CN104071855A - LaNiO3薄膜形成用组合物及利用该组合物的LaNiO3薄膜的形成方法 - Google Patents

LaNiO3薄膜形成用组合物及利用该组合物的LaNiO3薄膜的形成方法 Download PDF

Info

Publication number
CN104071855A
CN104071855A CN201410054149.8A CN201410054149A CN104071855A CN 104071855 A CN104071855 A CN 104071855A CN 201410054149 A CN201410054149 A CN 201410054149A CN 104071855 A CN104071855 A CN 104071855A
Authority
CN
China
Prior art keywords
lanio
film
presoma
forming composition
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410054149.8A
Other languages
English (en)
Inventor
藤井顺
樱井英章
曽山信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of CN104071855A publication Critical patent/CN104071855A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1272Semiconductive ceramic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/06Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明提供一种LaNiO3薄膜形成用组合物以及利用该组合物的LaNiO3薄膜的形成方法。该LaNiO3薄膜形成用组合物包括LaNiO3前驱体和乙酸,在所述LaNiO3薄膜形成用组合物100质量%中,LaNiO3前驱体的比例以氧化物换算为1~20质量%,所述LaNiO3薄膜形成用组合物还包括由N-甲基甲酰胺组成的稳定剂,所述稳定剂相对于组合物中的LaNiO3前驱体的总量1摩尔,超过0且为10摩尔以下。

Description

LaNiO3薄膜形成用组合物及利用该组合物的LaNiO3薄膜的形成方法
技术领域
本发明涉及一种用于通过化学溶液沉积法(Chemical Solution Deposition,CSD法)形成在薄膜电容器、铁电存储器(Ferroelectric Random Access Memory,FeRAM)用电容器、压电元件或热释电型红外线检测元件等的电极中使用的LaNiO3薄膜的组合物以及利用该组合物形成LaNiO3薄膜的方法。更详细地说,本发明涉及一种用于形成膜本身的电特性优异且适合控制形成于该膜上的介质层等的结晶取向性的LaNiO3薄膜的组合物以及利用该组合物形成LaNiO3薄膜的方法。
本申请主张基于2013年3月25日申请的日本专利申请第2013-061914号的优先权,并将其内容援用于本说明书中。
背景技术
众所周知,LaNiO3(LNO)为具有较高的导电性等的电特性优异且在(100)面具有较强的自取向性的物质(例如,参考“Preparation and evaluation of LaNiO3thin filmelectrode with chemical solution deposition”,Journal of the Europian Ceramic Society24(2004)1005-1008)。并且,LaNiO3(LNO)薄膜由于具有伪立方的钙钛矿结构,因此与钙钛矿型铁电薄膜的相容性也良好,晶格常数的失配度较小,因此在薄膜电容器等中被用作形成在(100)择优取向面择优取向的铁电薄膜时的结晶取向性控制层。并且,LaNiO3(LNO)薄膜由于膜本身的电阻较低,且与将Pt等金属用于电极时相比铁电膜的极化反转疲劳特性也优异,因此还能够将LaNiO3(LNO)薄膜本身用于铁电存储器用电容器或压电元件等的电极膜。并且,由于具有透光性,因此还能够用于热释电型红外线检测元件的电极膜等。
另一方面,本发明人等进行验证后确认到,即使在使用上述“Preparation andevaluation of LaNiO3thin film electrode with chemical solution deposition”,Journal of theEuropian Ceramic Society24(2004)1005-1008等以往公知的文献中公开的材料和方法等形成LaNiO3薄膜的情况下,LaNiO3(LNO)也会因所使用的前驱体的种类或与溶剂等其他成分之间的组合或其比例等条件不显示自取向性,或者显示的程度产生差异。尤其在当下,也尚未在目前为止所公开的文献等中明确地示出在通过溶胶凝胶法等的CSD(Chemical Solution Deposition)法形成LaNiO3(LNO)薄膜时用于显著地显现LaNiO3(LNO)所具有的自取向性的详细的条件等。
发明内容
本发明的目的在于提供一种电特性优异且能够将其本身用于铁电存储器用电容器或压电元件或者热释电型红外线检测元件等的电极膜,而且在薄膜电容器等中用于形成能够使形成在该膜上的介质层的结晶取向性轻松地在(100)择优取向面择优取向的LaNiO3薄膜的组合物以及利用该组合物形成LaNiO3薄膜的方法。
本发明的第一观点为一种LaNiO3薄膜形成用组合物,其包括LaNiO3前驱体和乙酸,其中,在所述LaNiO3薄膜形成用组合物100质量%中,所述LaNiO3前驱体的比例以氧化物换算为1~20质量%,所述LaNiO3薄膜形成用组合物还包括由N-甲基甲酰胺组成的稳定剂,所述稳定剂相对于所述LaNiO3薄膜形成用组合物中的所述LaNiO3前驱体的总量1摩尔,超过0且为10摩尔以下。
本发明的第二观点为基于第一观点的发明,其中,并且,上述LaNiO3前驱体为金属羧酸盐、金属硝酸盐、金属醇盐、金属二醇络合物、金属三醇络合物、金属β-二酮络合物、金属β-二酮酯络合物、金属β-亚氨基酮络合物或金属氨基络合物。
本发明的第三观点为基于第二观点的发明,其中,并且,在所述LaNiO3前驱体中,成为La源的LaNiO3前驱体以及成为Ni源的LaNiO3前驱体中的至少一方为乙酸盐或硝酸盐。
本发明的第四观点为一种LaNiO3薄膜的形成方法,其中,该方法利用第一至第三观点中任一观点所述的LaNiO3薄膜形成用组合物来形成LaNiO3薄膜。
本发明的第五观点为一种LaNiO3薄膜的形成方法,其中,具有如下工序:将第一至第三观点中任一观点所述的LaNiO3薄膜形成用组合物涂布于耐热性基板而形成涂膜;以及在大气压的氧化气氛或含水蒸气气氛中预烧结具有所述涂膜的基板之后,或者反复进行两次以上从所述涂膜的形成至预烧结为止的工序,直至成为所期望的厚度之后,以结晶化温度以上的温度烧成,使LaNiO3薄膜在(100)择优取向面择优取向。
本发明的第六观点为一种制造具有通过第四或第五观点的方法形成的LaNiO3薄膜的薄膜电容器、电容器、集成无源器件、DRAM存储器用电容器、层叠电容器、铁电存储器用电容器、热释电型红外线检测元件、压电元件、电光元件、执行器、谐振器、超声波马达、电气开关、光学开关或LC噪声滤波器元件的复合电子零件的方法。
本发明的第一观点的LaNiO3薄膜形成用组合物,其包括LaNiO3前驱体和乙酸,其中,在所述LaNiO3薄膜形成用组合物100质量%中,所述LaNiO3前驱体的比例以氧化物换算为1~20质量%,所述LaNiO3薄膜形成用组合物还包括由N-甲基甲酰胺组成的稳定剂,所述稳定剂相对于所述LaNiO3薄膜形成用组合物中的所述LaNiO3前驱体的总量1摩尔,超过0且为10摩尔以下。根据本发明的第一观点的结构,若使用该LaNiO3薄膜形成用组合物,则能够形成导电性或极化反转疲劳特性等的电特性优异且能够将其本身用于铁电存储器用电容器或压电元件等的电极膜的LaNiO3薄膜。并且,能够形成还适合热释电型红外线检测元件的电极膜等的LaNiO3薄膜。并且,若使用该LaNiO3薄膜形成用组合物,则能够形成在(100)面强力地择优取向的LaNiO3薄膜,因此尤其在制造薄膜电容器或压电元件等时,能够用于形成介质层的结晶取向性控制用的结晶取向性控制层。由此,能够使形成于该膜上的介质层的结晶取向性轻松地在(100)择优取向面择优取向。
在本发明的第二观点的LaNiO3薄膜形成用组合物中,作为上述LaNiO3前驱体包括金属羧酸盐、金属硝酸盐、金属醇盐、金属二醇络合物、金属三醇络合物、金属β-二酮络合物、金属β-二酮酯络合物、金属β-亚氨基酮络合物或金属氨基络合物。由此,能够进一步提高组合物的组成均匀性。
在本发明的第三观点的LaNiO3薄膜形成用组合物中,在上述LaNiO3前驱体中,成为La源的LaNiO3前驱体以及成为Ni源的LaNiO3前驱体中的至少一方包括乙酸盐或硝酸盐。尤其通过将乙酸盐或硝酸盐用作LaNiO3前驱体,即使在制备比较高浓度的LaNiO3薄膜形成用组合物时,也能够进一步提高保存稳定性。
在本发明的第四或第五观点的LaNiO3薄膜的形成方法中,利用上述本发明的LaNiO3薄膜形成用组合物形成LaNiO3薄膜。并且,第五观点的LaNiO3薄膜的形成方法具有如下工序:将上述本发明的LaNiO3薄膜形成用组合物涂布于耐热性基板而形成涂膜;以及在大气压的氧化气氛或含水蒸气气氛中预烧结具有该涂膜的基板之后,或者反复进行两次以上从所述涂膜的形成至预烧结为止的工序,直至成为所期望的厚度之后,以结晶化温度以上的温度烧成。由此,能够形成电特性优异且在(100)面强力地择优取向的LaNiO3薄膜。由于通过该形成方法可以获得在(100)面强力地择优取向的LaNiO3薄膜,因此只要将利用该方法获得的LaNiO3薄膜用于结晶取向性控制层,就能够形成比较轻松地在(100)择优取向面择优取向的介质层。
在本发明的第六观点的制造方法中,例如在制造铁电存储器或压电元件等时,由于将用上述本发明的形成方法获得的LaNiO3薄膜用于铁电存储器的电容器电极或压电体电极、热释电型红外线检测元件的电极等,因此可以获得电特性、尤其是极化反转疲劳特性优异的装置。并且,在制造薄膜电容器等时,只要将用上述本发明的形成方法获得的LaNiO3薄膜用于介质层的结晶取向性控制用的结晶取向性控制层,就能够不受复杂的成膜条件等的局限而使介质层的结晶取向性轻松地在(100)择优取向面择优取向。并且,尤其为压电元件时,能够提高压电特性。
附图说明
图1是表示在实施例1-1中形成的LaNiO3薄膜的XRD图案的图。
具体实施方式
接着,对用于实施本发明的方式进行说明。
本实施方式的LaNiO3薄膜形成用组合物(以下表述为组合物)是对用于形成LaNiO3薄膜的组合物进行改良的组合物。本实施方式的组合物的特征性结构在于,组合物包括LaNiO3前驱体和乙酸,在组合物100质量%中,LaNiO3前驱体的比例以氧化物换算为1~20质量%,组合物还包括由N-甲基甲酰胺组成的稳定剂,所述稳定剂相对于组合物中的LaNiO3前驱体的总量1摩尔,超过0且为10摩尔以下。
组合物中所含的上述LaNiO3前驱体是用于在形成后的LaNiO3薄膜中构成复合金属氧化物(LaNiO3)的原料,可以举出La或Ni各金属元素的金属羧酸盐、金属硝酸盐、金属醇盐、金属二醇络合物、金属三醇络合物、金属β-二酮络合物、金属β-二酮酯络合物、金属β-亚氨基酮络合物或金属氨基络合物。具体而言,作为成为La源的LaNiO3前驱体可以举出乙酸镧、2-乙基己酸镧等金属羧酸盐、硝酸镧等金属硝酸盐、异丙氧基镧等金属醇盐、乙酰丙酮镧等金属β-二酮络合物等。并且,作为成为Ni源的LaNiO3前驱体可以举出乙酸镍、2-乙基己酸镍等金属羧酸盐、硝酸镍等金属硝酸盐、乙酰丙酮镍等金属β-二酮络合物等。其中,从溶解于溶剂的溶解度的高低或保存稳定性等方面考虑,在LaNiO3前驱体中,优选成为La源的LaNiO3前驱体以及成为Ni源的LaNiO3前驱体中的至少一方为乙酸盐或硝酸盐。另外,当成为La源的LaNiO3前驱体和成为Ni源的LaNiO3前驱体为水合物时,可以预先通过加热等方法脱水之后使用,也可以在合成前驱体的过程中通过蒸馏等方法进行脱水。
之所以将上述LaNiO3前驱体(La源与Ni源的总计)在组合物100质量%中所占的比例以氧化物换算限定在上述范围内是因为,当LaNiO3前驱体的比例小于下限值时,涂布膜的膜厚过于变薄,因此产生膜龟裂的不良情况,而超过上限值时,产生沉淀等保存稳定性变差。其中,上述LaNiO3前驱体在组合物100质量%中所含的比例以氧化物换算优选设为3~15质量%。另外,以氧化物换算的比例是指,在假设组合物中所含的金属元素全部变成氧化物时,金属氧化物在组合物100质量%中所占的比例。并且,成为La源的LaNiO3前驱体以及成为Ni源的LaNiO3前驱体的混合比优选设成La元素与Ni元素的金属原子比(La/Ni)为1:1的比例。
组合物中所含的乙酸是成为组合物的溶剂的成分。在本实施方式的组合物中,之所以将溶剂成分限定为乙酸是因为,若以除乙酸以外的例如水为溶剂成分,则会使涂膜形成性以及利用所获得的组合物形成的涂膜的涂膜性能变差。另一方面,通过将乙酸用作溶剂,不会使涂膜形成性以及涂膜性能等变差,就能够形成在(100)面强力地择优取向的LaNiO3薄膜。
组合物100质量%中的乙酸的比例优选为2~98质量%,更优选为40~70质量%。这是因为,若乙酸的比例超过上述上限,则涂膜的膜厚过于变薄,因此产生膜龟裂的不良情况,若低于上述下限,则产生沉淀等保存稳定性变差。
并且,组合物还包括由N-甲基甲酰胺组成的稳定剂,所述稳定剂相对于组合物中的LaNiO3前驱体的总量1摩尔,超过0且为10摩尔以下。通过包括N-甲基甲酰胺作为稳定剂,尤其能够提高组合物的涂膜形成性以及利用所获得的组合物形成的涂膜的涂膜性能或组合物的保存稳定性。并且,之所以将N-甲基甲酰胺的比例设成相对于组合物中的LaNiO3前驱体的总量1摩尔为10摩尔以下是因为,若超过10摩尔,则产生稳定剂的热分解变慢,从而导致膜中残留空隙的不良情况。其中,由N-甲基甲酰胺组成的稳定剂的比例优选设成相对于组合物中的LaNiO3前驱体的总量1摩尔为2~8摩尔。
为了获得本实施方式的LaNiO3薄膜形成用组合物,首先,分别准备上述成为La源的LaNiO3前驱体和成为Ni源的LaNiO3前驱体,将这些前驱体以获得上述所期望的金属原子比的比例称重。并且,准备N-甲基甲酰胺作为稳定剂,以相对于上述LaNiO3前驱体(成为La源的LaNiO3前驱体和成为Ni源的LaNiO3前驱体的总量)1摩尔成为上述预定的比例的方式称重。
接着,将这些LaNiO3前驱体和作为稳定剂的N-甲基甲酰胺投入到反应容器内,再将作为溶剂的乙酸以LaNiO3前驱体在制备后的组合物100质量%中所占的比例成为上述比例的方式投入。并且,充分混合并使其反应直至固形物完全溶解,从而获得组合物。另外,混合之后,为了抑制组合物随时间而变化,优选在惰性气体气氛中以80~200℃的温度加热0.5~2小时。
在本实施方式中,通过过滤处理等对上述制备的组合物去除粒子,优选将粒径为0.5μm以上(尤其为0.3μm以上,特别为0.2μm以上)的粒子的个数设成每1毫升溶液中为50个/毫升以下。另外,优选呈组合物内的0.2μm以上的粒子通过利用过滤处理等去除粒子而被去除的状态。另外,在测定组合物中的粒子的个数时,利用光散射式粒子计数器。
若组合物中的粒径为0.5μm以上的粒子的个数超过50个/毫升,则长期保存稳定性差。该组合物的粒径为0.5μm以上的粒子的个数越少越优选,尤其优选为30个/毫升以下。
以成为上述粒子个数的方式对制备后的组合物进行处理的方法没有特别限定,但例如可以举出如下方法。第一方法为使用市售的0.2μm孔径的薄膜过滤器并用注射器挤压的过滤法。第二方法为组合市售的0.05μm孔径的薄膜过滤器和加压罐的加压过滤法。第三方法为组合在上述第二方法中使用的过滤器和溶液循环槽的循环过滤法。
在任何方法中,利用过滤器的粒子捕捉率都根据溶液挤压压力而不同。通常知道压力越低,捕捉率越变高,尤其关于第一方法、第二方法,为了实现将粒径为0.5μm以上的粒子的个数设为50个以下的条件,优选使溶液以低压非常缓慢地通过过滤器。
接下来,对本实施方式的LaNiO3薄膜的形成方法进行说明。首先,将上述LaNiO3薄膜形成用组合物涂布在基板上,形成具有所期望的厚度的涂膜。关于涂布法没有特别限定,但可以举出旋涂法、浸涂法、液态源雾化化学沉积法(LSMCD,Liquid Source Misted Chemical Deposition)法或静电喷涂法等。形成LaNiO3薄膜的基板也根据其用途等而不同,但例如在被用作薄膜电容器等的结晶取向性控制层时,可以采用形成有下部电极的硅基板或蓝宝石基板等耐热性基板。作为形成在基板上的下部电极,可以采用Pt或Ir、Ru等具有导电性且与LaNiO3薄膜不反应的材料。并且,能够使用在基板上经由粘附层或绝缘体膜等形成下部电极的基板等。具体而言,可以举出具有Pt/Ti/SiO2/Si、Pt/TiO2/SiO2/Si、Pt/IrO/Ir/SiO2/Si、Pt/TiN/SiO2/Si、Pt/Ta/SiO2/Si、Pt/Ir/SiO2/Si的层叠结构(下部电极/粘附层/绝缘体膜/基板)的基板等。而在用于铁电存储器用电容器或压电元件、热释电型红外线检测元件等的电极时,能够使用硅基板、SiO2/Si基板、蓝宝石基板等耐热性基板。
在基板上形成涂膜之后,预烧结该涂膜,再烧成而使其结晶化。利用加热板或RTA等在预定的条件下进行预烧结。预烧结是为了去除溶剂且对金属化合物进行热分解或水解并使其转化为复合氧化物而进行的,因此优选在空气中、氧化气氛中或含水蒸气气氛中进行。即使在空气中进行加热,也可以通过空气中的湿气充分确保水解所需的水分。另外,在预烧结之前,尤其为了去除低沸点成分或所吸附的水分子,也可以利用加热板等在60~120℃温度下进行1~5分钟的低温加热。优选在150~550℃温度下预烧结1~10分钟。关于从组合物的涂布至预烧结为止的工序,在通过涂布一次来获得所期望的膜厚时,进行一次从涂布至预烧结为止的工序之后,进行烧成。或者,还能够反复进行多次从涂布至预烧结为止的工序,最后统一进行烧成,从而成为所期望的膜厚。
烧成是用于以结晶化温度以上的温度对预烧结后的涂膜进行烧成并使其结晶化的工序,通过烧成工序可以获得LaNiO3薄膜。该结晶化工序的烧成气氛优选为O2、N2、Ar、N2O或H2等或者它们的混合气体等。优选在450~900℃下保持1~60分钟来进行烧成。也可以通过急速加热处理(RTA处理)进行烧成。从室温至上述烧成温度的升温速度优选设为10~100℃/秒。
通过以上工序,获得LaNiO3薄膜。如此形成的LaNiO3薄膜由于表面电阻率低且导电性等优异,因此能够用于铁电存储器用电容器的电极膜或压电元件等的电极膜以及热释电型红外线检测元件的电极膜等。并且,由于在(100)面强力地自取向,因此在薄膜电容器等中能够适合用作用于使介质层的结晶取向性在(100)择优取向面择优取向的结晶取向性控制层。并且,尤其为压电元件时,能够提高压电特性。
[实施例]
接着,结合比较例对本发明的实施例进行详细说明。
<实施例1-1>
首先,以La与Ni的金属原子比成为1:1的方式分别称重四水乙酸镍(Ni源)以及六水硝酸镧(La源)作为LaNiO3前驱体。并且,作为稳定剂准备了相对于上述前驱体1摩尔成为5摩尔的量的N-甲基甲酰胺。接着,以上述前驱体在制备后的组合物中所占的浓度按氧化物换算成为4质量%的浓度的方式,将上述前驱体、N-甲基甲酰胺以及作为溶剂的乙酸投入到反应容器内,搅拌至固形物完全溶解,从而制备出了组合物。制备后,通过组合薄膜过滤器与加压罐的加压过滤法进行了过滤。
接着,向设置于旋涂机上的结晶面在(100)轴向取向的SiO2/Si基板上滴下上述获得的组合物,以2000rpm的转速进行20秒的旋涂,由此在上述基板上形成了涂膜。接着,在进行预烧结以及烧成之前,利用加热板在大气气氛中以75℃的温度将形成有涂膜的上述基板保持1分钟,由此去除了低沸点成分或所吸附的水分子。接着,利用加热板将形成于上述基板上的涂膜从室温升温至400℃,在该温度下保持5分钟,由此进行了预烧结。之后,利用RTA在氧气气氛中以10℃/秒的升温速度升温至800℃,在该温度下保持5分钟,由此进行了烧成。由此,在上述基板上形成了LaNiO3薄膜。另外,并没有反复进行从上述涂膜的形成至预烧结为止的工序,而是进行一次之后,进行一次烧成,从而形成为所期望的总厚度。
<实施例1-2>
在反复进行五次从涂膜的形成至预烧结为止的工序之后,进行一次烧成,由此形成为所期望的总厚度,除此之外以与实施例1-1相同的方式制备出组合物,并形成了LaNiO3薄膜。
<实施例1-3>
首先,以La与Ni的金属原子比成为1:1的方式分别称重四水乙酸镍(Ni源)以及六水硝酸镧(La源)作为LaNiO3前驱体。并且,作为稳定剂准备了相对于上述前驱体1摩尔成为5摩尔的量的N-甲基甲酰胺。接着,以上述前驱体在制备后的组合物中所含的浓度按氧化物换算成为4质量%的浓度的方式,将上述前驱体、N-甲基甲酰胺以及作为溶剂的乙酸投入到反应容器内,搅拌至固形物完全溶解。并且,在氮气气氛中以140℃的温度加热30分钟,由此制备出了组合物。制备后,通过组合薄膜过滤器和加压罐的加压过滤法进行了过滤。
接着,向设置于旋涂机上的结晶面在(100)轴向取向的SiO2/Si基板上滴下上述获得的组合物,以2000rpm的转速进行20秒的旋涂,由此在上述基板上形成了涂膜。接着,在进行预烧结以及烧成之前,利用加热板在大气气氛中以75℃的温度将形成有涂膜的上述基板保持1分钟,由此去除了低沸点成分或所吸附的水分子。接着,利用加热板在400℃的温度下将形成于上述基板上的涂膜保持5分钟,由此进行了预烧结。之后,利用RTA在氧气气氛中以10℃/秒的升温速度升温至800℃,在该温度下保持5分钟,由此进行了烧成。由此,在上述基板上形成了LaNiO3薄膜。另外,与实施例1相同,并没有反复进行从上述涂膜的形成至预烧结为止的工序,而是进行一次之后,进行一次烧成,从而形成为所期望的总厚度。
<实施例1-4,1-5以及比较例1-1,1-2>
如以下表1所示,调整各成分的比例,变更了按氧化物换算时前驱体在组合物中所占的浓度,除此之外以与实施例1-1相同的方式制备出组合物,并形成了LaNiO3薄膜。
<实施例2-1、2-2以及比较例2-1、2-2>
如以下表1所示,变更了作为稳定剂的N-甲基甲酰胺相对于前驱体1摩尔的比例,除此之外以与实施例1-1相同的方式制备出组合物,并形成了LaNiO3薄膜。另外,在比较例2-1中,将N-甲基甲酰胺相对于前驱体1摩尔的比例设为0,即不添加稳定剂而制备出了组合物。
<实施例3>
如以下表1所示,作为LaNiO3前驱体使用了除乙酸盐以及硝酸盐以外的异丙氧基镧(La源)以及乙酰丙酮镍(Ni源),并且在搅拌之后以与实施例1-3相同的条件进行了加热,除此之外以与实施例1-1相同的方式制备出组合物,并形成了LaNiO3薄膜。
<比较试验以及评价>
对在实施例1-1~实施例3以及比较例1-1~比较例2-2中获得的LaNiO3薄膜的膜厚、表面电阻值、择优取向面进行了评价。将这些结果示于以下表1中。
(1)膜厚:利用SEM(Scanning Electron Microscope,扫描电子显微镜,HitachiS-4300SE)对所形成的LaNiO3薄膜的截面的厚度拍摄截面图像,并计量出了其膜厚。
(2)表面电阻率:利用三菱化学公司制Loresta HP MCP-T410,通过四探针法测定了LaNiO3薄膜的表面电阻率。
(3)择优取向面:通过利用X射线衍射装置(PANalytical公司制,型号名:Empyrean)的集中法,进行LaNiO3薄膜的XRD(X-Ray Diffraction)分析,将获得的衍射结果中的在2θ=20~40°范围内强度最高的取向面作为择优取向面。将此时观察到的关于实施例1-1的薄膜的XRD图案作为代表图示于图1中。
[表1]
由表1可知,若对实施例1-1~1-5与比较例1-1、1-2进行比较,则在组合物100质量%中的前驱体浓度以氧化物换算不到1质量%的比较例1-1中,所形成的LaNiO3薄膜发生了能够目视确认的程度的龟裂,从而无法形成均匀的膜,因此无法进行膜评价。并且,在前驱体浓度超过20质量%的比较例1-2中,组合物中产生了沉淀,因此无法形成LaNiO3薄膜。与此相对,在将前驱体浓度设为1~20质量%的范围内的实施例1-1~1-5中,未发生龟裂或空隙等,从而获得了表面电阻率低且在(100)择优取向面择优取向的LaNiO3薄膜。
并且,若对实施例2-1、2-2与比较例2-1、2-2进行比较,则在未将N-甲基甲酰胺作为稳定剂添加的比较例2-1中,所形成的LaNiO3薄膜发生了能够目视确认的程度的龟裂,从而无法形成均匀的膜,因此无法进行膜评价。并且,在N-甲基甲酰胺的比例相对于组合物中的LaNiO3前驱体的总量1摩尔超过10摩尔的比较例2-2中,所形成的LaNiO3薄膜发生了能够目视确认的程度的空隙,从而无法形成均匀的膜,因此无法进行膜评价。与此相对,在相对于LaNiO3前驱体的总量1摩尔以10摩尔以下添加N-甲基甲酰胺的实施例2-1、2-2中,未发生龟裂或空隙等,从而获得了表面电阻率低且在(100)择优取向面择优取向的LaNiO3薄膜。并且,在将异丙氧基镧以及乙酰丙酮镍用作LaNiO3前驱体的实施例3中,与实施例1-1~实施例2-2相同,也获得了表面电阻率低且在(100)择优取向面择优取向的LaNiO3薄膜。
以上,对本发明的优选的实施例进行了说明,但本发明不限于这些实施例。在不脱离本发明的宗旨的范围内,可以进行结构的附加、省略、置换以及其他变更。本发明不限于前面叙述的说明,只根据附加的权利要求的范围而限定。
产业上的可利用性
本发明能够用于制造薄膜电容器、电容器、集成无源器件、DRAM存储器用电容器、层叠电容器、铁电存储器用电容器、热释电型红外线检测元件、压电元件、电光元件、执行器、谐振器、超声波马达、电气开关、光学开关或LC噪声滤波器元件的复合电子零件。

Claims (6)

1.一种LaNiO3薄膜形成用组合物,其包括LaNiO3前驱体和乙酸,所述LaNiO3薄膜形成用组合物的特征在于,
在所述LaNiO3薄膜形成用组合物100质量%中,所述LaNiO3前驱体的比例以氧化物换算为1~20质量%,
所述LaNiO3薄膜形成用组合物还包括由N-甲基甲酰胺组成的稳定剂,所述稳定剂相对于所述LaNiO3薄膜形成用组合物中的LaNiO3前驱体的总量1摩尔,超过0且为10摩尔以下。
2.根据权利要求1所述的LaNiO3薄膜形成用组合物,其中,
所述LaNiO3前驱体为金属羧酸盐、金属硝酸盐、金属醇盐、金属二醇络合物、金属三醇络合物、金属β-二酮络合物、金属β-二酮酯络合物、金属β-亚氨基酮络合物或金属氨基络合物。
3.根据权利要求2所述的LaNiO3薄膜形成用组合物,其中,
在所述LaNiO3前驱体中,成为La源的LaNiO3前驱体以及成为Ni源的LaNiO3前驱体中的至少一方为乙酸盐或硝酸盐。
4.一种LaNiO3薄膜的形成方法,其中,
该方法利用权利要求1至3中任一项所述的LaNiO3薄膜形成用组合物来形成LaNiO3薄膜。
5.一种LaNiO3薄膜的形成方法,其特征在于,
具有如下工序:将权利要求1至3中任一项所述的LaNiO3薄膜形成用组合物涂布于耐热性基板而形成涂膜;以及
在大气压的氧化气氛或含水蒸气气氛中预烧结具有所述涂膜的所述耐热性基板之后,或者反复进行2次以上从所述涂膜的形成至预烧结为止的工序,直至成为所期望的厚度之后,以结晶化温度以上的温度烧成,
使LaNiO3薄膜在(100)择优取向面择优取向。
6.一种制造具有通过权利要求4或5所述的方法形成的LaNiO3薄膜的薄膜电容器、电容器、集成无源器件、DRAM存储器用电容器、层叠电容器、铁电存储器用电容器、热释电型红外线检测元件、压电元件、电光元件、执行器、谐振器、超声波马达、电气开关、光学开关或LC噪声滤波器元件的复合电子零件的方法。
CN201410054149.8A 2013-03-25 2014-02-18 LaNiO3薄膜形成用组合物及利用该组合物的LaNiO3薄膜的形成方法 Pending CN104071855A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013061914A JP6075144B2 (ja) 2013-03-25 2013-03-25 LaNiO3薄膜形成用組成物及びこの組成物を用いたLaNiO3薄膜の形成方法
JP2013-061914 2013-03-25

Publications (1)

Publication Number Publication Date
CN104071855A true CN104071855A (zh) 2014-10-01

Family

ID=50115726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410054149.8A Pending CN104071855A (zh) 2013-03-25 2014-02-18 LaNiO3薄膜形成用组合物及利用该组合物的LaNiO3薄膜的形成方法

Country Status (6)

Country Link
US (1) US20140287136A1 (zh)
EP (1) EP2784041A1 (zh)
JP (1) JP6075144B2 (zh)
CN (1) CN104071855A (zh)
IN (1) IN2014DE00467A (zh)
TW (1) TW201500291A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016102501A1 (de) 2016-02-12 2017-08-17 Technische Universität Darmstadt Mikroelektronische Elektrodenanordnung
CN114231951A (zh) * 2021-11-24 2022-03-25 江苏籽硕科技有限公司 利用高分子辅助沉积法制备LaNiO3外延导电薄膜的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362749A (zh) * 2001-12-07 2002-08-07 中国科学院上海技术物理研究所 镍酸镧导电金属氧化物薄膜材料的制备方法
CN101178954A (zh) * 2007-09-05 2008-05-14 西北有色金属研究院 一种导电型阻隔层LaNiO3的制备方法
CN101712549A (zh) * 2008-11-20 2010-05-26 河南大学 一种镍酸镧陶瓷靶的制备方法
CN102154636A (zh) * 2010-12-17 2011-08-17 济南大学 一种p型高透射率(100)-取向的LaNiO3纳米薄膜的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733661A (en) * 1994-11-11 1998-03-31 Mitsubishi Chemical Corporation High-permittivity composite oxide film and uses thereof
US6235260B1 (en) * 1997-05-26 2001-05-22 Kri International, Inc. Method for producing In2O3—SnO2 precursor sol
JPH10324520A (ja) * 1997-05-26 1998-12-08 Kansai Shin Gijutsu Kenkyusho:Kk In2O3−SnO2前駆体ゾルの製造方法およびIn2O3−SnO2薄膜の製造方法
JP4077675B2 (ja) * 2002-07-26 2008-04-16 ナガセケムテックス株式会社 ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体およびその製造方法
JP5030478B2 (ja) * 2006-06-02 2012-09-19 株式会社アルバック 多孔質膜の前駆体組成物及びその調製方法、多孔質膜及びその作製方法、並びに半導体装置
JP5591485B2 (ja) * 2008-05-28 2014-09-17 三菱マテリアル株式会社 強誘電体薄膜形成用組成物、強誘電体薄膜の形成方法並びに該方法により形成された強誘電体薄膜
CN101376600A (zh) * 2008-09-26 2009-03-04 清华大学 一种利用导电氧化物作为缓冲层的叠层铁电/磁性多铁性磁电复合薄膜及其制备方法
JP2013001680A (ja) * 2011-06-16 2013-01-07 Seiko Epson Corp ニッケル酸ランタン膜形成用組成物の製造方法、ニッケル酸ランタン膜の製造方法、及び圧電素子の製造方法
US9076961B2 (en) * 2012-01-31 2015-07-07 Duality Reality Energy, LLC Energy harvesting with a micro-electro-machanical system (MEMS)
JP5817621B2 (ja) * 2012-03-30 2015-11-18 三菱マテリアル株式会社 強誘電体薄膜形成用ゾルゲル液

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362749A (zh) * 2001-12-07 2002-08-07 中国科学院上海技术物理研究所 镍酸镧导电金属氧化物薄膜材料的制备方法
CN101178954A (zh) * 2007-09-05 2008-05-14 西北有色金属研究院 一种导电型阻隔层LaNiO3的制备方法
CN101712549A (zh) * 2008-11-20 2010-05-26 河南大学 一种镍酸镧陶瓷靶的制备方法
CN102154636A (zh) * 2010-12-17 2011-08-17 济南大学 一种p型高透射率(100)-取向的LaNiO3纳米薄膜的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WENCHENG HU ET AL.: "Characterization of Sn-doped BST thin films on LaNiO3–coated Si substrate", 《JOURNAL OF MATERIALS SCIENCE:MATER ELECTRON》 *
YOSHIO SHODAI ET AL.: "Preparation of Lanthanum Nickel Oxide-Coated Ni Sheet Anodes and Their Application to Electrolytic Production of (CF3)3N in (CH3)4NF•4.0HF Melt", 《JOURNAL OF RARE EARTHS》 *
汪多仁: "《精细化工中间体》", 31 January 2008 *

Also Published As

Publication number Publication date
US20140287136A1 (en) 2014-09-25
JP2014187265A (ja) 2014-10-02
JP6075144B2 (ja) 2017-02-08
TW201500291A (zh) 2015-01-01
IN2014DE00467A (zh) 2015-06-19
EP2784041A1 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
CN103130504A (zh) 铁电薄膜形成用组合物、铁电薄膜及其形成法和复合电子部件
TWI601707B (zh) LaNiO薄膜形成用組成物及使用此組成物之LaNiO薄膜的形成方法
TWI669839B (zh) 摻雜Mn及Nb之PZT系壓電體膜形成用組成物
CN104071855A (zh) LaNiO3薄膜形成用组合物及利用该组合物的LaNiO3薄膜的形成方法
EP3125316B1 (en) Mn AND Nb CO-DOPED PZT-BASED PIEZOELECTRIC FILM
JP2014189408A (ja) PNbZT強誘電体薄膜の形成方法
US20140295197A1 (en) Pzt-based ferroelectric thin film-forming composition, method of preparing the same, and method of forming pzt-based ferroelectric thin film using the same
JP2002261093A (ja) ゾル−ゲル工程を利用した強誘電体薄膜の製造方法
KR101640728B1 (ko) LaNiO3 박막 형성용 조성물 및 이 조성물을 사용한 LaNiO3 박막의 형성 방법
JP6365294B2 (ja) LaNiO3薄膜の形成方法
KR100346900B1 (ko) 옥탄용매내에분산되어있는금속폴리옥시알킬화전구물질용액,전구물질용액의제조방법및이전구물질용액을이용한집적회로용박막의제조방법
TW201940429A (zh) 壓電體膜形成用液組成物及使用該液組成物形成壓電體膜之方法
JP7124445B2 (ja) Bnt-bt系膜及びその形成方法
TWI665163B (zh) 摻雜Ce之PZT系壓電體膜形成用組成物
Zhu et al. Structural and dielectric properties of BaNdTiO (x= 2/3) thin films processed by sol-gel technique.
JP2012144470A (ja) セラミックス膜形成用組成物の製造方法、圧電セラミックス膜及びアルカリ土類金属錯体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141001