CN104056768A - 超声波接合装置 - Google Patents

超声波接合装置 Download PDF

Info

Publication number
CN104056768A
CN104056768A CN201410080007.9A CN201410080007A CN104056768A CN 104056768 A CN104056768 A CN 104056768A CN 201410080007 A CN201410080007 A CN 201410080007A CN 104056768 A CN104056768 A CN 104056768A
Authority
CN
China
Prior art keywords
mentioned
frequency
voltage
value
reflection rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410080007.9A
Other languages
English (en)
Other versions
CN104056768B (zh
Inventor
相泽隆博
栗山升
森三树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibaura Mechatronics Corp
Original Assignee
Toshiba Corp
Shibaura Mechatronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shibaura Mechatronics Corp filed Critical Toshiba Corp
Publication of CN104056768A publication Critical patent/CN104056768A/zh
Application granted granted Critical
Publication of CN104056768B publication Critical patent/CN104056768B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • B06B1/0253Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal taken directly from the generator circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

本发明的一个实施方式的超声波接合装置具备超声波振子、前端工具、超声变幅杆和超声波振荡器。上述超声波振子接受电压而产生超声波振动。前端工具将负荷和超声波振动施加于接合对象物。上述超声变幅杆将负荷和上述超声波振子振荡的超声波振动向上述前端工具传递。上述超声波振荡器是具备振荡电路并将从上述振荡电路振荡的电压向上述超声波振子供给的超声波振荡器,具备控制装置,该控制装置根据上述振荡电路供给的电压和电流来检测电压反射率并且以使上述电压反射率最小的方式对上述振荡电路振荡的电压的频率进行控制。

Description

超声波接合装置
本申请主张2013年3月19日申请的在先日本专利申请第2013-057284号的优先权,该在先申请的全部内容通过引用包含于此。
技术领域
本发明在此说明的多个实施方式全部涉及对接合对象物施加负荷和超声波振动而将接合对象物接合的超声波接合装置。
背景技术
通过施加负荷和超声波振动而将接合对象物接合的超声波接合装置中,具有:对接合对象物施加振动和负荷的前端工具;向前端工具传递振动和负荷的超声变幅杆(ultrasonic horn);使超声变幅杆机械振动的超声波振子;以及向超声波振子供给驱动电力的超声波振荡器。
在这种超声波接合装置中,超声波振荡器进行利用PLL(Phase LockedLoop:锁相环)振荡电路的频率跟踪(frequency tracking)控制。超声波接合装置中,希望能够效率良好地将接合对象物接合。
发明内容
本发明的实施方式提供一种能够更加效率良好地将接合对象物接合的超声波接合装置。
实施方式的超声波接合装置具备:超声波振子、前端工具、超声变幅杆和超声波振荡器。上述超声波振子接受电压而产生超声波振动。前端工具向接合对象物施加负荷和超声波振动。上述超声变幅杆将负荷和上述超声波振子振荡产生的超声波振动向上述前端工具传递。上述超声波振荡器是具备振荡电路并将从上述振荡电路振荡的电压向上述超声波振子供给的超声波振荡器,具备控制装置,该控制装置根据上述振荡电路供给的电压和电流来检测电压反射率,并且以使上述电压反射率最小的方式控制上述振荡电路振荡的电压的频率。
根据上述构成,能够将接合对象物效率良好地接合。
附图说明
图1是表示第一实施方式的超声波接合装置的框图。
图2是表示上述超声波接合装置的超声波振荡器的框图。
图3A是表示上述超声波振荡器的动作的流程图。
图3B是表示上述超声波振荡器的动作的流程图。
图4是表示以使电压反射率最小的方式控制上述超声波振荡器时的从上述超声波振荡器振荡的电压的频率与电压反射率之间的关系的曲线图。
图5是表示以使电压反射率最小的方式控制上述超声波振荡器时的从上述超声波振荡器振荡的电压的频率与电压反射率之间的关系的曲线图。
图6A是表示第二实施方式的超声波接合装置的超声波振荡器的动作的流程图。
图6B是表示第二实施方式的超声波接合装置的超声波振荡器的动作的流程图。
具体实施方式
用图1~图5说明第一实施方式的超声波接合装置。图1是表示超声波接合装置10的概略图。如图1所示,超声波接合装置10将接合对象物彼此相互接合。本实施方式中,作为一例,超声波接合装置10将第一接合对象物5和第二接合对象物6接合。另外,相互接合的接合对象物的数量不限于两个。超声波接合装置10能够将多个接合对象物相互接合。
超声波接合装置10具有载置第一接合对象物5和第二接合对象物6的接合台20、前端工具30、加压装置40、超声变幅杆50、超声波振子60、超声波振荡器70和主体控制电路部100。
前端工具30能够在与接合台20之间将第一接合对象物5和第二接合对象物6挟持。第一接合对象物5和第二接合对象物6当被夹持在接合台20与前端工具30之间时,相互重叠配置。
超声变幅杆50与前端工具30连结,将从后述的超声波振子60传递的振动向前端工具30传递。加压装置40与超声变幅杆50连结,能够将超声变幅杆50向接合台20侧加压。通过用加压装置40对超声变幅杆50加压,超声变幅杆50所连结的前端工具30被向接合台20侧加压。由此,对在前端工具30与接合台20之间挟持的第一接合对象物5和第二接合对象物6施加负荷和振动。超声波振子60具有压电元件。超声波振子60通过从后述的超声波振荡器70施加的电压而振动。
超声波振荡器70向超声波振子60施加电压。图2是表示超声波振荡器70的构成的框图。如图2所示,超声波振荡器70具有振荡电路71、功率放大器72、输出变压器73、电流检测器74、信号变换器75、放大器76和运算装置77。
振荡电路71接受来自后述的主体控制电路部100的信号,振荡电力。振荡电路71振荡的电力通过功率放大器72和输出变压器73后,被施加到超声波振子60。在输出变压器73与超声波振子60之间设置的电力传递路径中,设有电流检测器74。电流检测器74检测流向超声波振子60的电流值。
电流检测器74检测出的检测值被传递给信号变换器75。此外,在输出变压器73与超声波振子60之间设置的电力传递路径与信号变换器75连接,向超声波振子60施加的电压被输入信号变换器75。
信号变换器75根据电流检测器74检测出的电流值和如上述那样施加的电压值,算出向超声波振子60输入的电力。进而,根据算出的电力值,算出应从振荡电路71振荡的电力。作为应从振荡电路71振荡的电力的信息的输出控制信号经由放大器76向振荡电路71传递。此外,信号变换器75将向超声波振子60输入的电压、和电流检测器74检测出的电流值的信息向运算装置77传递。
运算装置77根据从信号变换器75传递的上述的电压值以及电流值的信息,算出电压反射率Γ。对电压反射率Γ进行说明。超声波振子60产生与输入的电压相应的振动。产生的振动向第一接合对象物5和第二接合对象物6传递,为了将该第一接合对象物5和第二接合对象物6相互接合而被消耗。但是,该振动中未用于接合的振动被反射而返回超声波振子60。返回超声波振子60的振动被变换为电压,并且与从输出变压器73输出的电压合成,施加到信号变换器75。电压反射率Γ是指,被反射而返回超声波振子60的电压值相对于从超声波振荡器70向超声波振子60输入的电压值的比例。
运算装置77生成以使电压反射率Γ为最小值的方式控制从振荡电路71振荡的电压的频率所用的控制信号,将该控制信号向振荡电路71传递。振荡电路71根据从运算装置77发送的控制信号,以该控制信号所示的频率振荡。
振荡电路71如上述那样根据从放大器76输入的输出控制信号、和从运算装置77输入的振荡频率,振荡电力。
主体控制电路部100对加压装置40的动作进行控制,并且对振荡电路71的驱动开始和驱动停止进行控制。
接着,说明超声波接合装置10的动作。在第一接合对象物5和第二接合对象物6未被载置在接合台20上的状态下,加压装置40不被驱动,前端工具30从接合台20离开。
通过未图示的供给机构,第一接合对象物5和第二接合对象物6被供给到接合台20上。此时,第一接合对象物5和第二接合对象物6以被接合时的姿势被供给到接合台20上。
当第一接合对象物5和第二接合对象物6被供给到接合台20上时,主体控制电路部100驱动加压装置40。当通过加压装置40将超声变幅杆50向接合台20加压时,与超声变幅杆50连结的前端工具30向接合台20移动。由此,第一接合对象物5和第二接合对象物6被夹持在接合台20与前端工具30之间并被输入负荷。
主体控制电路部100具有将第一接合对象物5和第二接合对象物6接合时所需要的规定的负荷的信息,根据该信息,对加压装置40的动作进行控制。当向第一接合对象物5和第二接合对象物6输入规定的负荷时,主体控制电路部100进行动作,以使振荡电路71的驱动开始。
图3A以及3B是表示超声波振荡器70的动作的流程图。图3A中,示出了在超声波振荡器70的动作开始前进行的主体控制电路部100的动作。如图3A所示,步骤ST0中,主体控制电路部100在驱动超声波振荡器70前,设定振荡开始频率f0、频率节距宽度(frequency-step width)df、超调次数(excessive number-of-times)N、频率搜索范围的最大值fmax、频率搜索范围的最小值fmin和电压反射率Γ的取得最大值Γmax。这些信息例如通过作业者被输入主体控制电路部100。
振荡开始频率f0被预先决定。振荡开始频率f0是频率搜索范围的最小值fmin和最大值fmax之间的值。频率搜索范围的最大值fmax是振荡电路71振荡的电压的频率的最大值。该最大值fmax是振荡电路71的固有的值,被预先确定。频率搜索范围的最小值fmin是振荡电路71振荡的电压的频率的最小值。该最小值fmin是振荡电路71的固有的值,被预先确定。
电压反射率的最大值Γmax理论上是1。这是因为,被反射而返回超声波振子60的电压的最大值是与从超声波振荡器70向超声波振子60输入的电压相同的值。但是,由于超声波接合装置10的结构所引起的摩擦等要因,最大值Γmax有比1小的情况。最大值Γmax能够预先通过实验等得到。
从主体控制电路部100发送驱动开始的信号时,前进至步骤ST1。步骤ST1中,运算装置77设定振荡开始频率f0作为振荡频率f。接着,前进至步骤ST2。步骤ST2中,运算装置77存储Γmax作为电压反射率Γ的比较用变量Γ0。接着,前进至步骤ST3。
步骤ST3中,振荡电路71以振荡开始频率f0振荡电压。接着前进至步骤ST4。步骤ST4中,运算装置77检测电压反射率Γ。
接着,前进至步骤ST5。步骤ST5中,运算装置77比较在步骤ST4中检测出的电压反射率Γ和比较用变量Γ0。若电压反射率Γ在比较用变量Γ0以下,则前进至步骤ST6。
步骤ST6中,作为比较用变量Γ0,存储在步骤ST4中检测出的电压反射率Γ。此外,步骤ST6中,作为搜索目的值flimit,设定对在步骤ST1中设定的振荡频率f加上频率节距宽度df与超调次数N之积而得到的值。即,flimit=f+(N×df)。另外,N>1。搜索目的值flimit是将从振荡电路71振荡的频率的增加向减少转换时的目的值,或者是在频率减少的情况下向增加转换时的目的值。即,从振荡电路71振荡的频率达到搜索目的值flimit时,将从振荡电路71振荡的频率从增加向减少转换。或者,在频率减少的情况下,向增加转换。
对频率节距宽度df和超调次数N进行说明。频率节距宽度df是将振荡频率相对于上次振荡频率进行变更时的差。即,在将频率增加的情况下,对上次振荡值增加频率节距宽度df。在将频率减少的情况下,对上次振荡值减少频率节距宽度df。超调次数N是将频率节距宽度df增加的次数,或者是减少的次数。
在步骤ST5中电压反射率Γ在比较用变量Γ0以下的情况下,搜索目的值flimit被更新。接着,前进至步骤ST7。
在步骤ST5中,若判定为电压反射率Γ大于比较用变量Γ0,则前进至步骤ST7。在电压反射率Γ大于比较用变量Γ0的情况下,搜索目的值flimit维持上次值。步骤ST7中,作为振荡频率f,设定对在步骤ST1中设定的值加上频率节距宽度df而得到的值。即,f=f+df。接着,前进至步骤ST8。
步骤ST8中,在步骤ST7中设定的下次的振荡频率f不在搜索目的值flimit以上的情况即小于搜索目的值flimit的情况下,或者不在最大值fmax以上的情况即小于最大值fmax的情况下,返回步骤ST3。
所谓在步骤ST7中设定的下次的振荡频率f不在搜索目的值flimit以上的情况即小于搜索目的值flimit的情况是指,处于使振荡频率的增加原样地继续的范围内。
在步骤ST7中设定的下次的振荡频率f不在最大值fmax以上的情况即小于最大值fmax的情况下,是判断为振荡电路71能够振荡的值。即,由于虽然下次振荡的频率继续增加但仍比振荡电路71能够振荡的频率小,所以反复进行步骤ST3到步骤ST8的动作。
若从步骤ST8返回到步骤ST3,则运算装置77作为振荡频率以使以步骤ST7所设定的频率进行振荡的方式向振荡电路71发送频率控制信号。振荡电路71以从运算装置77发送的频率控制信号的频率来振荡电压。
在步骤ST8中,若判断为在步骤ST7中设定的振荡频率f在搜索目的值flimit以上、或者在步骤ST7中设定的振荡频率f在最大值fmax以上,则接下来前进至步骤ST9。步骤ST9以后的步骤记载于图3B。如图3B所示,步骤ST9中,对比较用变量Γ0存储最大值Γmax。接着,前进至步骤ST10。
步骤ST10中,若判定为在步骤ST7中设定的振荡频率f在最大值fmax以上,则将振荡频率f设定为最大值fmax。即,f=fmax。这是因为,在步骤ST7中设定的振荡频率f比最大值fmax大的情况下,振荡电路71无法振荡。另外,在步骤ST7中设定的振荡频率f比最大值fmax小的情况下,作为振荡频率,维持在步骤ST7中设定的值。接着前进至步骤ST11。
步骤ST11中,运算装置77以使以步骤ST7或步骤ST10中设定的频率来振荡电压的方式将频率控制信号向振荡电路71发送。振荡电路71以从运算装置77发送的频率控制信号的频率来振荡电压。接着,前进至步骤ST12。
步骤ST12中,运算装置77检测相对于步骤ST11中从振荡电路71振荡的电压的电压反射率Γ,将该值存储。接着,前进至步骤ST13。步骤ST13中,运算装置77比较在步骤ST12中检测出的电压反射率Γ和比较用变量Γ0。电压反射率Γ在比较用变量Γ0以下的情况下,前进至步骤ST14。
步骤ST14中,运算装置77存储在步骤ST12中检测出的电压反射率Γ,作为比较用变量Γ0,即Γ0=Γ。此外,步骤ST14中,将搜索目的值flimit更新为从振荡频率f中减去超调次数N与频率节距宽度df之积而得到的值。即,flimit=f-(N×df)。接着,前进至步骤ST15。步骤ST13中,在判断为电压反射率Γ大于比较用变量Γ0的情况下,也前进至步骤ST15。
步骤ST15中,将振荡频率f更新为减去频率节距宽度df而得到的值。即,f=f-df。接着,前进至步骤ST16。步骤ST16中,运算装置77判定在步骤ST15中更新后的振荡频率f是否在搜索目的值flimit以下,或者振荡频率f是否在最小值fmin以下。即,判定是否f≦flimit或f≦fmin。在不满足f≦flimit或f≦fmin的情况下,返回步骤ST11,在满足f≦flimit或f≦fmin的情况下,前进至步骤ST17。另外,当返回了步骤ST11时,振荡电路71以在步骤ST15中设定的频率振荡。
步骤ST17中,若判定为在步骤ST15中设定的振荡频率f在最小值fmin以下,则将振荡频率f设定为最小值fmin。即,f=fmin。这是因为,在步骤ST15中设定的振荡频率f比最小值fmin小的情况下,振荡电路71无法振荡。另外,在步骤ST15中设定的振荡频率f比最小值fmin大的情况下,作为振荡频率,维持步骤ST15中设定的值。接着,返回步骤ST2。
图4以及图5是表示基于上述顺序的、以使电压反射率Γ最小的方式对振荡电路71进行控制时电压的频率与电压反射率Γ之间的关系的曲线图。图4示出了图3A所示的步骤ST1~ST8的动作下的电压的振荡状态,示出了一边将振荡频率f增加频率节距宽度df一边检测电压反射率Γ的状态。图5示出了图3B所示的步骤ST9~ST17的动作下的电压的振荡状态,示出了一边将振荡频率f减少频率节距宽度df一边检测电压反射率Γ的状态。图4以及图5中,横轴都表示频率,随着沿横轴的箭头(图中附加符号200)前进而值变大,换言之,随着向图中右侧前进,值变大。纵轴表示电压反射率Γ,随着沿纵轴的箭头(图中附加符号201)前进而值变大,换言之,随着向图中上侧前进,值变大。
运算装置77进行图3A所示的动作,从而如图4所示那样,超声波振荡器70将振荡频率f持续增加频率节距宽度df直到电压反射率Γ成为最小。并且,电压反射率Γ成为最小时,将频率增加到搜索目的值flimit。在通过了电压反射率Γ成为最小的值之后,在电压反射率Γ增加的期间,电压反射率Γ为最小值时所设定的搜索目的值flimit不被更新,所以当振荡频率f成为该搜索目的值flimit时,振荡频率f如图5所示那样减少频率节距宽度df减少。并且,电压反射率Γ再次经过最小并且电压反射率Γ在以后相对于上次检测值不减少的情况下,搜索目的值flimit相对于电压反射率Γ最小时所设定的值不被更新。因此,当振荡频率成为在电压反射率Γ最小时设定的搜索目的值时,振荡频率再次增加频率节距宽度df。
这样,从超声波振荡器70振荡的频率反复进行图4、5所示的变化,在检测出电压反射率Γ的峰值(极小值)后,也将振荡频率f增加或减少超调次数N次的频率节距宽度df,所以能够判定上述的峰值是否是最小值。
本实施方式中,如上述那样,从振荡电路71振荡的电压的频率以使电压反射率Γ最小的方式被控制。电压反射率Γ的值越小,振荡电路71振荡的电压越能够效率良好地用于第一接合对象物5和第二接合对象物6彼此的接合。
因此,不是如利用PLL振荡电路的频率跟踪控制那样仅以位相差进行控制,而是能够实现更反映实际接合状态的状况的控制,因此能够提高超声波振荡器70的振荡效率。另外,这里所说的振荡效率是指,超声波振荡器70振荡的电压中的、在第一接合对象物5和第二接合对象物6的接合中所用的电压的比例。
在与上次检测出的电压反射率Γ进行比较,比上次检测出的电压反射率Γ小的情况下通过将搜索目的值更新,从而即使在由于某种影响而检测出电压反射率Γ的峰值的情况下,也将振荡频率变更并继续检测电压反射率Γ,所以能够可靠地检测极小值,能够以电压反射率Γ的最小值附近的值振荡电压。
电压反射率Γ在上次检测出的电压反射率Γ以上的情况下不将搜索目的值更新,从而在将振荡频率变更时,不会继续增加或继续减少,所以能够检测电压反射率Γ的最小值附近的值。
用图6A、6B说明第二实施方式的超声波接合装置。具有与第一实施方式相同的功能的结构附加与第一实施方式相同的符号而将说明省略。本实施方式中,主体控制电路部100的动作和运算装置77的动作不同于第一实施方式。超声波接合装置10的结构与第一实施方式相同。对上述不同点具体说明。
图6A以及图6B是表示本实施方式的超声波振荡器70的动作的流程图。图6A示出到步骤ST8为止的步骤,图6B示出步骤ST9以后的步骤。如图6A所示,作为步骤ST0的替代,使用步骤ST20。在步骤ST5与步骤ST6之间,具有步骤ST21、ST22、ST23的动作。在步骤ST13与步骤ST14之间,具有步骤ST24、ST25、26的动作。
电压反射率Γ根据第一接合对象物5和第二接合对象物6的接合状态而变化。即,在从超声波振荡器70振荡某特定的频率的情况下,对该特定的频率的电压反射率Γ对应于第一接合对象物5和第二接合对象物6的接合状态而变化。当第一接合对象物5和第二接合对象物6的接合进展时,电压反射率Γ降低并收敛。本实施方式中,设定电压反射率Γ的阈值,通过该阈值来判断第一接合对象物5和第二接合对象物6彼此的接合的进展状态,将超调次数和频率节距宽度变更。
如图6A所示,步骤ST20是主体控制电路部100的动作。其信息与第一实施方式同样地例如由作业者输入。步骤ST20中,主体控制电路部100设定频率节距宽度df1、df2。频率节距宽度df1是电压反射率Γ比上述阈值Γth大的情况下使用的值。频率节距宽度df2是电压反射率Γ在阈值Γth以下的情况下使用的值。
此外,步骤ST20中,主体控制电路部100设定超调次数N1、N2。超调次数N1用于电压反射率Γ比阈值Γth大的情况。超调次数N2用于电压反射率Γ在阈值Γth以下的情况。
频率节距宽度df1、df2和超调次数N1、N2被设定为(N1×df1)>(N2×df2)。另外,N1>1,N2>1。本实施方式中,作为一例,频率节距宽度df1是与第一实施方式中使用的频率节距宽度df相同的值。本实施方式中,作为一例,超调次数N1是与第一实施方式中使用的超调次数N相同的值。
步骤ST20中,设定电压反射率Γ的可取得的最大值Γmax、上述的阈值Γth、频率搜索范围的最大值fmax、频率搜索范围的最小值fmin。Γmax、fmax、fmin与第一实施方式相同。
步骤ST21~ST23是运算装置77的动作。运算装置77的动作在步骤ST5之后前进至步骤ST21。步骤ST21中,运算装置77判定电压反射率Γ是否比阈值Γth大。在电压反射率Γ比阈值Γth大的情况下,表示第一接合对象物5和第二接合对象物6的接合未进展到规定的状态。电压反射率Γ在阈值Γth以下的情况下,表示第一接合对象物5和第二接合对象物6的接合进展得超过规定状态。
若判定为电压反射率Γ比阈值Γth大,则前进至步骤ST22。若判断为电压反射率Γ在阈值Γth以下,则前进至步骤ST23。步骤ST22中,作为超调次数而选择N1,作为频率节距宽度而选择df1。步骤ST23中,作为超调次数而选择N2,作为频率节距宽度而选择df2。步骤ST22、ST23的处理后,前进至步骤ST6。
步骤ST24~ST26的动作是运算装置77的动作。步骤ST13之后,前进至步骤ST24。步骤ST24中,运算装置77判定电压反射率Γ是否比阈值Γth大。电压反射率Γ比阈值Γth大的情况下,表示第一接合对象物5和第二接合对象物6的接合未进展到规定的状态。电压反射率Γ在阈值Γth以下的情况下,表示第一接合对象物5和第二接合对象物6的接合进展得超过规定状态。
若判定为电压反射率Γ比阈值Γth大,则前进至步骤ST25。若判定为电压反射率Γ在阈值Γth以下,则前进至步骤ST26。步骤ST25中,作为超调次数而选择N1,作为频率节距宽度而选择df1。步骤ST26中,作为超调次数而选择N2,作为频率节距宽度而选择df2。步骤ST25、ST26的处理之后,前进至步骤ST14。
因此,电压反射率Γ在阈值Γth以下的情况、即第一接合对象物5和第二接合对象物6的接合状态进展得超过规定状态的情况下,当检测出电压反射率Γ的峰值(极小值)时,相对于检测出该峰值时的电压的振荡频率,能够使超调的频域减小。
第一接合对象物5和第二接合对象物6的接合状态进展得超过规定的状态时,电压反射率Γ的变化有变小的倾向。因此,若检测出电压反射率Γ的峰值,则此时的电压反射率Γ成为略最小值,因此如上述那样,通过使频域减小,超声波振荡器70能够在电压反射率Γ的最小值附近效率良好地振荡电压。
第一及第二实施方式的步骤ST6中设定的搜索目的值是第一搜索目的值的一例。第一、二实施方式的步骤ST14中设定的搜索目的值是第二搜索目的值的一例。第一、二实施方式的运算装置77是控制装置的一例。
说明了本发明的几个实施方式,但这些实施方式是作为例子而提示的,并不意欲限定发明的范围。这些新的实施方式能够以其他各种形态实施,在不脱离发明主旨的范围内,能够进行各种省略、替换、变更。这些实施方式及其变形包含在发明的范围及主旨中,并包含在权利要求所记载的发明及其等同范围中。

Claims (3)

1.一种超声波接合装置,具备:
超声波振子,接受电压而产生超声波振动;
前端工具,将负荷和超声波振动向接合对象物施加;
超声变幅杆,将负荷、和上述超声波振子振荡出的超声波振动向上述前端工具传递;以及
超声波振荡器,是具备振荡电路并将从上述振荡电路振荡出的电压向上述超声波振子供给的超声波振荡器,具备控制装置,该控制装置根据上述振荡电路供给的电压和电流来检测电压反射率,并且以使上述电压反射率最小的方式对上述振荡电路振荡的电压的频率进行控制。
2.如权利要求1记载的超声波接合装置,
上述控制装置,
使从上述振荡电路振荡的电压的频率相对于所设定的初始值增加或减少,
在检测出的电压反射率比上次检测值小时,在使上述电压的振荡频率增加的情况下设定第一搜索目的值并使振荡频率增加到上述第一搜索目的值,并且检测增加中的上述电压反射率,在使上述电压的振荡频率减少的情况下设定第二搜索目的值并使振荡频率减少到上述第二搜索目的值,并且检测减少中的上述电压反射率,
在到上述第一搜索目的值为止的振荡频率的增加中或到上述第二搜索目的值为止的振荡频率的减少中检测出的电压反射率相对于在该电压反射率之前刚刚检测的电压反射率变大时,使检测到上述刚刚之前的电压反射率时的上述第一搜索目的值或第二搜索目的值的更新中止,
从上述振荡电路振荡的频率成为上述第一搜索目的值或上述第二搜索目的值时,在将频率增加的情况下以将频率减少的方式进行上述振荡电路的控制,在将频率减少的情况下以将频率增加的方式进行上述振荡电路的控制。
3.如权利要求2记载的超声波接合装置,
上述第一搜索目的值是对上述振荡频率加上超调次数与频率节距宽度之积而得到的值,并且,上述第二搜索目的值是从上述振荡频率中减去上述超调次数与上述频率节距宽度之积而得到的值,
上述超调次数与上述频率节距宽度的上述积,在上述电压反射率成为阈值以下时,与上述电压反射率比上述阈值大时的上述积相比较而较小。
CN201410080007.9A 2013-03-19 2014-03-06 超声波接合装置 Expired - Fee Related CN104056768B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-057284 2013-03-19
JP2013057284A JP6054219B2 (ja) 2013-03-19 2013-03-19 超音波接合装置

Publications (2)

Publication Number Publication Date
CN104056768A true CN104056768A (zh) 2014-09-24
CN104056768B CN104056768B (zh) 2016-10-19

Family

ID=51544868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410080007.9A Expired - Fee Related CN104056768B (zh) 2013-03-19 2014-03-06 超声波接合装置

Country Status (4)

Country Link
US (1) US8997815B2 (zh)
JP (1) JP6054219B2 (zh)
KR (1) KR101548860B1 (zh)
CN (1) CN104056768B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007794A (zh) * 2016-10-27 2018-05-08 现代自动车株式会社 面板元件的接合质量诊断装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013100474A1 (de) * 2013-01-17 2014-07-17 Herrmann Ultraschalltechnik Gmbh & Co. Kg Ultraschallschweißvorrichtung mit schwingungsentkoppeltem Gegenwerkzeug
JP2017047477A (ja) * 2016-11-30 2017-03-09 株式会社東芝 超音波接合方法
KR102022993B1 (ko) * 2019-05-02 2019-09-19 최광수 초음파 접합장비

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191087A (ja) * 1995-01-10 1996-07-23 Toshiba Seiki Kk ワイヤボンディング方法及びワイヤボンディング装置
CN102497826A (zh) * 2009-06-24 2012-06-13 伊西康内外科公司 超声外科器械
CN102539951A (zh) * 2010-10-18 2012-07-04 伊顿公司 声学传感器系统、声学特征模拟器以及电分配系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915708B1 (zh) * 1970-08-15 1974-04-17
US4389601A (en) * 1980-09-08 1983-06-21 Sonobond Corporation Power supply having automatic frequency control for ultrasonic bonding
JPS59120389A (ja) * 1982-12-23 1984-07-11 ソノボンド・ウルトラソニツクス・インコ−ポレ−テツド 自動周波数制御装置を備える超音波接合用電源
US4815001A (en) * 1986-05-30 1989-03-21 Crestek, Inc. Ultrasonic wire bonding quality monitor and method
US5855706A (en) * 1992-04-21 1999-01-05 Branson Ultrasonics Corporation Simultaneous amplitude and force profiling during ultrasonic welding of thermoplastic workpieces
EP0567426B1 (en) * 1992-04-21 1997-01-08 Emerson Electric Co. Ultrasonic welding method
JP3846590B2 (ja) * 2003-06-25 2006-11-15 ソニー株式会社 光ディスク駆動装置およびフォーカス制御方法
JP4915823B2 (ja) * 2004-10-25 2012-04-11 株式会社アドウェルズ 超音波接合装置
JP4423166B2 (ja) * 2004-10-29 2010-03-03 富士通株式会社 電子部品の超音波実装方法および超音波実装装置
JP4376200B2 (ja) * 2005-03-31 2009-12-02 三洋電機株式会社 光学式観察装置
JP4587074B2 (ja) * 2005-07-28 2010-11-24 富士電機システムズ株式会社 位置決め制御装置の制御パラメータ調整方法
JP2007237256A (ja) * 2006-03-09 2007-09-20 Nissan Motor Co Ltd 超音波接合装置および超音波接合方法
US7771551B2 (en) * 2006-05-03 2010-08-10 Swce Adaptive continuous acoustic welding system for incompatible materials
JP4456640B2 (ja) * 2008-02-22 2010-04-28 矢崎総業株式会社 超音波溶着装置
JP2010192659A (ja) * 2009-02-18 2010-09-02 Panasonic Corp 撮像装置
DE102012106491A1 (de) * 2012-07-18 2014-01-23 Herrmann Ultraschalltechnik Gmbh & Co. Kg Verfahren zur Steuerung eines Ultraschallbearbeitungsprozesses
US8858742B2 (en) * 2012-11-16 2014-10-14 GM Global Technology Operations LLC Automatic monitoring of vibration welding equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191087A (ja) * 1995-01-10 1996-07-23 Toshiba Seiki Kk ワイヤボンディング方法及びワイヤボンディング装置
CN102497826A (zh) * 2009-06-24 2012-06-13 伊西康内外科公司 超声外科器械
CN102539951A (zh) * 2010-10-18 2012-07-04 伊顿公司 声学传感器系统、声学特征模拟器以及电分配系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007794A (zh) * 2016-10-27 2018-05-08 现代自动车株式会社 面板元件的接合质量诊断装置
CN108007794B (zh) * 2016-10-27 2022-07-15 现代自动车株式会社 面板元件的接合质量诊断装置

Also Published As

Publication number Publication date
JP6054219B2 (ja) 2016-12-27
CN104056768B (zh) 2016-10-19
JP2014180691A (ja) 2014-09-29
US20140283996A1 (en) 2014-09-25
KR20140114754A (ko) 2014-09-29
KR101548860B1 (ko) 2015-08-31
US8997815B2 (en) 2015-04-07

Similar Documents

Publication Publication Date Title
CN104056768A (zh) 超声波接合装置
US4642581A (en) Ultrasonic transducer drive circuit
US20130112332A1 (en) Ultrasonic welding system with dynamic pressure control
CN101574757B (zh) 超声波焊接机的控制系统
WO2009096346A1 (ja) 超音波発生装置及びそれを備えた設備機器
JP3418507B2 (ja) 圧電振動制御方法
JP2007090139A (ja) 超音波発生装置及び超音波美容装置
EP0272657B1 (en) Drive network for an ultrasonic probe
WO2016147562A1 (ja) 非接触給電装置及び非接触受電装置
JP2003285008A (ja) 超音波発生方法及び装置
JP2995789B2 (ja) 超音波モータの駆動装置
JP2001179179A (ja) 超音波振動子及び複合振動発生超音波振動子
JP2007007649A (ja) 超音波発振装置の駆動方法および超音波発振装置を駆動するための回路装置
WO2010070892A1 (ja) 発振回路
CN104685325A (zh) 用于操作共振测量系统的方法及其相关共振测量系统
JP2017047477A (ja) 超音波接合方法
JP2008155115A (ja) 圧電振動子の駆動装置および超音波美顔装置
JPH11187582A (ja) 電磁誘導電源装置
JP2019076802A (ja) 振動系の制御装置およびワーク搬送装置
JPH11160138A (ja) 粉体供給装置
JP3890487B2 (ja) 振動機の制御方法
JP4075363B2 (ja) アクチュエータ
JP2001077156A (ja) 超音波ボンディング装置及びボンディング方法
JPS5881469A (ja) 超音波加工用電源装置
JP4860719B2 (ja) 誘導加熱装置、発振器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161019

Termination date: 20210306