CN104075478A - 超低温制冷机 - Google Patents

超低温制冷机 Download PDF

Info

Publication number
CN104075478A
CN104075478A CN201410075092.XA CN201410075092A CN104075478A CN 104075478 A CN104075478 A CN 104075478A CN 201410075092 A CN201410075092 A CN 201410075092A CN 104075478 A CN104075478 A CN 104075478A
Authority
CN
China
Prior art keywords
pipe arrangement
displacer
working gas
grade
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410075092.XA
Other languages
English (en)
Other versions
CN104075478B (zh
Inventor
山田航司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Publication of CN104075478A publication Critical patent/CN104075478A/zh
Application granted granted Critical
Publication of CN104075478B publication Critical patent/CN104075478B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0353Heat exchange with the fluid by cooling using another fluid using cryocooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/12Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using 3He-4He dilution

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

本发明提供一种能源效率较高的超低温制冷机。本发明的超低温制冷机具有:压缩机(1),对工作气体进行压缩;壳体(23),具有通过压缩机(1)压缩的工作气体所流出流入的空间(41);缸体(10a、10b),一端连接于壳体(23),另一端具有膨胀空间(11a、11b);以及置换器(3a、3b),在缸体(10a、10b)的内部往复移动的同时,允许工作气体经由设置于内部的工作气体流路(L1~L4)向膨胀空间(11a、11b)流入或从膨胀空间(11a、11b)流出,该超低温制冷机构成为使工作气体在将空间(41)和工作气体流路(L1)连通的配管(40)中流动。

Description

超低温制冷机
本申请主张基于2013年3月28日申请的日本专利申请2013-070464号的优先权。其申请的全部内容通过参考援用于本说明书中。
技术领域
本发明涉及一种具有置换器的超低温制冷机。
背景技术
作为产生超低温的超低温制冷机的一例,已知有吉福德-麦克马洪(GM)式制冷机。GM式制冷机利用由使用驱动机构在缸体内往复移动的置换器产生的空间体积变化,使从压缩机供给的工作气体在膨胀室内绝热膨胀,由此产生寒冷。
为此,需要使在压缩机中生成的高压工作气体经由置换器导入到膨胀室,并且使在膨胀室中绝热膨胀的工作气体经由置换器回流到压缩机中(专利文献1)。
专利文献1:日本特开2011-017457号公报
为了允许置换器在缸体内往复移动,有时在置换器的高温侧设置一定程度的空间。该空间还作为将从压缩机供给的工作气体导入到置换器时的流路的一部分发挥作用。但是,该空间随着置换器的驱动其容积发生变化,因此工作气体有时在空间内被压缩。若由于该压缩而产生压缩热,则成为工作气体的热损失,有可能降低超低温制冷机的能源效率。
发明内容
本发明的一种实施方式的例示性目的之一在于提供一种能源效率较高的超低温制冷机。
本发明的一种实施方式的超低温制冷机,具有:
压缩机,对工作气体进行压缩;
壳体,具有通过所述压缩机压缩的所述工作气体所流出流入的空间;
缸体,一端连接于所述壳体,另一端具有膨胀空间;以及
置换器,在所述缸体的内部往复移动的同时,允许工作气体经由设置于内部的工作气体流路向所述膨胀空间流入或从所述膨胀空间流出,所述超低温制冷机的特征在于,
所述工作气体在将所述空间和所述工作气体流路连通的配管中流动。
根据本发明的超低温制冷机,能够提高能源效率。
附图说明
图1是本发明的一实施方式的GM式制冷机的剖视图。
图2是放大表示止转棒轭机构的图。
图3是本发明的其他实施方式的GM式制冷机的剖视图。
图4是本发明的其他实施方式的GM式制冷机的剖视图。
图5是放大表示图4所示的连接机构附近的剖视图。
图6是放大表示本发明的其他实施方式的GM式制冷机的主要部分的剖视图。
图中:1-气体压缩机,2-冷头,3a、3b-置换器,4a-第1级蓄冷材料,4b-第2级蓄冷材料,6、7-冷却台,8-定子阀,9-转子阀,10a-第1级缸体,10b-第2级缸体,11a-第1级膨胀室,11b-第2级膨胀室,13-上部室,15-马达,21-气体流路,22-止转棒轭机构,23-壳体,32-止转棒轭,33a、33b-驱动轴,40-止转棒轭配管,40a-上部配管,40b-迂回配管,40c-下部配管,51-长孔,50-驱动轴配管,50a-连接孔,60-连接机构,61-立设配管,62-容纳部,70-可挠曲配管,L1、L2、L3、L4-气体流路,RV-回转阀。
具体实施方式
接着,结合附图,对本发明的实施方式进行说明。
图1是表示本发明的一实施方式的超低温制冷机的剖视图。本实施方式中,作为超低温制冷机,以吉福德-麦克马洪(GM)式制冷机为例子进行说明。然而,本发明能够广泛应用于具有置换器的超低温制冷机。
基于本实施例的GM式制冷机具有气体压缩机1和冷头2。冷头2具有缸体部10和壳体23。
气体压缩机1从连接有排出配管1b的吸气口吸入工作气体,对其进行压缩之后,向连接于吐出口的供给配管1a供给高压工作气体。能够使用氦气作为工作气体,但不限于此。
本实施方式中,以2级式的GM式制冷机为例子进行说明。2级式的GM式制冷机中,缸体部10具有第1级缸体10a和第2级缸体10b这两个缸体。在第1级缸体10a的内部插入有第1级置换器3a。并且,在第2级缸体10b的内部插入有第2级置换器3b。
该第1级置换器3a及第2级置换器3b相互连接,构成为在各缸体10a、10b的内部能够沿缸体的轴向往复移动。在置换器3a、3b的内部分别形成有空间部5a、5b。在该空间部5a、5b中填充有蓄冷材料,作为蓄冷器4a、4b发挥作用。另外,工作气体与蓄冷材料进行热交换,并且,向后述的膨胀室11a、11b流入或从膨胀室11a、11b流出,因此有时将蓄冷器4a、4b称作工作气体流路。
位于上部的第1级置换器3a具有朝向上方(Z1方向)延伸的驱动轴33b。该驱动轴33b构成后述的止转棒轭机构22的一部分。
并且,在第1级置换器3a的高温端侧(Z1方向侧端部)形成有与后述的止转棒轭配管40连通的气体流路L1。另外,在第1级置换器3a的低温端侧(Z2方向侧端部)形成有将空间部5a和第1级膨胀室11a连通的气体流路L2。
在第1级缸体10a的低温侧端部(图1中以箭头Z2表示的方向侧的端部)形成有第1级膨胀室11a。并且,在第1级缸体10a的高温侧端部(图1中以箭头Z1表示的方向侧的端部)形成有上部室13。
此外,在第2级缸体10b内的低温侧端部(图1中以箭头Z2表示的方向侧的端部)形成有第2级膨胀室11b。
第2级置换器3b通过未图示的连接机构安装于第1级置换器3a的下部。在该第2级置换器3b的高温侧端部(图1中以箭头Z1表示的方向侧的端部)形成有将第1级膨胀室11a和空间部5b连通的气体流路L3。并且,在第2级置换器3b的低温侧端部(图1中以箭头Z2表示的方向侧的端部)形成有将空间部5b和第2级膨胀室11b连通的气体流路L4。
第1级冷却台6在第1级缸体10a的外周面配设于与第1级膨胀室11a对置的位置。并且,第2级冷却台7在第2级缸体10b的外周面配设于与第2级膨胀室11b对置的位置。
上述的第1级置换器3a及第2级置换器3b通过止转棒轭机构22在第1级缸体10a及第2级缸体10b内沿图中上下方向(箭头Z1、Z2方向)移动。
图2放大表示止转棒轭机构22。止转棒轭机构22具有曲柄14和止转棒轭32等。该止转棒轭机构22例如能够通过马达15等驱动机构进行驱动。
曲柄14固定于马达15的旋转轴(以下称为驱动旋转轴15a)。该曲柄14构成为在从驱动旋转轴15a的安装位置偏心的位置设置有偏心销14a。因此,若在驱动旋转轴15a上安装曲柄14,则驱动旋转轴15a和偏心销14a成为偏心状态。
止转棒轭32具有驱动轴33a、33b、轭板36、滚子轴承37及止转棒轭配管40等。壳体23内的容纳止转棒轭32的止转棒轭容纳空间经由排出配管1b而与压缩机1的吸气口连通。因此,止转棒轭容纳空间始终维持成低压。
驱动轴33a从轭板36向上方(Z1方向)延伸。该驱动轴33a支承于设置在壳体23的滑动轴承17a。由此,驱动轴33a构成为能够沿图中上下方向(图中箭头Z1、Z2方向)移动。
另外,本实施方式中,为了容易理解超低温制冷机的构成要件的位置关系,有时使用“轴向”这一术语。轴向表示驱动轴33a延伸的方向,其还与置换器移动的方向一致。为了方便说明,有时将轴向上相对靠近膨胀空间或冷却台的方向称作“下”,相对远离的方向称作“上”。即,相对远离低温侧端部的方向称作“上”,相对靠近的方向称作“下”。另外,这种表达方式与安装GM式制冷机时的配置并无关。例如,GM式制冷机可在垂直方向上将膨胀空间朝上进行安装。
另外,驱动轴33a的上端部的预定范围插入到连通空间41中。在该连通空间41与滑动轴承17a之间设置有滑动密封件35。该滑动密封件35将连通空间41与壳体23的内部空间(止转棒轭容纳空间)气密划分。
驱动轴33b从轭板36向下方(Z2方向)延伸。该驱动轴33b支承于设置在壳体23内的滑动轴承17b。由此,驱动轴33b也构成为能够沿图中上下方向(图中箭头Z1、Z2方向)移动。
驱动轴33a、33b分别支承于滑动轴承17a、17b,由此止转棒轭32构成为能够在壳体23内沿上下方向(图中箭头Z1、Z2方向)移动。
轭板36上形成有横长窗39。该横长窗39沿与驱动轴33a、33b的延伸方向交叉的方向例如正交的方向(图2中箭头X1、X2方向)延伸。
滚子轴承37配设于该横长窗39内。滚子轴承37构成为能够在横长窗39内滚动。并且,与偏心销14a卡合的卡合孔38形成于滚子轴承37的中心位置。
若马达15驱动而使驱动旋转轴15a旋转,则偏心销14a以描画出圆弧的方式旋转。由此,止转棒轭32沿图中箭头Z1、Z2方向往复移动。此时,滚子轴承37在横长窗39内沿图中箭头X1、X2方向往复移动。
第1级置换器3a与配设于止转棒轭32的下部的驱动轴33b连接。由此,通过止转棒轭32沿图中箭头Z1、Z2方向往复移动,第1级置换器3a及与其连接的第2级置换器3b分别在第1级缸体10a及第2级缸体10b内也沿箭头Z1、Z2方向往复移动。
另外,为了方便说明,关于设置于止转棒轭32的止转棒轭配管40将后述。
回到图1,对阀机构进行说明。本实施方式中,对使用回转阀RV作为阀机构的例子进行说明。然而,也能够使用例如滑阀等其他阀机构。
回转阀RV用于切换工作气体的流路。该回转阀RV作为将从气体压缩机1的吐出口吐出的工作气体导入到第1级置换器3a的供给用阀(V1)发挥作用,并且作为将工作气体从第1级置换器3a导入到气体压缩机1的吸气口的排出用阀(V2)发挥作用。
该回转阀RV具有定子阀8和转子阀9。
定子阀8通过销19以非旋转方式固定于壳体23。相对于此,转子阀9可旋转地支承于壳体23内。
转子阀9上连接有止转棒轭机构22的偏心销14a。转子阀9通过偏心销14a的旋转而相对于定子阀8进行旋转。
气体流路21的一端连接于连通空间41。并且,气体流路21的另一端通过与回转阀RV连接而选择性地连接于气体压缩机1的吐出口或气体压缩机1的吸气口。该气体流路21能够形成于壳体23内。然而,也可以将气体流路21设为其他结构,例如可以采用如下结构,由配管构成气体流路21,并在壳体23的外部将回转阀RV和连通空间41连接。
若随着转子阀9的旋转而打开供给用阀V1(若气体压缩机1的吐出口与连通空间41连通),则高压工作气体从气体压缩机1经由供给配管1a、回转阀RV及气体流路21供给到连通空间41。
另一方面,若在产生寒冷之后随着转子阀9的旋转而打开排出用阀V2(若气体流路21与气体压缩机1的吸气口连通),则产生寒冷而成为低压的工作气体从连通空间41流入到气体流路21、回转阀RV。接着,回转阀RV与排出配管1b连通,工作气体经由排出配管1b流入到气体压缩机1的吸气口。
通过马达15使转子阀9连续旋转,由此使上述的工作气体从供给配管1a供给到连通空间41的动作以及工作气体从连通空间41向排出配管1b排出的动作反复实施。
该工作气体的供给及排出时刻以及置换器3a、3b的往复驱动时刻与曲柄14的旋转同步。因此,通过适当地调节工作气体的供给与排出相位以及各置换器3a、3b的往复驱动相位,能够使工作气体在第1级膨胀室11a及第2级膨胀室11b内膨胀。由此,能够在各膨胀室11a、11b中产生寒冷。
接着,对使工作气体在第1级置换器3a与壳体23之间流动的配管进行说明。
本实施方式中,作为使工作气体在第1级置换器3a与壳体23之间流动的配管,示出了使用止转棒轭配管40的例子。如图1及图2所示,该止转棒轭配管40设置于止转棒轭机构22。
止转棒轭配管40为使工作气体在第1级置换器3a与壳体23之间流动的配管。更具体而言,止转棒轭配管40为将形成于壳体23的连通空间41和形成于第1级置换器3a的工作气体流路4a连通的配管。
该止转棒轭配管40具有上部配管40a、迂回配管40b及下部配管40c。该各配管40a、40b及40c成为一体连接的结构。
上部配管40a形成为上下贯穿驱动轴33a。该上部配管40a形成为沿驱动轴33a的中心轴向上下方向(箭头Z1、Z2方向)贯穿。
上部配管40a的上端部在驱动轴33a的上端部开口。并且,如前所述,驱动轴33a的上端部的预定范围插入到连通空间41中。由此,上部配管40a的上端部构成为与连通空间41连通。
迂回配管40b形成于止转棒轭32的轭板36内。轭板36上形成有横长窗39。迂回配管40b形成为绕过该横长窗39(参考图2)。
迂回配管40b的上端部与形成于驱动轴33a的上部配管40a的下端部连接。并且,迂回配管40b的下端部与形成于接着要叙述的驱动轴33b的下部配管40c的上端部连接。
下部配管40c形成为上下贯穿设置于轭板36的下部的驱动轴33b。该下部配管40c形成为沿驱动轴33b的中心轴向上下方向(箭头Z1、Z2方向)贯穿。
上部配管40a的下端部与迂回配管40b的上端部连接。并且,迂回配管40b的下端部与下部配管40c的上端部连接。由此,壳体23(连通空间41)和第1级置换器3a经由具有上部配管40a、迂回配管40b及下部配管40c的止转棒轭配管40连接。
另外,上述的实施方式中,示出了将迂回配管40b形成于轭板36的内部的结构例。然而,也能够将迂回配管40b配设于轭板36的外周。
即,还能够由与驱动轴33分体的配管来构成迂回配管40b,并将该分体的迂回配管40b安装成环绕轭板36的外周,只要能够与止转棒轭32成一体地沿上下方向移动即可。
本实施方式所涉及的GM式制冷机中,若高压工作气体从气体压缩机1经由回转阀RV等供给到连通空间41(壳体23),则该高压工作气体从上部配管40a的上端部流入到止转棒轭配管40内。
流入到止转棒轭配管40内的高压工作气体依次通过上部配管40a、迂回配管40b及下部配管40c,并经由气体流路L1流入到第1级置换器3a的内部。
止转棒轭配管40不经由上部室13而连接连通空间41和第1级置换器3a。即,上部室13与用于将工作气体导入到置换器的流路是分开的。因此,从气体压缩机1供给的高压工作气体不流入上部室13,而从壳体23流入到第1级置换器3a。
另一方面,在各膨胀室11a、11b中膨胀的低压工作气体通过气体流路L2~L4及各工作气体流路4a、4b等流入到气体流路L1。如前所述,气体流路L1与下部配管40c连接。因此,该低压工作气体流入到止转棒轭配管40内。
流入到止转棒轭配管40内的低压工作气体依次通过下部配管40c、迂回配管40b及上部配管40a,并经由气体流路21到达排出配管1b。
如前所述,止转棒轭配管40不经由上部室13而连接连通空间41和第1级置换器3a。即,止转棒轭配管40通过与上部室13分开的配管来连接连通空间41和第1级置换器3a。因此,低压工作气体回流到气体压缩机1时,低压工作气体也不会流入到上部室13,而从壳体23回流到气体压缩机1。
如此,本实施方式所涉及的GM式制冷机中,壳体23(连通空间41)和第1级置换器3a通过止转棒轭配管40连接。并且,止转棒轭配管40为旁通上部室13的结构。即,上部室13不是工作气体的流路。另外,上部室13中,在置换器3a与缸体10a之间、驱动轴与壳体之间等的间隙有可能发生工作气体的泄漏。但是,上部室13始终与低压的止转棒轭容纳空间连通,因此上部室13的压力变化较小。
因此,即使置换器3a、3b通过止转棒轭机构22上下往复移动导致上部室13的容积随之发生变化,由于该上部室13中的压力变化不大,因此也能够抑制工作气体产生压缩热。由此,能够降低工作气体的热损失。
并且,由于在工作气体所流动的流路中不存在具有较大容积的上部室13,因此能够降低对气体压缩机1进行驱动的马达的电力消耗。由此,能够提高GM式制冷机的能源效率(COP:由(制冷能力)÷(消耗电力)求出)。
另外,工作气体从止转棒轭配管40直接向第1级置换器3a内的工作气体流路4a流入或者从第1级置换器3a内的工作气体流路4a直接向止转棒轭配管40流出。
接着,利用图3至图6,对本发明的其他实施方式进行说明。
另外,在图3至图6中,对于与前面已说明的图1及图2所示的结构对应的结构标注同一符号,并省略其说明。
图3所示的实施方式所涉及的GM式制冷机中,将驱动轴配管50仅形成于止转棒轭的驱动轴33b。该驱动轴配管50的下端部连接于在第1级置换器3a的高温侧端部形成的气体流路L1。
并且,驱动轴配管50的上端部与连接孔50a连接。驱动轴配管50沿第1级置换器3a的移动方向(Z1、Z2方向)延伸,相对于此,连接孔50a沿与其交叉的方向(Y1、Y2方向)形成。该连接孔50a的一端与驱动轴配管50的上端部连接,另一端部向驱动轴33b的外周开口。
设置于壳体23的滑动轴承17b上形成有长孔51。该长孔51形成在滑动轴承17b的与驱动轴33b相对的内周面、与所述连接孔50a对置的位置。
长孔51形成为沿驱动轴33b的移动方向(Z1、Z2方向)较长地延伸。该长孔51的长度设定为比各置换器3a、3b上下移动的距离长。因此,连接孔50a和长孔51与各置换器3a、3b的上下移动无关始终维持连接状态。
并且,长孔51与形成于壳体23的气体流路21连接。因此,长孔51经由气体流路21、回转阀RV及各配管1a、1b与气体压缩机1连接。即,该长孔51作为连通空间发挥作用。
此外,本实施方式中使用的滑动轴承17b选用还作为密封材料发挥作用的材料。由此,滑动轴承17b和驱动轴33b维持气密状态。因此,在连接孔50a与长孔51的连接位置降低工作气体的泄漏。另外,可以设置将长孔51与止转棒轭容纳空间之间、或长孔51与上部室13之间密封的密封部件。作为密封部件,优选滑动密封件等。
本实施方式所涉及的GM式制冷机中,第1级置换器3a和壳体23(长孔51)不经由上部室13,而通过驱动轴配管50连接。由此,即使置换器3a、3b往复运动,也可抑制上部室13中产生压缩热,能够降低工作气体的热损失,并且能够提高能源效率(COP)。此外,本实施方式中,以使用止转棒轭机构作为驱动机构的结构为例进行了说明,但不限于此。还可通过不同于止转棒轭机构的凸轮机构或由线性马达驱动驱动轴。
图4及图5表示另一实施方式所涉及的GM式制冷机。
本实施方式所涉及的GM式制冷机中,使用连接机构60连接壳体23和第1级置换器3a。连接机构60具有立设配管61和容纳部62等。
立设配管61为直线形状管,从第1级置换器3a的高温侧端部的上表面朝向上方立设。该立设配管61能够通过例如焊接等接合法固定于第1级置换器3a。然而,固定方法不限于此,还能够利用压入等其他固定方法。
并且,本实施方式中,在第1级置换器3a的高温端侧形成有多个(例如4个)气体流路L1。立设配管61与该各气体流路L1对应地配设有多个。然而,根据工作气体的流量,还能够设为单个气体流路L1及立设配管61。
在壳体23的与立设配管61对置的位置形成有容纳部62。该容纳部62为形成于壳体23的凹状空间。在该容纳部62连接有气体流路21。气体流路21的端部对应于容纳部62的数量而分支。该各分支配管连接于各容纳部62的底部。
各立设配管61插入到对应的各容纳部62内。由于立设配管61固定于第1级置换器3a,因此随着第1级置换器3a的移动而上下(Z1、Z2方向)移动。连接机构60构成为使立设配管61在容纳部62内能够移动。
并且,即使立设配管61在容纳部62内移动,立设配管61与容纳部62之间也维持气密状态。为了维持该气密状态,可采用在立设配管61与容纳部62之间配设例如密封材料等的结构。能够使用例如滑动密封件作为密封材料。
并且,立设配管61插入到容纳部62内的深度设定为具有如下长度:即使第1级置换器3a移动,立设配管61也不会脱离容纳部62而能够维持连接状态。
本实施方式所涉及的GM式制冷机不经由上部室13而通过连接机构60(立设配管61、容纳部62)连接第1级置换器3a和壳体23。因此,本实施方式所涉及的GM式制冷机中,即使置换器3a、3b往复运动,也能够抑制上部室13中产生压缩热,从而能够降低工作气体的热损失,并且能够提高能源效率(COP)。
此外,上述的实施方式中,采用了在壳体23设置容纳部62、在第1级置换器3a设置立设配管61的结构。然而,还能够采用在壳体23设置立设配管61、在第1级置换器3a设置容纳部62的结构。
图6表示又一实施方式所涉及的GM式制冷机。
本实施方式所涉及的GM式制冷机中,使用可挠曲配管70连接壳体23和第1级置换器3a。
第1级置换器3a中,在高温侧端部形成有多个气体流路L1。并且,在壳体23的与各气体流路L1对置的位置形成有从气体流路21分支而成的分支流路21a。可挠曲配管70设置成连接分支流路21a和气体流路L1。
气体流路L1和可挠曲配管70连接的位置以及分支流路21a和可挠曲配管70连接的位置随着第1级置换器3a而移动。可挠曲配管70构成为即使第1级置换器3a上下移动也通过挠曲变形而维持分支流路21a与气体流路L1的连接。
只要是随着第1级置换器3a的移动而挠曲且能够维持气密性的材料,可挠曲配管70的材料及结构没有特别限制。例如能够使用由具有可挠性及耐久性的树脂构成的软管或金属制的折皱结构配管。另外,可挠曲配管70优选具有伸缩性。
本实施方式所涉及的GM式制冷机中,第1级置换器3a和壳体23也不经由上部室13而通过可挠曲配管70连接。因此,本实施方式所涉及的GM式制冷机中,即使置换器3a、3b往复运动,也可以抑制在上部室13中产生压缩热,能够降低工作气体的热损失,并且能够提高能源效率(COP)。
以上,对本发明的优选实施方式进行了详细叙述,但本发明不限于上述的特定实施方式,在权利要求所记载的本发明宗旨的范围内能够进行各种变形、变更。

Claims (5)

1.一种超低温制冷机,具有:
压缩机,对工作气体进行压缩;
壳体,具有通过所述压缩机压缩的所述工作气体流出流入的空间;
缸体,一端连接于所述壳体,另一端具有膨胀空间;以及
置换器,在所述缸体的内部往复移动的同时,允许工作气体经由设置于内部的工作气体流路向所述膨胀空间流入或从所述膨胀空间流出,所述超低温制冷机的特征在于,
所述工作气体在将所述空间和所述工作气体流路连通的配管中流动。
2.根据权利要求1所述的超低温制冷机,其特征在于,
所述超低温制冷机还具备对所述置换器进行驱动的驱动轴,
所述配管与所述驱动轴一体设置。
3.根据权利要求2所述的超低温制冷机,其特征在于,
所述空间设置于所述驱动轴的端部。
4.根据权利要求1所述的超低温制冷机,其特征在于,
所述配管立设于所述置换器上,
并且,所述配管可移动地插入到形成于所述壳体且所述工作气体流出流入的容纳部。
5.根据权利要求1所述的超低温制冷机,其特征在于,
所述配管具有挠性。
CN201410075092.XA 2013-03-28 2014-03-03 超低温制冷机 Active CN104075478B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-070464 2013-03-28
JP2013070464A JP6013257B2 (ja) 2013-03-28 2013-03-28 極低温冷凍機、

Publications (2)

Publication Number Publication Date
CN104075478A true CN104075478A (zh) 2014-10-01
CN104075478B CN104075478B (zh) 2016-05-25

Family

ID=51596926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410075092.XA Active CN104075478B (zh) 2013-03-28 2014-03-03 超低温制冷机

Country Status (3)

Country Link
US (1) US9759455B2 (zh)
JP (1) JP6013257B2 (zh)
CN (1) CN104075478B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107449172A (zh) * 2016-05-31 2017-12-08 住友重机械工业株式会社 超低温制冷机
CN110382976A (zh) * 2017-03-13 2019-10-25 住友重机械工业株式会社 超低温制冷机

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017048937A (ja) * 2015-08-31 2017-03-09 住友重機械工業株式会社 極低温冷凍機
TWI622743B (zh) * 2017-06-01 2018-05-01 Chen Zi Jiang Refrigerator with detachable Hall element
CN108507215B (zh) * 2018-04-19 2019-11-19 中船重工鹏力(南京)超低温技术有限公司 一种配气机构及采用该配气机构的低温制冷机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979368A (en) * 1988-04-29 1990-12-25 Inframetrics, Inc. Miniature integral stirling cryocooler
JPH08200865A (ja) * 1995-01-31 1996-08-06 Daikin Ind Ltd 極低温冷凍機
CN2603859Y (zh) * 2002-12-31 2004-02-18 大金工业株式会社 涡轮压缩机
CN101012980A (zh) * 2006-01-30 2007-08-08 住友重机械工业株式会社 蓄冷器式冷冻机
CN101506471A (zh) * 2006-10-11 2009-08-12 松下电器产业株式会社 旋转式膨胀机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110849A (en) * 1980-02-04 1981-09-02 Aisin Seiki Extreme low temperature refrigerator
US4388809A (en) * 1982-04-19 1983-06-21 Cvi Incorporated Cryogenic refrigerator
US4412423A (en) * 1982-06-16 1983-11-01 The United States Of America As Represented By The Secretary Of The Army Split-cycle cooler with improved pneumatically-driven cooling head
JPS5963462A (ja) * 1982-10-04 1984-04-11 株式会社日立製作所 蓄冷器式冷凍機
JPS63259357A (ja) * 1986-04-04 1988-10-26 ダイキン工業株式会社 極低温冷凍機
US5018357A (en) * 1988-10-11 1991-05-28 Helix Technology Corporation Temperature control system for a cryogenic refrigeration
JP2777198B2 (ja) * 1989-06-15 1998-07-16 株式会社東芝 冷凍機
WO1993010407A1 (en) * 1991-11-18 1993-05-27 Sumitomo Heavy Industries, Ltd. Cryogenic refrigerating device
JPH06300377A (ja) * 1993-04-16 1994-10-28 Daikin Ind Ltd 極低温発生装置
JP2005024184A (ja) * 2003-07-03 2005-01-27 Sumitomo Heavy Ind Ltd 極低温冷却装置
US20090293505A1 (en) * 2008-05-29 2009-12-03 Cryomech, Inc. Low vibration liquid helium cryostat
JP2011017457A (ja) 2009-07-07 2011-01-27 Toshiba Corp 蓄冷式冷凍機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979368A (en) * 1988-04-29 1990-12-25 Inframetrics, Inc. Miniature integral stirling cryocooler
JPH08200865A (ja) * 1995-01-31 1996-08-06 Daikin Ind Ltd 極低温冷凍機
CN2603859Y (zh) * 2002-12-31 2004-02-18 大金工业株式会社 涡轮压缩机
CN101012980A (zh) * 2006-01-30 2007-08-08 住友重机械工业株式会社 蓄冷器式冷冻机
CN101506471A (zh) * 2006-10-11 2009-08-12 松下电器产业株式会社 旋转式膨胀机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107449172A (zh) * 2016-05-31 2017-12-08 住友重机械工业株式会社 超低温制冷机
CN107449172B (zh) * 2016-05-31 2020-03-10 住友重机械工业株式会社 超低温制冷机
CN110382976A (zh) * 2017-03-13 2019-10-25 住友重机械工业株式会社 超低温制冷机
CN110382976B (zh) * 2017-03-13 2021-01-08 住友重机械工业株式会社 超低温制冷机

Also Published As

Publication number Publication date
JP6013257B2 (ja) 2016-10-25
JP2014194291A (ja) 2014-10-09
CN104075478B (zh) 2016-05-25
US20140290277A1 (en) 2014-10-02
US9759455B2 (en) 2017-09-12

Similar Documents

Publication Publication Date Title
CN104121717B (zh) 超低温制冷机
CN104075478A (zh) 超低温制冷机
CN103940136B (zh) 超低温制冷机
CN103968591A (zh) 超低温制冷机
CN104165474B (zh) 超低温制冷机
CN103032984A (zh) 超低温制冷装置
CN105387646A (zh) 超低温制冷机
CN104990297B (zh) 超低温制冷装置
CN103574963A (zh) 超低温制冷机
CN110402356A (zh) 超低温制冷机及超低温制冷机用的回转阀单元
CN102834679A (zh) 制冷装置
CN108799067B (zh) 活塞压缩机及制冷系统
CN106468486A (zh) 超低温制冷机
JP2017120162A (ja) 極低温冷凍機およびロータリバルブ機構
CN102362070B (zh) 往复式压缩机
CN107202448B (zh) 超低温制冷机及回转阀机构
JP6305287B2 (ja) 極低温冷凍機
CN101012981A (zh) 蓄冷器式冷冻机
CN107449172B (zh) 超低温制冷机
JP2007255798A (ja) パルス管型低温膨張装置
JP6654103B2 (ja) Gm冷凍機
JP2016118367A (ja) 極低温冷凍機
JP6532392B2 (ja) 極低温冷凍機
JP2017048937A (ja) 極低温冷凍機
JP2015137798A (ja) 極低温冷凍機

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant