供足够的压头。对于固液相反应体系中固体催化剂的分离,可通过改变分离单元数量、分离管数量、分离管轴线与搅拌桨轴向夹角、长径比、尺寸,以获得理想的分离效果。
本发明还提供了一种用于上述方法的设备,包括反应器和沿搅拌桨径向布置的离心分离装置,所述的离心分离装置包括离心分离单元和集液器,所述的离心分离单元包括一级或两级离心分离管、溢流管和轻液收集管,所述两级离心分离管包括一级离心分离管和二级离心分离管,所述轻液收集管与一级离心分离管或二级离心分离管相连,离心分离管上设置的升液管与相邻离心分离管连接,所述溢流管与一级离心分离管相连;所述的集液器布置在反应器的气相空间内,所述集液器包括圆环形的集液盘和与反应器外部相连的集液总管。
上述的设备,所述的离心分离单元沿搅拌桨径向等间距布置;所述的离心分离单元数量为2~10个;所述溢流管入口轴线与溢流管旋转的速度切线方向夹角为0~90°;所述的一级、二级离心分离管端部安装有排渣阀;所述的一级离心分离管数量为1~6根,所述一级离心分离管轴线与搅拌桨轴向夹角为10~80°,所述一级离心分离管长径比为10~200;二级离心分离管数量为0~6根,所述二级离心分离管轴线与搅拌桨轴向夹角为10~80°,所述二级离心分离管长径比为10~200;所述集液盘截面为U型,所述集液总管截面为U型或O型,所述的集液盘或集液总管上布置有泪孔,所述泪孔数目为0~20个。
与现有技术相比,本发明的有益效果在于:
(1)现有采用离心分离固液相反应体系中催化剂的方法,离心分离设备均置于反应器外部,而本发明将离心分离装置设置在反应器内部,离心分离装置与反应器搅拌桨轴刚性连接,通过搅拌桨轴带动离心分离装置运动,反应-分离过程耦合度高,降低了设备投资,并且简化了催化剂分离流程,有利于工程放大。
(2)现有采用离心分离固液相反应体系中催化剂的方法,采用间歇卸料或连续卸料的离心机,分离出的催化剂无法直接重新进入反应器内;而本发明由于离心分离装置设置在反应器内部,并且通过改变搅拌桨转速控制排渣阀的开闭,可以将含有催化剂的重相直接排入反应器中,能够实现催化剂的在线卸料,从而简化了催化剂卸料方式,降低了催化剂损失。
附图说明
图1为本发明的设备结构示意图。
图2为本发明的离心分离单元结构示意图。
图3为本发明的溢流管入口轴线与溢流管旋转的速度切线方向夹角示意图。
图4-A/B/C为本发明的排渣阀结构示意图:图4-A弹簧压力作用常闭;图4-B弹簧拉力作用常闭;图4-C重力作用常闭。
图5为本发明的集液器结构示意图(俯视图)。
1-溢流管入口     2-溢流管       3-一级离心分离管
4-升液管         5-排渣阀       6-二级离心分离管
7-轻液收集管     8-阀瓣         9-弹簧
10-集液盘        11-集液总管    12-泪孔
A-反应器;
B-离心分离单元;
C-集液器;
D-搅拌桨轴;
E-电动机;
F-反应器气相空间
G-反应器液相空间。
具体实施方式
下面结合实施例对本发明做进一步说明,实施例不应该解释为对本发明范围的限制。
在实施例中,所用钛硅分子筛催化剂由长岭催化剂长生产,粒度为0.2~0.3um;ZSM-5分子筛由南开大学催化剂厂生产,粒度为4~10um环己酮为鹰山石油化工厂产品;氨和27.5wt%的双氧水为洞庭湖氮肥厂产品;叔丁醇为天津大茂化学试剂厂产品;氯丙烯为巴陵石化公司产品;甲醇为天津市科密欧化学试剂有限公司产品;环己烯为岳阳昌德化工实业有限公司产品。
在实施例中,所用反应器有效体积为1升,具有机械搅拌装置和夹套换热系统,搅拌转速为200rpm,排渣阀开启转速为300rpm。反应原料及反应产物连续进出反应器。
在实施例中,催化剂分离效果通过分析反应器出口固含量来确定。反应器出口固含量的分析方法:取100毫升反应器出口液体,放在坩埚中,在120℃干燥4小时,接着在马弗炉中于400~500℃焙烧2~3小时,最后将坩埚于分析天平上精确到0.0001g称重,从而获得反应器出口催化剂含量。
实施例1
对于环己酮氨肟化反应体系,如图1所示,所采用的设备包括反应器A和沿搅拌桨轴D径向布置的离心分离装置,所述的离心分离装置包括离心分离单元B和集液器C。如图2所示,所述的离心分离B单元包括溢流管入口1、溢流管2、一级离心分离管3、升液管4、排渣阀5、二级离心分离管6和轻液收集管7。如图3所示,所述的溢流管2的入口轴线与溢流管旋转的速度切线方向之间的夹角是建立正常催化剂分离循环的关键。如图4-A/B/C所示,所述的排渣阀5有弹簧压力作用常闭、弹簧拉力作用常闭和重力作用常闭三种形式。如图5所示,所述的集液器C包括集液盘10和集液总管11,在集液盘10和集液总管11布置有泪孔12。
反应原料环己酮、27.5wt%双氧水、氨和溶剂叔丁醇进入反应器A后,在反应器内催化剂钛硅分子筛的作用下进行反应,催化剂与产物所组成的固液相流体通过离心分离单元B的溢流管2进入一级离心分离管3,溢流管入口1距离反应器底部的高度决定了反应器内反应的停留时间。
进入一级离心分离管3中的固液相流体在离心力的作用下,含催化剂较多的重相向排渣阀5方向运动,含催化剂较少的轻相则由升液管4进入二级离心分离管6。进入二级离心分离管6中的固液相流体,一部分在离心力作用下,含催化剂较多的重相向排渣阀5方向运动,含催化剂较少的轻相汇入轻液收集管7;其余部分则通过升液管4进入相邻的二级离心分离管6继续重复离心分离过程。轻液收集管7中的轻相,流入集液器C的集液盘10中,并由集液总管11排出反应器。
在固定时间间隔后,通过改变搅拌机轴D的转速,改变排渣阀5的受力状态,使排渣阀5打开,将含催化剂较多的重相排入反应器内,实现固液相流体的分离。
进料参数如下:
环己酮=106克/小时
叔丁醇=522克/小时
27.5wt%双氧水=149克/小时
氨=40.7克/小时
钛硅分子筛浓度=1.8wt%
物料在反应器中的平均停留时间为70分钟,反应温度通过夹套换热保持在82±1℃,反应压力维持0.3MPa。
反应器结构参数如下:
离心分离单元数:2个
溢流管入口轴线与溢流管旋转的速度切线方向夹角:30°
一级离心分离管数:1根
一级离心分离管轴线与搅拌桨轴向夹角:40°
一级离心分离管长径比:10
二级离心分离管数:3根
二级离心分离管轴线与搅拌桨轴向夹角:40°
二级离心分离管长径比:15
排渣阀:弹簧拉力作用常闭式
集液盘、集液总管截面均为U型
集液盘上均布4个泪孔
分离效果:
反应器出口钛硅分子筛含量:2ppm
实施例2
对于氯丙烯环氧化反应体系,实施过程除以下不同外,其余均同实施例1。
进料参数如下:
氯丙烯=167毫升/小时
甲醇=166毫升/小时
27.5wt%双氧水=87毫升/小时
钛硅分子筛浓度=7.5克/升
物料在反应器中的平均停留时间为90分钟,反应温度通过夹套换热保持在35±1℃,反应压力为常压。
反应器结构参数如下:
离心分离单元数:2个
溢流管入口轴线与溢流管旋转的速度切线方向夹角:20°
一级离心分离管数:0根
二级离心分离管数:3根
二级离心分离管轴线与搅拌桨轴向夹角:40°
二级离心分离管长径比:15
排渣阀:弹簧压力作用常闭式
集液盘、集液总管截面均为U型
集液盘上均布4个泪孔
分离效果:
反应器出口钛硅分子筛含量:4ppm
实施例3
对于环己烯水合制环己醇反应体系,实施过程除以下不同外,其余均同实施例1。
进料参数如下:
环己烯=280毫升/小时
水=200毫升/小时
ZSM-5分子筛浓度=20wt%
物料在反应器中的平均停留时间为120分钟,反应温度通过夹套换热保持在120℃,反应压力为0.5MPa。
反应器结构参数如下:
离心分离单元数:2个
溢流管入口轴线与溢流管旋转的速度切线方向夹角:30°
一级离心分离管数:2根
一级离心分离管轴线与搅拌桨轴向夹角:40°
一级离心分离管长径比:10
二级离心分离管数:3根
二级离心分离管轴线与搅拌桨轴向夹角:40°
二级离心分离管长径比:15
排渣阀:重力作用常闭式
集液盘、集液总管截面均为U型
集液盘上均布4个泪孔
分离效果:
反应器出口ZSM-5分子筛含量:3ppm
对比例1
按照【实施例2】的进料及反应条件进行氯丙烯环氧化反应,催化剂分离方式为无机膜分离,无机膜孔径4.5~9μm。
分离效果:
无机膜出口清液钛硅分子筛含量:25ppm
对比例2
按照【实施例2】的进料及反应条件进行氯丙烯环氧化反应,催化剂分离方式为重力沉降分离,物料在沉降器中的线速度为1.5cm/min,物料在沉降器中的停留时间为20min。
分离效果:
沉降器上层清液钛硅分子筛含量:31ppm
从上述实施例和对比例中反应器出口的钛硅分子筛含量数据可以看出,采用本发明所提供的催化剂分离方法,催化剂损失量极其微小,均在5ppm以下,相对现有的无机膜分离和重力沉降分离方法均体现出明显的优势,说明本发明的分离方法对催化剂的分离效果优良,有良好的应用前景。

Claims (10)

1.一种从固液相反应体系中直接分离催化剂的方法,其特征在于:将固液相催化反应过程与催化剂的分离过程耦合于同一系统中,所采用的设备包括反应器和沿搅拌桨径向布置的离心分离装置,所述的离心分离装置包括离心分离单元和集液器,所述的离心分离单元的溢流管入口设置于反应器液相空间内;固液相反应体系中含有固体催化剂的反应液通过溢流管进入离心分离单元,在离心力的作用下进行固-液分离,重相向离心分离单元的排渣阀方向移动,轻相流入离心分离单元的轻液收集管后通过设置在反应器气相空间的集液器排出反应器;固定的时间间隔后,通过改变搅拌桨转速改变排渣阀所受到的离心力,将排渣阀打开后,使重相排入反应器中,从而实现在固液反应体系中直接分离催化剂。
2.根据权利要求1所述的从固液相反应体系中直接分离催化剂的方法,其特征在于:所述的固液相反应体系操作压力为常压至2MPa,固液相反应体系中的固体催化剂粒径为0.1~100μm,催化剂质量浓度为0.1%~30%。
3.根据权利要求1所述的从固液相反应体系中直接分离催化剂的方法,其特征在于:所述的离心分离单元沿搅拌桨径向等间距布置;所述的离心分离单元包括一级或两级离心分离管、溢流管和轻液收集管,所述两级离心分离管包括一级离心分离管和二级离心分离管;所述溢流管与一级离心分离管相连;所述轻液收集管与一级离心分离管或二级离心分离管相连;离心分离管上设置的升液管与相邻离心分离管连接。
4.根据权利要求3所述的从固液相反应体系中直接分离催化剂的方法,其特征在于:所述溢流管入口轴线与溢流管旋转的速度切线方向夹角为0~90°;所述的一级离心分离管数量为1~6根,所述的一级离心分离管轴线与搅拌桨轴向夹角为10~80°,所述的一级离心分离管长径比为10~200;所述的二级离心分离管数量为0~6根,所述的二级离心分离管轴线与搅拌桨轴向夹角为10~80°,所述的二级离心分离管长径比为10~200。
5.根据权利要求1所述的从固液相反应体系中直接分离催化剂的方法,其特征在于:所述的排渣阀安装于一级、二级离心分离管端部,所述的排渣阀在重力或弹力的作用下处于常闭状态。
6.根据权利要求1至5任一项所述的从固液相反应体系中直接分离催化剂的方法,其特征在于:所述的离心分离单元数量为2~10个。
7.根据权利要求1所述的从固液相反应体系中直接分离催化剂的方法,其特征在于:所述的集液器布置在反应器的气相空间内,所述集液器包括圆环形的集液盘和与反应器外部相连的集液总管。
8.根据权利要求7所述的从固液相反应体系中直接分离催化剂的方法,其特征在于:所述集液盘截面为U型,所述集液总管截面为U型或O型;所述的集液盘或集液总管上布置有泪孔,所述泪孔数目为4~20个。
9.一种用于权利要求1-8任一项所述方法的设备,其特征在于:包括反应器和沿搅拌桨径向布置的离心分离装置,所述的离心分离装置包括离心分离单元和集液器,所述的离心分离单元包括一级或两级离心分离管、溢流管和轻液收集管,所述两级离心分离管包括一级离心分离管和二级离心分离管,所述轻液收集管与一级离心分离管或二级离心分离管相连,离心分离管上设置的升液管与相邻离心分离管连接,所述溢流管与一级离心分离管相连;所述的集液器布置在反应器的气相空间内,所述集液器包括圆环形的集液盘和与反应器外部相连的集液总管。
10.根据权利要求9所述的设备,其特征在于:所述的离心分离单元沿搅拌桨径向等间距布置;所述的离心分离单元数量为2~10个;所述溢流管入口轴线与溢流管旋转的速度切线方向夹角为0~90°;所述的一级、二级离心分离管端部安装有排渣阀;所述的一级离心分离管数量为1~6根,所述一级离心分离管轴线与搅拌桨轴向夹角为10~80°,所述一级离心分离管长径比为10~200;二级离心分离管数量为0~6根,所述二级离心分离管轴线与搅拌桨轴向夹角为10~80°,所述二级离心分离管长径比为10~200;所述集液盘截面为U型,所述集液总管截面为U型或O型,所述的集液盘或集液总管上布置有泪孔,所述泪孔数目为4~20个。
CN201410363071.8A 2014-07-28 2014-07-28 一种从固液相反应体系中直接分离催化剂的方法 Active CN104096388B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410363071.8A CN104096388B (zh) 2014-07-28 2014-07-28 一种从固液相反应体系中直接分离催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410363071.8A CN104096388B (zh) 2014-07-28 2014-07-28 一种从固液相反应体系中直接分离催化剂的方法

Publications (2)

Publication Number Publication Date
CN104096388A CN104096388A (zh) 2014-10-15
CN104096388B true CN104096388B (zh) 2015-11-04

Family

ID=51665168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410363071.8A Active CN104096388B (zh) 2014-07-28 2014-07-28 一种从固液相反应体系中直接分离催化剂的方法

Country Status (1)

Country Link
CN (1) CN104096388B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108126375A (zh) * 2018-01-23 2018-06-08 北京澳柯清洁煤气工程技术有限公司 渣液分离设备及方法
CN113842857B (zh) * 2021-09-14 2023-08-29 煤炭科学技术研究院有限公司 一种用于配制酰化液的系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1383926A (zh) * 2002-03-05 2002-12-11 高根树 内旋转子沉降离心机
CN1394672A (zh) * 2002-07-01 2003-02-05 南京工业大学 非均相悬浮态纳米催化反应的催化剂膜分离方法
JP2003062405A (ja) * 2001-08-29 2003-03-04 Mitsubishi Chemicals Corp 固液分離方法
CN1590362A (zh) * 2003-07-18 2005-03-09 拜尔材料科学股份公司 从反应混合物中分离金属催化剂组分的方法
JP4047136B2 (ja) * 2002-11-07 2008-02-13 三菱化工機株式会社 遠心分離機による固液分離方法
CN101352671A (zh) * 2008-09-10 2009-01-28 中南大学 一种反应及固液分离一体化装置
CN201231096Y (zh) * 2008-06-16 2009-05-06 长春和禾生物化工股份有限公司 反应器内催化剂分离装置
CN102316969A (zh) * 2009-02-13 2012-01-11 埃克森美孚研究工程公司 浆料反应器细粒的分离和除去
CN102784498A (zh) * 2011-05-17 2012-11-21 宜昌市新丰机电设备制造有限公司 竖式离心沉降固液分离机及其分离方法
CN103405947A (zh) * 2013-06-06 2013-11-27 中国石油化工股份有限公司催化剂齐鲁分公司 一种催化剂颗粒回收的系统和方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062405A (ja) * 2001-08-29 2003-03-04 Mitsubishi Chemicals Corp 固液分離方法
CN1383926A (zh) * 2002-03-05 2002-12-11 高根树 内旋转子沉降离心机
CN1394672A (zh) * 2002-07-01 2003-02-05 南京工业大学 非均相悬浮态纳米催化反应的催化剂膜分离方法
JP4047136B2 (ja) * 2002-11-07 2008-02-13 三菱化工機株式会社 遠心分離機による固液分離方法
CN1590362A (zh) * 2003-07-18 2005-03-09 拜尔材料科学股份公司 从反应混合物中分离金属催化剂组分的方法
CN201231096Y (zh) * 2008-06-16 2009-05-06 长春和禾生物化工股份有限公司 反应器内催化剂分离装置
CN101352671A (zh) * 2008-09-10 2009-01-28 中南大学 一种反应及固液分离一体化装置
CN102316969A (zh) * 2009-02-13 2012-01-11 埃克森美孚研究工程公司 浆料反应器细粒的分离和除去
CN102784498A (zh) * 2011-05-17 2012-11-21 宜昌市新丰机电设备制造有限公司 竖式离心沉降固液分离机及其分离方法
CN103405947A (zh) * 2013-06-06 2013-11-27 中国石油化工股份有限公司催化剂齐鲁分公司 一种催化剂颗粒回收的系统和方法

Also Published As

Publication number Publication date
CN104096388A (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
CN100586550C (zh) 一种用于浆态床反应器的液固连续分离方法和设备
CN107837557B (zh) 一种粗颗粒、低水不溶物硫酸钴的连续结晶系统及其工艺
CN106345375B (zh) 一种同时带有反应和分离功能的内环流反应器
CN101116844A (zh) α型旋流分离器
CN108328761A (zh) Mto水洗水工艺连续运行周期延长的方法及装置
CN105936531A (zh) 一种诱导结晶沉淀水处理设备
CN104096388B (zh) 一种从固液相反应体系中直接分离催化剂的方法
CN102451651B (zh) 一种浆态床环流反应器及其应用
CN112239256B (zh) 一种大流量循环造粒流化床高速固液分离设备
CN102641791B (zh) 一种高浓度液固水力旋流器
CN202070406U (zh) 一种卧式螺旋卸料沉降离心机
CN102049222B (zh) 一种采用新型过滤组件的浆态床环流反应器应用方法
CN104549064A (zh) 一种浆态床反应装置及其应用
CN110508219A (zh) 一种外循环浆态床反应器
CN101838073B (zh) 一种硅钢碱洗液净化方法及设备
CN111001500A (zh) 单向心泵离心机内部流道
CN102060651B (zh) 组合分离混合二甲苯浆料的方法与装置
CN103785197B (zh) 一种浆料高效浓密装置及浓密方法
CN205628156U (zh) 一种一体化工业固体废渣连续分离设备
CN204746286U (zh) 一种浆态床反应器的费托合成产物分离系统
CN109628131B (zh) 一种含固油品的固液分离方法
CN102350113A (zh) 一种刮盘片式过滤器
CN1017214B (zh) 用于悬浮物沉淀物或粘稠料液的萃取装置
KR101002418B1 (ko) 협잡물 처리장치
CN104888667A (zh) 一种浆态床反应器的费托合成产物分离系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant