CN102105563B - 纯化包含乙烯的废气进料流的工艺 - Google Patents

纯化包含乙烯的废气进料流的工艺 Download PDF

Info

Publication number
CN102105563B
CN102105563B CN2009801287167A CN200980128716A CN102105563B CN 102105563 B CN102105563 B CN 102105563B CN 2009801287167 A CN2009801287167 A CN 2009801287167A CN 200980128716 A CN200980128716 A CN 200980128716A CN 102105563 B CN102105563 B CN 102105563B
Authority
CN
China
Prior art keywords
flow
air
reactor
ethene
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009801287167A
Other languages
English (en)
Other versions
CN102105563A (zh
Inventor
M·孙
M·布莱恩
S·布兰肯希普
M·A·额本希克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant International Ltd
Clariant Corp
Original Assignee
Sued Chemie Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sued Chemie Inc filed Critical Sued Chemie Inc
Publication of CN102105563A publication Critical patent/CN102105563A/zh
Application granted granted Critical
Publication of CN102105563B publication Critical patent/CN102105563B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/163Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
    • C07C7/167Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation for removal of compounds containing a triple carbon-to-carbon bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/644Arsenic, antimony or bismuth
    • B01J23/6447Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

公开了一种用于纯化来自蒸汽裂化装置或流化催化裂化装置(FCC)中的包含乙烯的进料流的方法,其中进料流还包含氢气、一氧化碳、乙炔类、氧气、氮的氧化物。该方法包括在至少120℃的反应温度下使包含乙烯的气流与Ru基催化剂接触。该工艺产生包含乙烯的进料流,其中乙烯基本上不含乙炔类、氮的氧化物和氧气。以乙烯的损失最少来进行进料流的纯化。

Description

纯化包含乙烯的废气进料流的工艺
技术领域
本进展是可以用于纯化来自蒸汽裂化装置或流化催化裂化装置(FCC)的未净化气体流或废气流的方法。通过本进展的方法,使用负载型钌基催化剂可以从包含乙烯、氢气和CO的未净化气体进料流中同时去除乙炔、甲基乙炔、氮的氧化物和氧气,而不会显著损失乙烯。催化剂可以包含分布到选自氧化铝或其他通常已知的催化剂载体材料的载体上的0.01wt.%到5wt.%的钌。
背景技术
诸如流化催化裂化(FCC)和深度催化裂化(DCC)的催化裂化工艺多年来已经广泛用在工业内来生产运输燃料,诸如汽油和柴油。来自FCC和DCC工艺的废气包含诸如乙烯和丙烯的有价值的产物。然而,这些废气流包含相对稀浓度的烯烃且通常被认为由诸如分馏的常规方法回收烯烃在商业上是不可行的。因而,大多数炼油厂使用废气作为燃料气体。
最近,从废气流中回收这些相对高价值的烯烃得到了越来越多的关注。例如,美国专利5,981,818描述了一种用于从废气中回收稀的烯烃的方法。除了有价值的烯烃外,FCC/DCC还包含诸如乙炔类和二烯烃的有害杂质。需要从废气流中去除这些杂质以便在下游工艺中利用高价值的烯烃。通常,在商业上由选择性氢化工艺来去除存在于烯烃流中的乙炔类和二烯类。
大多数商业化规模的选择性乙炔氢化操作使用钯基催化剂。除了烃之外,废气流通常包含氮的氧化物、氧气、硫和其他杂质。Pd基催化剂对乙炔和二烯类的选择性氢化具有高的活性和选择性;但它们对硫和其他一些毒物非常敏感。而且,已知Pd基催化剂用于去除氮的氧化物和/或氧气不是特别有效。
镍催化剂也已经用于乙炔和二烯类的选择性氢化。镍催化剂是耐硫中毒的,但对乙炔的氢化不是选择性的。更通常来说,虽然去除了乙炔,但大量的烯烃也被氢化成饱和烃。当进料气流中的一氧化碳水平高时,尤其是在低温下时,镍基催化剂还倾向于形成羰基镍。羰基镍是高挥发性的、高毒性的物质,可沉积在下游装置中并对那个区域的工人带来显著的安全危害。
美国专利2,747,970教导并要求保护一种使用由活化的土金属氧化物,诸如活化氧化铝上的0.01wt.%到2.0wt.%的钌组成的催化剂来从气流中去除一氧化碳和二氧化碳的工艺。该工艺包括将气流与负载型催化剂直接接触,同时保持至少120℃的反应温度,直到将CO和CO2的碳成分基本上完全转化成甲烷。然而,该工艺并未教导相同的催化剂和方法可以用于从乙烯气流中去除乙炔、甲基乙炔、丁二烯、NO和O2且不会有损失乙烯的风险。确实教导使用钌催化剂来纯化乙烯流的现有技术通常将钌催化剂引述为这种应用的低效催化剂的示例。例如,在美国专利4,299,800中,评价了用于从包含乙烯的进料流中去除氧气的、包含氧化铝上0.5wt.%钌的催化剂。在低温(50℃)下,除氧率是低的且基本上检测不到乙烯的转化。然而,与使用氧化铝上的银、金或钒时的小于5%的乙烯转化率相比,在高温(200℃)下,氧去除率达到99.4%,但却伴随着11.2%的乙烯转化(损失)。
因而,存在一种用于从废气流中去除氧气、乙炔类和氮的氧化物的工艺的需求,其中乙烯在纯化工艺期间不会转化成较低价值的烃且其中纯化的包含乙烯的气流包含每一种小于约1ppm的乙炔类、氮的氧化物和氧气。
本发明实施方案的公开内容
在一个实施方案中,描述了一种用于纯化来自蒸汽裂化装置或流化催化裂化装置(FCC)的包含乙烯的进料流的方法,其中进料流还包含氢气、一氧化碳、氮的氧化物、氧气和乙炔类。该方法包括使包含乙烯的气流与Ru基催化剂接触。该工艺产生包含小于约1ppm的乙炔类、小于约1ppm的氮的氧化物和小于约1ppm的氧气的包含乙烯的产物流。以乙烯的损失最少来进行进料流的纯化。
在另一个实施方案中,描述了一种用于从包含乙烯的进料流中去除氧气、乙炔类和氮的氧化物的方法,该包含乙烯的进料流还包含氢气和一氧化碳。该方法包括使包含乙烯的气流与包含分布到载体上的0.01wt.%到5wt.%之间的钌的Ru基催化剂接触以产生基本上不含乙炔类、氮的氧化物和氧气的包含乙烯的产物。
实施本发明实施方案的方式
包含乙烯的进料流可以是来自任何蒸汽裂化装置、流化催化裂化装置或类似工艺的废气流。通常,废气流包含氢气、一氧化碳、氧气、氮的氧化物、乙烷、乙烯和乙炔。
钌基催化剂可以是包含分布到通常的催化剂载体材料上的钌的任何催化剂,催化剂载体材料诸如,但不限于,氧化铝类、二氧化钛类、氧化锆类、二氧化硅类、金属铝酸盐类、硅铝酸盐类、尖晶石类及其组合。制备负载型钌催化剂的方法是本领域众所周知的。任选地,催化剂还可以包含助催化剂,诸如,但不限于,银、金、铜、锌、铋、铅或其组合。在示例性的实施方案中,催化剂包含分布在氧化铝载体上的钌,其中用钌盐溶液将钌分布在载体上。
在一个实施方案中,催化剂包含分布在氧化铝载体上的钌,其中通过用钌盐溶液浸渍氧化铝载体而将钌分布在载体上。催化剂可以包含0.01wt.%到5wt.%之间的钌。在其他实施方案中,催化剂可以包含任何类型的载体(包括氧化铝)上的0.01wt.%到1wt.%的钌,0.1wt.%到0.5wt.%的钌;0.15wt.%到0.30wt.%的钌,最少0.15wt.%的钌或最少0.3wt.%的钌或基本上由任何类型的载体(包括氧化铝)上的这些量的钌组成。
在可选择的实施方案中,催化剂包含分布在氧化铝载体上的钌,其中载体具有至少3m2/g的BET表面积,且优选具有约3m2/g到约200m2/g的BET表面积。可选择地,催化剂可以包含低表面积载体上的钌、中等表面积载体上的钌或高表面积载体上的钌。一般而言,具有1m2/g-10m2/g之间的BET表面积的载体可以归为低表面积载体。中等表面积载体通常在10m2/g-60m2/g之间的范围,而高表面积载体通常具有大于60m2/g的BET表面积。就氧化铝而言,低表面积、中等表面积和高表面积的范围分别是1m2/g-10m2/g、30m2/g-60m2/g和大于60m2/g。在另一个实施方案中,载体是中等表面积氧化铝载体。
在其他实施方案中,以保持在载体的外层上的方式将钌分布到氧化铝载体的外层上。“分布到载体的外层上”意指钌可以位于从载体的任何部分的外表面向载体的中心延伸约300μm距离的任何部分内。分布到载体的外层上的钌的深度可以是恒定的或可以是变化的,特别是在孔位于载体的外表面上的地方。
该工艺包括将气流与负载型催化剂直接接触,同时保持至少120℃的反应温度,直至乙炔含量降到小于一(1)ppm且氮的氧化物含量降到小于一(1)ppm以及氧气含量降到小于一(1)ppm。可选择地,该工艺可以包括使气流与负载型催化剂接触,直到产物流基本上不含杂质,杂质可以包含乙炔、氮的氧化物、氧气及其组合。在其他实施方案中,乙炔、氮的氧化物和氧气含量的去除可以较高或较低,这取决于许多因素,包括约束FCC/DCC工厂的运行和/或工厂设计的法律和法规。
可以使催化剂在使用前还原或硫化。在装载到反应器中之后且在引入包含乙烯的气流之前,催化剂可以通过在至少100℃的温度下将氢气或包含氢气的气体进料通过催化剂至少一分钟来还原。在装载到反应器中之后且在引入包含乙烯的气流之前,催化剂可以通过在至少150℃的温度下将含硫的气流进料通过催化剂至少一分钟来硫化。
工业实用性
上述实施方案可以用于纯化来自蒸汽裂化装置、流化催化裂化装置(FCC)的包含乙烯的进料流或包含氢气、一氧化碳、氧气和乙炔类的任何类型的烃进料流。
实施例
作为代表性的实施例,获得并评价了用于从乙烯进料流中去除杂质的好几种催化剂。提供这些实施例是为了进一步解释本发明,而并不是期望,或用来限制本发明的范围。
所评价的催化剂样品:
催化剂1:市售的Pd基催化剂,OleMax 250;从
Figure BPA00001306677800051
-Chemie Inc.,Louisville,Kentucky获得。
催化剂2:低表面积(3.6m2/g)氧化铝载体上的0.15%的钌。
催化剂3:中等表面积(37m2/g)氧化铝载体上的0.15%的钌。
催化剂4:高表面积(165m2/g)氧化铝载体上的0.15%的钌。
催化剂5:高表面积(165m2/g)氧化铝载体上的0.30%的钌。
催化剂样品评价:
在连续流动反应器中通过将约50cc的催化剂装载到反应器中,然后将受污染的包含乙烯的进料流进料通过装载的催化剂来测试所制备的催化剂。基于测试目的,通常将反应器温度调节到约120℃到约300℃的温度,一氧化碳含量控制在约0.05wt.%到5wt.%之间,且硫含量控制在低于约50ppm。氢分压控制在约0.05MPa到2MPa之间且气时空速为约500hr-1到10,000hr-1;更优选地,氢分压控制在约0.10MPa到1MPa之间且气时空速为约1000hr-1到5,000hr-1;以及最优选地,氢分压控制在约0.10MPa到0.3MPa之间且气时空速为约1500hr-1到3500hr-1以及氢浓度为约5%到约15%。
在连续流动反应器中测试催化剂1-4。将约50cc的催化剂装载到反应器内,将反应器温度调节到预定温度(如表1所表示的),以及将受到氧气、乙炔和一氧化氮污染的包含乙烯的进料流以2500hr-1的气时空速进料通过反应器,同时压力控制在1.9MPa。使用在线气相色谱仪分析反应器入口和出口的气体样品并将结果概述在表1中。
表1
Figure BPA00001306677800061
如表1所示,钯催化剂和钌催化剂均有效地将乙烯和氢气保留在气流中,尽管钌催化剂保留了比用钯催化剂所观察到的高的相对百分比的这些气体。此外,钯催化剂和钌催化剂均有效地减少了存在于进料流中的乙炔和氮的氧化物的水平。然而,钌催化剂比钯催化剂明显更有效地去除了进料流中的氧气。而且,更可能是,因为钌催化剂比钯催化剂对乙烯氢化的活性弱,所以当包含乙烯的进料流接触钌催化剂时产生的乙烷比当进料流接触钯催化剂时产生的乙烷少。
在不同反应器温度下,且进料流中存在额外的一氧化碳或硫化氢时,在连续流动反应器中测试了催化剂5。将约50cc的催化剂装载到反应器中,将反应器温度调节到预定温度(如表2所表示的),以及将受到氧气、乙炔和任选地,一氧化氮或一氧化碳或硫化氢污染的包含乙烯的进料流以2500hr-1的气时空速进料通过反应器,同时压力控制在1.9MPa。使用在线气相色谱仪分析反应器入口和出口的气体样品并将结果概述在表2中。
表2
Figure BPA00001306677800071
如表2所示,即使在相对高水平的CO和硫化氢的不利条件下,钌催化剂也有效地将乙烯和氢气保留在气流中。此外,钌催化剂有效地减少了存在于进料流中的乙炔和氧气的水平,并产生相对少量的不期望的乙烷。
因而,通过在控制在至少约120℃的温度下的含有催化剂的连续流动反应器中使还包含氢气、一氧化碳、氧气、乙炔和一氧化氮的包含乙烯的进料流与负载型钌催化剂接触,其中该催化剂包含0.01wt.%到5wt.%之间的钌,可以从气流中去除乙炔类、氮的氧化物和氧气且损失的乙烯最少。
应理解,本领域的技术人员可以改变本文中所显示和描述的实施方案而不偏离本发明的范围。例如,预期本领域的技术人员可以调节反应器压力和气时空速以适应不同尺寸的反应器。

Claims (20)

1.一种用于从包含乙烯的气流中纯化乙烯的方法,所述包含乙烯的气流还包含乙炔类、氧气和氮的氧化物,所述方法包括在氢的存在下使所述包含乙烯的气流与包含0.01wt.%到5wt.%之间的钌的负载型钌催化剂接触,直到所述气流包含小于约1ppm的乙炔类、小于约1ppm的氮的氧化物和小于约1ppm的氧气。
2.如权利要求1所述的方法,其中在接触所述气流之前,将所述负载型钌催化剂加热到至少约120℃的温度。
3.如权利要求1所述的方法,其中所述气流在连续流动反应器中与所述催化剂接触。
4.如权利要求3所述的方法,其中所述反应器被保持在120℃到300℃的温度下。
5.如权利要求3所述的方法,其中所述反应器具有0.05MPa到2MPa之间的氢分压。
6.如权利要求1所述的方法,其中所述气流具有500hr-1到10,000hr-1的气时空速。
7.如权利要求5所述的方法,其中所述反应器具有0.10MPa到1MPa之间的氢分压。
8.如权利要求6所述的方法,其中所述气流具有1000hr-1到5000hr-w的气时空速。
9.如权利要求1所述的方法,其中所述钌被负载到选自由氧化铝类、二氧化钛类、氧化锆类、二氧化硅类、金属铝酸盐类、硅铝酸盐类、尖晶石类及其组合组成的组的载体上。
10.如权利要求1所述的方法,其中所述负载型钌催化剂还包含助催化剂。
11.如权利要求10所述的方法,其中所述助催化剂选自由银、金、铜、锌、铋、铅或其组合组成的组。
12.如权利要求1所述的方法,其中所述负载型钌催化剂被还原。
13.如权利要求1所述的方法,其中所述负载型钌催化剂被硫化。
14.一种用于从包含乙烯的气流中纯化乙烯的方法,所述包含乙烯的气流还包含乙炔类、氧气和氮的氧化物,所述方法包括:
(a)用负载型钌催化剂装载连续流动反应器,其中所述催化剂包含0.01wt.%到5wt.%之间的钌;
(b)在所述反应器内将所述催化剂加热到至少120℃的温度;
(c)在0.05MPa到2MPa之间的氢分压下将所述包含乙烯的气流进料到所述反应器内,使得所述气流与所述催化剂接触;以及
(d)当所述气流包含小于约1ppm的乙炔类、小于约1ppm的氮的氧化物和小于约1ppm的氧气时,使所述包含乙烯的气流离开所述催化剂。
15.如权利要求14所述的方法,其中所述反应器被保持在120℃到300℃的温度下。
16.如权利要求14所述的方法,其中所述气流具有500hr-1到10,000hr-1的气时空速。
17.如权利要求14所述的方法,其中所述钌被负载到选自由氧化铝、二氧化钛、氧化锆、二氧化硅、金属铝酸盐类及其组合组成的组的载体上。
18.如权利要求14所述的方法,其中所述负载型钌催化剂还包含助催化剂,所述助催化剂选自由银、金、铜、锌、铋、铅或其组合组成的组。
19.如权利要求14所述的方法,其中在步骤(a)之后且在步骤(b)之前,同时在所述反应器内,在氢气或包含氢气的气体中,在至少100℃的温度下,还原所述催化剂至少一分钟。
20.如权利要求14所述的方法,其中在步骤(a)之后且在步骤(b)之前,同时在所述反应器内,在含硫的气流中,在至少150℃的温度下,硫化所述催化剂至少一分钟。
CN2009801287167A 2008-08-21 2009-08-21 纯化包含乙烯的废气进料流的工艺 Active CN102105563B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/195,678 2008-08-21
US12/195,678 US8426660B2 (en) 2008-08-21 2008-08-21 Process for purification of ethylene-containing feedstreams
PCT/US2009/054592 WO2010022318A2 (en) 2008-08-21 2009-08-21 Process to purify ethylene-containing off-gas feed streams

Publications (2)

Publication Number Publication Date
CN102105563A CN102105563A (zh) 2011-06-22
CN102105563B true CN102105563B (zh) 2013-12-04

Family

ID=41696997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801287167A Active CN102105563B (zh) 2008-08-21 2009-08-21 纯化包含乙烯的废气进料流的工艺

Country Status (6)

Country Link
US (1) US8426660B2 (zh)
EP (1) EP2318482B1 (zh)
CN (1) CN102105563B (zh)
EA (1) EA023914B9 (zh)
ES (1) ES2686597T3 (zh)
WO (1) WO2010022318A2 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9670115B2 (en) * 2012-02-15 2017-06-06 Clariant Corporation Method and system for purifying an ethylene-containing gas stream
JP5948657B2 (ja) * 2013-03-06 2016-07-06 コスモ石油株式会社 水素製造方法
DE102014223759A1 (de) * 2014-11-20 2016-05-25 Wacker Chemie Ag Entfernung von Sauerstoff aus Kohlenwasserstoff-haltigen Gasgemischen
DE102015213030A1 (de) * 2015-07-13 2017-01-19 Wacker Chemie Ag Verfahren zur Entfernung von Sauerstoff aus einem Kohlenwasserstoff und Sauerstoff enthaltenden Gasgemisch
US9714204B1 (en) 2016-07-28 2017-07-25 Chevron Phillips Chemical Company Lp Process for purifying ethylene produced from a methanol-to-olefins facility
CN115335352A (zh) * 2020-04-22 2022-11-11 科莱恩国际有限公司 低级烯烃的纯化

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080905A (en) * 1997-03-10 2000-06-27 Bp Amoco Corporation Olefin purification by adsorption of acetylenics and regeneration of adsorbent

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1418246A (en) 1919-02-12 1922-05-30 Joseph C W Frazer Process of treating gases
US2475155A (en) 1945-12-27 1949-07-05 Baker & Co Inc Process of producing a supported platinum metal catalyst
US2747970A (en) 1951-10-16 1956-05-29 Baker & Co Inc Purification of commercial hydrogen
GB879209A (en) * 1957-04-05 1961-10-04 Engelhard Ind Inc Treatment of gases
US3084023A (en) * 1960-03-11 1963-04-02 Engelhard Ind Inc Treatment of gases
US3305597A (en) 1964-04-17 1967-02-21 Engelhard Ind Inc Process for the removal of oxygen and acetylenic contaminants from normally gaseous olefins
US3489809A (en) * 1968-04-17 1970-01-13 Engelhard Min & Chem Selective hydrogenation with a catalyst on a honeycomb support
JPS5823848B2 (ja) 1979-12-28 1983-05-18 東亜燃料工業株式会社 不飽和炭化水素含有ガスの酸素除去方法
US4430253A (en) * 1982-02-11 1984-02-07 Ethyl Corporation Sulfide-modified ruthenium catalyst
FR2546078B1 (fr) 1983-05-19 1987-05-07 Pro Catalyse Procede de fabrication de catalyseurs pour le traitement des gaz d'echappement des moteurs a combustion interne
GB8529245D0 (en) * 1985-11-27 1986-01-02 British Petroleum Co Plc Chemical process
EP0494388B1 (en) 1991-01-08 1995-12-06 Agency Of Industrial Science And Technology Process for removing nitrogen oxides from exhaust gases
US5414170A (en) * 1993-05-12 1995-05-09 Stone & Webster Engineering Corporation Mixed phase front end C2 acetylene hydrogenation
US5981818A (en) 1995-03-21 1999-11-09 Stone & Webster Engineering Corp. Integrated cracking and olefins derivative process utilizing dilute olefins
US6248924B1 (en) 1996-06-19 2001-06-19 Basf Aktiengesellschaft Process for reacting an organic compound in the presence of a supported ruthenium catalyst
US6395952B1 (en) 1996-08-16 2002-05-28 Stone & Webster Process Technology, Inc. Chemical absorption process for recovering olefins from cracked gases
US6124517A (en) 1997-03-10 2000-09-26 Bp Amoco Corporation Olefin purification by adsorption of acetylenics and regeneration of adsorbent
FR2767721B1 (fr) * 1997-08-29 1999-10-22 Inst Francais Du Petrole Nouveaux catalyseurs utilisables dans les reactions de transformation de composes organiques
US6429167B1 (en) 1997-11-27 2002-08-06 Idemitsu Kosan Co., Ltd. Alumina-supported ruthenium catalyst
JP4648566B2 (ja) 2001-05-11 2011-03-09 Jx日鉱日石エネルギー株式会社 オートサーマルリフォーミング触媒および燃料電池用燃料ガスの製造方法
JP4250954B2 (ja) 2002-04-26 2009-04-08 住友化学株式会社 ルテニウム担持アルミナの製造方法およびアルコールの酸化方法
US6936568B2 (en) * 2002-06-12 2005-08-30 Sud-Chemie Inc. Selective hydrogenation catalyst
US20050096217A1 (en) * 2003-10-29 2005-05-05 Sud-Chemie, Inc. Selective hydrogenation catalyst
US7220700B2 (en) * 2003-11-24 2007-05-22 Exxonmobil Chemical Patents Inc. Catalyst and process for selective hydrogenation
US8309776B2 (en) * 2009-12-15 2012-11-13 Stone & Webster Process Technology, Inc. Method for contaminants removal in the olefin production process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080905A (en) * 1997-03-10 2000-06-27 Bp Amoco Corporation Olefin purification by adsorption of acetylenics and regeneration of adsorbent

Also Published As

Publication number Publication date
WO2010022318A8 (en) 2012-11-15
EA201170071A1 (ru) 2011-08-30
WO2010022318A2 (en) 2010-02-25
WO2010022318A3 (en) 2010-06-10
ES2686597T3 (es) 2018-10-18
EA023914B1 (ru) 2016-07-29
CN102105563A (zh) 2011-06-22
US8426660B2 (en) 2013-04-23
EP2318482A4 (en) 2014-08-06
EP2318482B1 (en) 2018-08-08
EA023914B9 (ru) 2016-09-30
EP2318482A2 (en) 2011-05-11
US20100048972A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
CN102105563B (zh) 纯化包含乙烯的废气进料流的工艺
US6204218B1 (en) Catalyst and process for purifying streams of materials
US6124517A (en) Olefin purification by adsorption of acetylenics and regeneration of adsorbent
TWI414516B (zh) 自富含氫氣之含烯烴氣體混合物中移除氧氣、氮氧化物、乙炔及/或二烯之方法
EP1549726B1 (en) Process for the removal of oxygen from olefin- containing process streams
JP2004524151A (ja) エチレン精製プロセスにおけるアセチレンの選択的水素化方法
EP0964904B1 (en) Olefin purification by adsorption of acetylenics and regeneration of adsorbent
WO2009086839A2 (en) A catalyst, a process for selective hydrogenation of acetylene to ethylene and a method for the manufacture of the catalyst
EP1773487A1 (en) Selective hydrogenation catalyst designed for raw gas feed streams
CN101745391B (zh) 一种催化裂化干气脱除微量氧的催化剂
JP2630732B2 (ja) 炭化水素中の水銀および場合によっては砒素の除去方法
WO2003048087A1 (en) Purification of polyolefin feedstocks using multiple adsorbents
CN113574039A (zh) 用于生产一种或多种烯烃的方法和系统
CN109092298B (zh) 用于裂解碳四选择加氢催化剂
US20050096217A1 (en) Selective hydrogenation catalyst
CN104093684B (zh) 用于净化含乙烯气流的方法和系统
JP5092451B2 (ja) 水素化触媒の再生方法
CN111545205B (zh) 一种用于催化裂化干气选择性脱炔的催化剂及其制备方法和应用
KR0163980B1 (ko) 탄화수소의 탈수소 방법
WO1993023499A1 (en) Acetylene converter moderators
JPWO2010035325A1 (ja) 1,3−ブタジエン中のアセチレン類化合物の選択水素化用触媒およびその製造方法並びにその使用方法
CN117443374A (zh) 脱氧脱氮氧化物催化剂及其制备方法和应用
JPS59232175A (ja) ガスの精製法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210907

Address after: North Carolina, USA

Patentee after: CLARIANT Corp.

Address before: Kentucky, USA

Patentee before: SUD-CHEMIE Inc.

Effective date of registration: 20210907

Address after: Swiss Mu Tengci

Patentee after: CLARIANT INTERNATIONAL Ltd.

Address before: North Carolina, USA

Patentee before: CLARIANT Corp.