CN104093684B - 用于净化含乙烯气流的方法和系统 - Google Patents

用于净化含乙烯气流的方法和系统 Download PDF

Info

Publication number
CN104093684B
CN104093684B CN201380008322.4A CN201380008322A CN104093684B CN 104093684 B CN104093684 B CN 104093684B CN 201380008322 A CN201380008322 A CN 201380008322A CN 104093684 B CN104093684 B CN 104093684B
Authority
CN
China
Prior art keywords
load
catalyst
flow
silver
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380008322.4A
Other languages
English (en)
Other versions
CN104093684A (zh
Inventor
明勇·孙
史蒂文·布兰肯希普
迈克尔·乌尔班契奇
理查德·保罗·佐尔达克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant International Ltd
Original Assignee
Clariant Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Corp filed Critical Clariant Corp
Publication of CN104093684A publication Critical patent/CN104093684A/zh
Application granted granted Critical
Publication of CN104093684B publication Critical patent/CN104093684B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/163Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
    • C07C7/167Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation for removal of compounds containing a triple carbon-to-carbon bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/14833Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound with metals or their inorganic compounds
    • C07C7/14841Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound with metals or their inorganic compounds metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G70/00Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G70/00Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
    • C10G70/02Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by hydrogenation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

公开一种具有用于将乙炔选择性转化为乙烯的单独的催化剂床的双催化剂系统,该系统降低乙炔、二烯烃、O2和NOx的浓度。一种含乙烯气流,诸如来自用于生产燃料和粗柴油的炼油厂催化裂解单元的废气流通过首先使该气流与负载在金属氧化物上的银催化剂接触,以及随后使该气流与负载在金属氧化物上的钌催化剂接触来处理。两种催化剂容纳在连接的连续式反应器或反应器隔室内。

Description

用于净化含乙烯气流的方法和系统
领域
本系统涉及气流的催化处理。更具体地,本系统涉及含乙烯气流的催化净化。
背景
乙烯是世界上最广泛生产的石油化学产品之一。大多数的乙烯是通过烃类的裂解产生的。乙炔是乙烯生产过程的副产物且作为用于从乙烯产物制备聚乙烯的催化剂的毒物。此外,乙炔可以形成金属乙炔化物,其是爆炸性的污染物。聚合物级乙烯产物不应含有多于1ppm的乙炔。通过选择性加氢除去微量的乙炔在商业上是熟练的,但对于乙烯生产者和催化剂制造商是一个相当大的挑战。这是由于反应器流出物中低的乙炔浓度和转化接近100%的乙炔而未由于乙烯向乙烷的转化减少乙烯收率的必要性。乙烯是一些化学过程的有价值的原料,且它对有选择性地将乙炔还原为乙烯是有利的。在乙炔的还原中,乙烯的选择性和催化剂的使用寿命在选择催化剂时是重要的变量。
炔烃容易地以化学方法经金属催化剂通过加入H2还原为烷烃。该反应通过烯烃中间体逐步进行。在进一步化学还原为乙烷之前,通过控制催化剂的选择性,有选择地将乙炔的化学还原终止到乙烯是可能的。Al2O3常被用作金属催化剂的载体且具有起路易斯酸和路易斯碱两者作用的能力。钌虽然具有铂族金属的最大活性,但当其在含有乙炔的烃气流中被用作负载型金属催化剂时具有缺点。
在用于乙炔还原的催化剂中使用的铂族金属,例如钌,可以通过乙烯的加氢将乙炔的相当大部分转化为乙烷。
除烃类之外,废气流常含有氮氧化物、氧气、硫和其他杂质。工业规模的最有选择性的乙炔加氢操作使用钯基催化剂。该钯基催化剂对于乙炔和二烯烃的选择性加氢具有高的活性和选择性;但是它们对硫和一些其他的催化剂毒物是非常敏感的。而且,已知该钯基催化剂对氮氧化物和氧气的除去不是特别有效。
镍催化剂也被用于乙炔和二烯烃的选择性加氢。镍催化剂是耐硫中毒的,但是对乙炔的加氢不是选择性的。最通常地,当乙炔被除去时,相当大量的烯烃也被加氢为饱和烃。当一氧化碳的浓度在进料气流中是高的时,特别地在低温下,镍基催化剂还易于形成羰基镍。羰基镍是易挥发的、高毒性的物质,其可以沉积在下游设备中并对工作者造成相当大的安全风险。
概述
公开一种具有用于将乙炔选择性转化为乙烯的单独的催化剂床的双催化剂系统,该系统降低乙炔、二烯烃、O2和NOx的浓度。含乙烯气流,诸如来自用于生产燃料和粗柴油的炼油厂催化裂解单元的废气流,通过首先使该气流与负载在金属氧化物上的银催化剂接触以及随后使该气流与负载在金属氧化物上的钌催化剂接触来处理。两种催化剂容纳在连接的连续式反应器或反应器隔室内。
在使该气流与钌催化剂接触前使该气流与银催化剂接触,这通过乙炔向乙烯的转化率的增加以及乙烯向乙烷的最低的转化率而优化乙烯的选择性。另外,NOx、O2、甲基乙炔和二烯烃也通过该过程被除去。
附图简述
图1描绘了具有单独的银和钌反应器的双反应器配置的流程图。
图2描绘了在单反应器内具有单独的银和钌反应器隔室的单反应器配置的流程图。
优选实施方式的详细描述
本发展是一种可用于净化来自催化裂解器的原料气或废气流的方法和系统。按照本发展的方法,通过使含乙烯烃气流首先与负载型银基催化剂接触且随后与钌基催化剂接触,乙炔、甲基乙炔、二烯烃、NOx和O2同时从含有乙烯、氢气和CO的原料气进料流中被除去,未没有乙烯的相当大的损失。该银基催化剂具有在约0.5质量%到约10%质量%之间的银含量,且该钌基催化剂具有在0.01质量%到约5质量%之间和更优选地在0.01质量%到1质量%之间的钌含量。每种金属催化剂的载体是金属氧化物,该金属氧化物选自Al2O3、SiO2、硅铝酸盐、TiO2、ZrO2、ZnO、MgO、Fe2O3和CeO2或它们的混合物,但优选地为Al2O3。催化剂通过本领域技术人员已知的金属浸渍/沉积法制备。通常,优选的催化剂具有从3m2/g到200m2/g的BET表面积和0.2ml/g到0.8ml/g的汞侵入孔体积。
如图1中描绘的,双反应器配置允许含乙烯进料流100,例如来自FCCU的烯烃气流,流经银催化剂床反应器10以产生第一处理的含乙烯气流200。该第一处理的含乙烯气流200随后被供应至钌催化剂床反应器20以产生第二处理的含乙烯气流300,该第二处理的含乙烯气流300已经通过除去杂质例如乙炔、甲基乙炔、二烯烃、NOx和O2而被净化。可替代地,单反应器30可以利用银催化剂床隔室15和钌催化剂床隔室25,它们被布置为接收含乙烯气流100,并从反应器30内的银催化剂床产生第一处理的含乙烯气流200,且随后流入到容纳在其中的钌催化剂床隔室25以产生第二处理的含乙烯气流300。
具有不同的银和钌浓度的催化剂通过将大约100cc的催化剂装载到反应器中,且然后将被污染的含乙烯进料流供给通过装载的催化剂而单独被测试,并被结合到连续流动反应器中的连接的催化剂床中。为了检测目的,通常将该反应器温度调整为从约120℃到约300℃的温度,一氧化碳含量保持在约0.05mol%到5mol%之间,且硫含量保持在约20ppm以下。反应器压力保持在0.5MPa到5MPa之间且氢气分压保持在约0.05MPa到2MPa之间,气时空速(GHSV)为500hr-1到10,000hr-1的。更优选地,该GHSV保持在1000hr-1到5,000hr-1之间;且最优选地,氢气分压保持在约0.10MPa到1.0MPa之间,GHSV为从约1000hr-1到3500hr-1,且进料流的氢气浓度范围在5mol%到25mol%。
在装载到反应器中后且在引入含乙烯气流之前,通过将氢气或含氢气气体在超过100℃的温度下供给通过催化剂,持续足以还原催化剂的时间段,催化剂被还原。在以下实施例中制备并利用六种催化剂以收集经不同操作条件的数据并总结于表1中。
实施例
在连续流动反应器中测试催化剂1-6。在下面的实施例中的一些中,在同一反应器内连接的床中,在钌催化剂的前面装载银催化剂。大约100cc催化剂被装载到反应器中。在将测试进料混合物引入到反应器之前,催化剂用氢气在204℃下原位预还原3小时。反应器温度调整到预先确定的温度,且将被O2、NOx、CO、乙炔、甲基乙炔和丙二烯污染的含乙烯进料气供给通过该反应器。准备三种不同的反应器进料,且然后使用多种的催化剂和操作条件在反应器中处理三种不同的反应器进料。含乙烯进料组合物在表2中详细说明。结果是针对催化剂和操作条件在除去进料杂质同时限制乙烷的产生方面的效力而检测的。
实施例1:钌催化剂
催化剂1含有在Al2O3上的0.15%钌,且催化剂2含有在Al2O3上的0.3%钌。两者如美国公布2010/0048972Al中描述的来制备。两种催化剂用表2中描述的进料组合物A在1.75MPa下进行测试。气时空速(GHSV)为1500h-1。结果和操作参数在表3中详细说明。
表3中的结果包括在不同的床温和蒸气小时下反应器出口气体分析结果。催化剂1需要178℃的平均床温以将氧气和乙炔还原到1ppm以下,即清除条件。催化剂2在133℃的平均床温下达到清除条件。然而,催化剂2在清除条件下表现出降低的选择性和产生比催化剂1更多的C2H6
实施例2:银催化剂
催化剂3含有负载于Al2O3上的1%Ag,催化剂4含有负载于Al2O3上的3%Ag,且催化剂5含有在Al2O3上的6%Ag,它们通过常规的浸渍法制备。进料组合物和测试条件与实施例1中使用的那些大体上相同。
如表4所示,表4包括在不同床温下反应器出口气体分析结果,催化剂5在147℃下将氧气和乙炔还原到清除条件。催化剂4在177℃下达到清除条件。催化剂3在高至177℃的温度下不能将乙炔还原到1ppm以下。
实施例3:银促进的钌催化剂
催化剂6,银促进的钌催化剂,通过本领域技术人员已知的常规浸渍方法通过将3%银浸渍/沉积到催化剂2上制备。测试条件和进料与在实施例1中使用的测试条件和进料相同。该银促进的钌催化剂在比只有钌催化剂的高于50℃的温度下不能将氧气还原到1ppm以下。结果和操作参数在表5中详细说明。
实施例4:具有6%银负载的催化剂/0.15%钌负载的催化剂的连接的床
33ml的催化剂5和67ml的催化剂1的连接的床被装载在反应器中,并且催化剂5(6%Ag)与反应器入口邻近而催化剂1(0.15%Ru)被装载为邻近反应器出口。测试以如实施例1中单一的钌催化剂床相同的条件运行。银和钌负载的催化剂的连接的床在较低温度下清除氧气和乙炔两者,并且在出口处,相比于单独的钌催化剂,C2H6较少。数据在表6中总结。
实施例5:具有在0.15%钌上的1%银催化剂的连接的床
包含33ml的催化剂3和67ml的催化剂1的连接的床被装载在反应器中,并且催化剂3在上部,最接近于反应器入口,催化剂1在底部,最接近于反应器出口,以替代100ml的单一的钌催化剂床。测试在1.7MPa和1000GHSV下进行。在实施例5中利用进料B。催化剂床温度开始于约130℃并升高直到在反应器出口处O2低于1ppm,NOx不再是可检测的(<0.02ppm),且C2H2不再是可检测的(<1ppm)为止。获得的数据在表7中总结。
在清除O2(<1ppm)前,NOx在156℃下被除去。然而,C2H2的清除要求较高的温度,约170℃。在171℃下,出口的乙炔和NOx低于可检测的水平且氧气为0.05ppm。在清除条件下,产物中的乙烷低于0.4mol%。
实施例6:在连接的床中的1%银催化剂和0.15%钌催化剂的不同比率
在催化剂1之前,催化剂3以不同的体积比被装载,同时保持总催化剂体积为100ml。来自实施例5的测试条件利用于进料C,进料C与在实施例5中使用的进料相似。确定最佳装载比范围是从15%到55%的在钌催化剂上面的银催化剂。操作温度范围在1000的总GHSV下为160℃到185℃。
因此,在具有保持在至少约120℃的温度下的催化剂的连续流动反应器中,通过使还包含H2、CO、O2、乙炔、二烯烃和NOx的含乙烯进料流与负载的银催化剂接触,随后与负载的钌催化剂接触,乙炔、NOx、二烯烃和O2可以从含乙烯气流中除去,并且乙烯损失最低,其中该负载的银催化剂具有在0.5质量%到10质量%之间的银含量,且其中该负载的钌催化剂具有在0.01质量%到5质量%钌之间的钌含量。
应理解,本领域的技术人员可以对在此显示和描述的实施方案作出改变,而不脱离本发明的范围。例如,可预料,反应器压力和气时流速可以由本领域的技术人员调整以适应不同尺寸的反应器。

Claims (11)

1.一种用于净化含乙烯气流的方法,所述含乙烯气流包含乙炔、二烯烃、氧气和氮氧化物,所述方法包括至少以下步骤:
a.使所述含乙烯气流与具有在0.5质量%到10质量%之间的银含量的负载的银催化剂接触以产生第一处理的含乙烯气流;以及
b.使所述第一处理的含乙烯气流与具有在0.01质量%到5质量%之间的钌含量的负载的钌催化剂接触以产生第二处理的含乙烯气流,所述第二处理的含乙烯气流包含小于1ppm的乙炔、小于1ppm的NOx和小于1ppm的O2,并且相对于入口乙烯的乙烯损失小于2%,
其中所述含乙烯气流与所述负载的银催化剂和所述负载的钌催化剂在120℃到250℃之间的温度和0.5MPa到5MPa之间的压力下接触。
2.如权利要求1所述的方法,其中催化剂载体选自由Al2O3、SiO2、硅铝酸盐、TiO2、ZrO2、ZnO、MgO、Fe2O3和CeO2或它们的混合物组成的组。
3.如权利要求2所述的方法,其中所述催化剂载体具有从3m2/g到200m2/g的BET表面积和0.2ml/g到0.8ml/g的汞侵入孔体积。
4.如权利要求1所述的方法,其中所述含乙烯气流与所述负载的银催化剂和所述负载的钌催化剂在0.05MPa到2MPa之间的氢气分压下接触。
5.如权利要求1所述的方法,其中所述负载的银催化剂的量在与所述含乙烯气流接触的所述负载的银催化剂和所述负载的钌催化剂的总结合体积的1体积%到99体积%之间。
6.如权利要求5所述的方法,其中所述负载的银催化剂的量在与所述含乙烯气流接触的所述负载的银催化剂和所述负载的钌催化剂的总结合体积的5体积%到75体积%之间。
7.一种用于处理化学原料的连续流动反应器系统,所述连续流动反应器系统带有具有第一负载的金属催化剂的第一反应器段和具有第二负载的金属催化剂的第二反应器段,其中所述第一负载的金属催化剂和所述第二负载的金属催化剂是不相同的,且各自起到处理所述化学原料以便完成所述化学处理的作用,所述第一负载的金属催化剂被选择为有利地处理所述化学原料以便清除乙炔、氧气和氮氧化物并具有低的乙烯损失,其中所述第一负载的金属催化剂是具有在0.5质量%到10质量%之间的银含量的负载的银催化剂,且所述第二负载的金属催化剂是具有在0.01质量%到5质量%之间的钌含量的负载的钌催化剂。
8.如权利要求7所述的连续流动反应器系统,其中所述化学处理包括将乙炔选择性催化还原为乙烯。
9.如权利要求7所述的连续流动反应器系统,其中所述第一负载的金属催化剂容纳在第一反应器内,且所述第二负载的金属催化剂容纳在第二反应器内。
10.一种延长用于化学处理的铂系金属催化剂的寿命和改进用于化学处理的铂系金属催化剂的乙烯选择性的方法,所述方法包括使化学原料与第一负载的金属催化剂和所述铂系金属催化剂依次接触的步骤,所述第一负载的金属催化剂被选择为有利地处理所述化学原料以便降低对所述铂系金属催化剂有害的原料杂质的浓度,其中在所述铂系金属催化剂中的铂系金属是钌,且所述第一负载的金属催化剂利用银作为金属催化剂,且其中所述化学原料与所述第一负载的金属催化剂和所述铂系金属催化剂在120℃到250℃之间的温度和0.5MPa到5MPa之间的压力下接触。
11.如权利要求10所述的方法,其中所述化学处理包括将乙炔选择性催化还原为乙烯。
CN201380008322.4A 2012-02-15 2013-01-21 用于净化含乙烯气流的方法和系统 Active CN104093684B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/396,714 US9670115B2 (en) 2012-02-15 2012-02-15 Method and system for purifying an ethylene-containing gas stream
US13/396,714 2012-02-15
PCT/US2013/022363 WO2013122715A1 (en) 2012-02-15 2013-01-21 Method and system for purifying an ethylene-containing gas stream

Publications (2)

Publication Number Publication Date
CN104093684A CN104093684A (zh) 2014-10-08
CN104093684B true CN104093684B (zh) 2016-04-20

Family

ID=47631751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380008322.4A Active CN104093684B (zh) 2012-02-15 2013-01-21 用于净化含乙烯气流的方法和系统

Country Status (6)

Country Link
US (1) US9670115B2 (zh)
EP (1) EP2814794B1 (zh)
CN (1) CN104093684B (zh)
EA (1) EA026154B1 (zh)
ES (1) ES2657889T3 (zh)
WO (1) WO2013122715A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9758446B2 (en) * 2015-11-16 2017-09-12 Chevron Phillips Chemical Company Lp Selective hydrogenation using a flow index
CN106984304B (zh) * 2017-04-28 2020-05-19 华南理工大学 一种Ru-Ag双金属复合型脱硝催化剂及其制备方法和应用
CN115707514B (zh) * 2021-08-19 2024-09-10 中国石油化工股份有限公司 脱氧催化剂及其制备方法和脱除轻质烯烃中氧气的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1972885A (zh) * 2004-06-23 2007-05-30 催化溶液公司 用于轻质烯烃原料物流内的乙炔和二烯烃选择性加氢的催化剂与方法
CN101027269A (zh) * 2004-07-27 2007-08-29 Abb路慕斯全球股份有限公司 含烯烃的烃物流中炔烃和/或二烯烃的选择加氢方法
CN101891714A (zh) * 2010-08-12 2010-11-24 湖南长岭石化科技开发有限公司 一种生产四氢呋喃的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034062A (en) 1975-03-20 1977-07-05 Borden, Inc. Removal of oxygen from gas stream with copper catalyst
JPS5823848B2 (ja) * 1979-12-28 1983-05-18 東亜燃料工業株式会社 不飽和炭化水素含有ガスの酸素除去方法
GB8529245D0 (en) 1985-11-27 1986-01-02 British Petroleum Co Plc Chemical process
DE19840372A1 (de) 1998-09-04 2000-03-09 Basf Ag Katalysator und Verfahren zur Reinigung von Stoffströmen
AU2002341704A1 (en) * 2001-10-15 2003-04-28 Catalytic Distillation Technologies Hydrogenation catalyst and hydrogenation process
GB0223300D0 (en) 2002-10-08 2002-11-13 Bp Chem Int Ltd Process
US7220700B2 (en) 2003-11-24 2007-05-22 Exxonmobil Chemical Patents Inc. Catalyst and process for selective hydrogenation
TWI414516B (zh) 2006-08-25 2013-11-11 Basf Ag 自富含氫氣之含烯烴氣體混合物中移除氧氣、氮氧化物、乙炔及/或二烯之方法
KR100920504B1 (ko) 2007-09-04 2009-10-08 한국화학연구원 연속 흐름식 2중 촉매 반응 장치를 이용한 합성가스의피셔-트롭시 반응으로 액상의 탄화수소 혼합물 제조방법
US8426660B2 (en) * 2008-08-21 2013-04-23 Sud-Chemie Inc. Process for purification of ethylene-containing feedstreams

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1972885A (zh) * 2004-06-23 2007-05-30 催化溶液公司 用于轻质烯烃原料物流内的乙炔和二烯烃选择性加氢的催化剂与方法
CN101027269A (zh) * 2004-07-27 2007-08-29 Abb路慕斯全球股份有限公司 含烯烃的烃物流中炔烃和/或二烯烃的选择加氢方法
CN101891714A (zh) * 2010-08-12 2010-11-24 湖南长岭石化科技开发有限公司 一种生产四氢呋喃的方法

Also Published As

Publication number Publication date
EA201491270A1 (ru) 2015-01-30
US20130211162A1 (en) 2013-08-15
EA026154B1 (ru) 2017-03-31
WO2013122715A1 (en) 2013-08-22
US9670115B2 (en) 2017-06-06
ES2657889T3 (es) 2018-03-07
EP2814794B1 (en) 2017-12-20
CN104093684A (zh) 2014-10-08
EP2814794A1 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
CN104098426B (zh) 碳二馏分选择加氢的方法
CN101343565B (zh) 一种含硅馏分油加氢精制方法
JP2004524151A (ja) エチレン精製プロセスにおけるアセチレンの選択的水素化方法
CN104014337A (zh) 重整生成油选择性加氢脱烯烃的催化剂及制法和应用
KR101644665B1 (ko) 알킨의 대응 알켄으로의 선택적 촉매 수소화
CN104093684B (zh) 用于净化含乙烯气流的方法和系统
CN102105563B (zh) 纯化包含乙烯的废气进料流的工艺
US6936568B2 (en) Selective hydrogenation catalyst
EP2204235A1 (en) Catalyst and process for selective hydrogenation of alkynes and dienes
CN106944159A (zh) 一种甲烷水蒸气重整制氢催化剂的制备方法
CN106552647B (zh) 银修饰的雷尼铜催化剂及其制备方法和碳四馏分选择性加氢除炔的方法
US20050096217A1 (en) Selective hydrogenation catalyst
JP4219839B2 (ja) 水素化処理方法
CN105732274B (zh) 乙烯选择加氢精制方法
CN112742369B (zh) 催化剂组合物及其应用和选择性脱硫醇的方法
CN112675871B (zh) 一种碳二馏分前脱乙烷前加氢催化剂的制备方法
JP5092451B2 (ja) 水素化触媒の再生方法
CN111545205B (zh) 一种用于催化裂化干气选择性脱炔的催化剂及其制备方法和应用
CN113952962B (zh) 一种催化裂解气脱氧催化剂、其制备方法和裂解气脱氧的方法
CN1317468A (zh) 一种乙炔选择性加氢制乙烯新工艺
CN112675872B (zh) 一种碳二馏分前脱乙烷前加氢催化剂
WO2010035325A1 (ja) 1,3-ブタジエン中のアセチレン類化合物の選択水素化用触媒およびその製造方法並びにその使用方法
CN118108565A (zh) 一种高碳四工况下碳二加氢除炔方法
CN114433212A (zh) 一种芳烃烷基转移反应的保护型催化剂及其制备方法与应用
JP2001342465A (ja) 石油系炭化水素用脱硫剤及び燃料電池用水素の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220623

Address after: Swiss Mu Tengci

Patentee after: CLARIANT INTERNATIONAL Ltd.

Address before: Kentucky, USA

Patentee before: CLARIANT Corp.