CN104018249B - 一种高比表面积微孔活性炭纳米纤维的制备方法 - Google Patents

一种高比表面积微孔活性炭纳米纤维的制备方法 Download PDF

Info

Publication number
CN104018249B
CN104018249B CN201410256291.0A CN201410256291A CN104018249B CN 104018249 B CN104018249 B CN 104018249B CN 201410256291 A CN201410256291 A CN 201410256291A CN 104018249 B CN104018249 B CN 104018249B
Authority
CN
China
Prior art keywords
active carbon
raw material
electrostatic spinning
nanofiber
carbon nanofiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410256291.0A
Other languages
English (en)
Other versions
CN104018249A (zh
Inventor
赵阳
肖红梅
渠成兵
付绍云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN201410256291.0A priority Critical patent/CN104018249B/zh
Publication of CN104018249A publication Critical patent/CN104018249A/zh
Application granted granted Critical
Publication of CN104018249B publication Critical patent/CN104018249B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明涉及一种活性炭纳米纤维的制造方法,其特征在于,具体步骤为:将一定量的聚丙烯腈粉末和活化剂加入到强极性有机溶剂中,经充分搅拌混合均匀制得静电纺丝原液,然后静电纺丝原液在静电纺丝装置上进行纺丝,得到纳米纤维原丝;将纳米纤维原丝经预氧化、高温碳化活化、水洗干燥步骤,制备得到活性炭纳米纤维。该材料具有制备工艺简单,成本低廉、样品纤维直径均匀,比表面积大,孔径分布窄等优点。采用该方法制备的新型活性炭纳米纤维可以广泛应用于污染物处理,混合物的分离以及电极材料等,具有广泛的应用前景。

Description

一种高比表面积微孔活性炭纳米纤维的制备方法
技术领域
本发明涉及多孔纳米纤维材料技术领域,特别涉及一种高比表面积微孔活性炭纳米纤维的制备方法。
背景技术
活性炭纤维是继粉末活性炭和颗粒活性炭之后发展起来的第三代活性炭材料,与前两者相比具有更强的吸附能力和吸附速度、优异的加工性能,易加工成毡、布、纸等多种形式,因此,活性炭纤维自七十年代问世以来,迅速在食品、医疗、环保、纺织、核能等行业取得了广泛的应用。目前制备活性炭纤维的前驱体主要有粘胶纤维、酚醛基纤维、聚丙烯腈纤维、沥青基纤维、聚乙烯醇基纤维、苯乙烯/烯烃共聚纤维和木质基纤维等,工业上使用的主要是前四种。
聚丙烯腈(PAN)纤维最显著的优点是结构中含有氮元素,因而其对硫系及氮系化合物有着较高的吸附性能,这是其它几种前驱体活性炭纤维所无法比拟的。商业化的聚丙烯腈活性炭纤维主要是将聚丙烯腈原料经由溶液纺丝制备制备成聚丙烯腈纤维,再将聚丙烯纤维经预氧化、碳化、活化制备得到的,受工艺条件限制商业化的聚丙烯腈纤维直径一般为十几个微米。目前针对PAN基活性炭纤维的研究也主要集中在以商业化聚丙烯腈纤维为原料的后续加工工艺研究(包括预氧化、碳化温度、碳化时间、活化剂的种类及活化条件等),利用静电纺丝工艺得到的纤维直径可达纳米级(几十个纳米至几个微米),可以满足对纤维直径有更高要求的领域。经检索利用静电纺丝将聚丙烯腈和活化剂共混纺丝、碳化活化同时进行制备活性炭纤维的研究还没有公开报道。
目前活性炭纤维的生产过程可以概括为:将各种有机原料进行纺丝制备成纤维前驱体,对各种前驱体纤维进行预氧化处理,之后再高温碳化,最后经活化处理形成活性炭纤维。原料自身,制备工艺的预处理温度、碳化温度、碳化时间、活化剂浓度、活化温度、活化时间对最终的活性炭纤维制品的比表面积以及孔隙结构都有很大的影响。CN102505403A《一种具有分层次孔结构的活性炭纤维膜的制备方法》中,将高中孔活性炭材料分散到聚丙烯腈有机溶剂中利用静电纺丝的方法制备了聚丙烯腈膜,之后经预氧化、碳化、二氧化碳活化处理制备得到了分层次孔结构活性炭纤维,该发明在活性炭纤维前驱纤维的制备过程中使用了静电纺丝技术,不过后续的碳化、活化过程仍是传统的制备工艺,碳化、活化步骤时间过长,能耗较大。专利CN102021676A将氢氧化钛凝胶与聚丙烯腈溶液混合进行静电纺丝,制备了具有光催化性能的二氧化钛/聚丙烯腈复合纤维,不过后续活化仍是采用氢氧化钾浸泡的方式。利用静电纺丝将聚丙烯腈和活化剂共混纺丝、之后碳化活化同时进行制备活性炭纤维的研究还没有公开报道。
发明内容
本发明目的在于:利用静电纺丝技术,提供一种高比表面积微孔活性炭纳米纤维的制备方法。
本发明的技术方案如下:
本发明提供的高比表面积微孔活性炭纳米纤维的制备方法,其步骤如下:
1)将聚丙烯腈原料和活化剂加入到强极性溶剂中,经充分搅拌混合均匀得静电纺丝原液;
所述聚丙烯腈原料、活化剂与强极性溶剂的重量份配比为1:0.1-2:6-12;
所述强极性溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和二甲基亚砜中的一种或几种的混合;
所述活化剂为氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、碳酸氢钠、碳酸氢钾、氯化锌、氯化镁、氯化钠、氯化钙、溴化钠和溴化锌的一种或几种的混合。
2)将静电纺丝原液在静电纺丝设备上纺丝得到纳米纤维丝;
3)将纳米纤维在200-250℃空气氛围中进行预氧化处理1-2小时;
4)将经预氧化的纳米纤维丝在保护性气体保护下进行高温活化处理,所述高温活化处理温度为500-800℃;之后冷却至室温,水洗干燥后得到高比表面积微孔活性炭纳米纤维。
所述的保护性气体为氮气、氦气、氖气、氩气和氪气中的一种或几种的混合。所述的高温活化处理的时间为0.25-3小时
本发明的创新性在于:将聚丙烯腈原料和活化剂加入到强极性溶剂中进行共混为静电纺丝制备有机纤维前驱体,之后经静电纺丝、预氧化、碳化活化、洗涤、烘干等工艺,制备出高比表面积微孔活性炭纳米纤维;所制备的高比表面积微孔活性炭纳米纤维具有比表面积大,孔径分布窄、吸附选择性高的优点;且本发明方法工艺简单,微孔丰富,节能环保;比表面积已完全达到商业活性炭纤维的比表面积范围。
附图说明
图1为本发明方法制备的高比表面积微孔活性炭纳米纤维的SEM照片。
具体实施方式
实施例1
将1重量份的聚丙烯腈原料,0.5重量份的氯化锌加入到10重量份的N、N-二甲基乙酰胺溶剂中,充分搅拌分散得静电纺丝原液;
将一些静电纺丝原液静电纺丝设备上进行静电纺丝得到纳米纤维(前驱体纳米纤维),静电纺丝参数为:纺丝针头G30,纺丝电压10kV,纺丝距离10cm;将前驱体纳米纤维放置在管式炉中,缓慢升温至250℃,保持1小时,之后通入氮气,继续以每分钟10℃的速度升温至600度,保持1小时;之后停止管式炉加热,待降至室温后,取出产物进行洗涤、干燥,最终制得高比表面积微孔活性炭纳米纤维。如图1所示,在77K下进行氮气吸附测试比表面积达到了766m2/g,完全达到商业化活性炭纤维的标准。
实施例2
将1重量份的聚丙烯腈,0.2重量份的氢氧化钠加入到8重量份的N、N-二甲基甲酰胺溶剂中,充分搅拌分散得静电纺丝原液;
将一些静电纺丝原液静电纺丝设备上进行静电纺丝得到纳米纤维(前驱体纳米纤维);将前驱体纳米纤维放置在管式炉中,缓慢升温至220℃,保持2小时,之后通入氮气,继续以每分钟5℃的速度升温至500度,保持3小时;之后停止管式炉加热,待降至室温后,取出产物进行洗涤、干燥,最终制得高比表面积微孔活性炭纳米纤维。
实施例3
将1重量份的聚丙烯腈,0.15重量份的氢氧化钠和0.15重量份的溴化锌加入到12重量份的N、N-二甲基甲酰胺溶剂中,充分搅拌分散得静电纺丝原液;
将一些静电纺丝原液静电纺丝设备上进行静电纺丝得到纳米纤维(前驱体纳米纤维);将前驱体纳米纤维放置在管式炉中,缓慢升温至220℃,保持2小时,之后通入氮气,继续以每分钟8℃的速度升温至600度,保持1.5小时;之后停止管式炉加热,待降至室温后,取出产物进行洗涤、干燥,最终制得高比表面积微孔活性炭纳米纤维。
实施例4
将1重量份的聚丙烯腈,0.25重量份的氢氧化钾加入到12重量份的N、N-二甲基乙酰胺溶剂中,充分搅拌分散得静电纺丝原液;
将一些静电纺丝原液静电纺丝设备上进行静电纺丝得到纳米纤维(前驱体纳米纤维);将前驱体纳米纤维放置在管式炉中,缓慢升温至250℃,保持1小时,之后通入氦气,继续以每分钟15℃的速度升温至800度,保持1小时;之后停止管式炉加热,待降至室温后,取出产物进行洗涤、干燥,最终制得高比表面积微孔活性炭纳米纤维。
实施例5
将1重量份的聚丙烯腈,0.2重量份的氯化钙和0.2重量份的氢氧化钠加入到6重量份的N、N-二甲基甲酰胺和2重量份的二甲基亚砜组成的混合溶剂中,充分搅拌分散得静电纺丝原液;
将一些静电纺丝原液静电纺丝设备上进行静电纺丝得到纳米纤维(前驱体纳米纤维);将前驱体纳米纤维放置在管式炉中,缓慢升温至220℃,保持2小时,之后通入氪气,继续以每分钟10℃的速度升温至750度,保持1小时;之后停止管式炉加热,待降至室温后,取出产物进行洗涤、干燥,最终制得高比表面积微孔活性炭纳米纤维。
实际上,本发明的高比表面积微孔活性炭纳米纤维的制备方法中,所使用的强极性溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和二甲基亚砜中的一种或几种的混合均可;所使用的活化剂为氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、碳酸氢钠、碳酸氢钾、氯化锌、氯化镁、氯化钠、氯化钙、溴化钠和溴化锌的一种或几种的混合均可;在此不一一赘述。

Claims (3)

1.一种高比表面积微孔活性炭纳米纤维的制备方法,其步骤如下:
1)将聚丙烯腈原料和活化剂加入到强极性溶剂中,经充分搅拌混合均匀得静电纺丝原液;
所述聚丙烯腈原料、活化剂与强极性溶剂的重量份配比为1:0.1-2:6-12;
所述强极性溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和二甲基亚砜中的一种或几种的混合;
所述活化剂为氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、碳酸氢钠、碳酸氢钾、氯化锌、氯化镁、氯化钠、氯化钙、溴化钠和溴化锌的一种或几种的混合;
2)将静电纺丝原液在静电纺丝设备上纺丝得到纳米纤维丝;
3)将纳米纤维在200-250℃空气氛围中进行预氧化处理1-2小时;
4)将经预氧化的纳米纤维丝在保护气体保护下进行高温活化处理,所述高温活化处理温度为500-800℃;之后冷却至室温,水洗干燥后得到高比表面积微孔活性炭纳米纤维。
2.按权利要求1所述的高比表面积微孔活性炭纳米纤维的制备方法,其特征在于,所述的保护气体为氮气、氦气、氖气、氩气、氪气、氙气和氡气中的一种或几种的混合。
3.按权利要求1所述的活性炭纳米纤维的制备方法,其特征在于,所述的高温活化处理的时间为0.25-3小时。
CN201410256291.0A 2014-06-10 2014-06-10 一种高比表面积微孔活性炭纳米纤维的制备方法 Expired - Fee Related CN104018249B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410256291.0A CN104018249B (zh) 2014-06-10 2014-06-10 一种高比表面积微孔活性炭纳米纤维的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410256291.0A CN104018249B (zh) 2014-06-10 2014-06-10 一种高比表面积微孔活性炭纳米纤维的制备方法

Publications (2)

Publication Number Publication Date
CN104018249A CN104018249A (zh) 2014-09-03
CN104018249B true CN104018249B (zh) 2016-05-18

Family

ID=51435233

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410256291.0A Expired - Fee Related CN104018249B (zh) 2014-06-10 2014-06-10 一种高比表面积微孔活性炭纳米纤维的制备方法

Country Status (1)

Country Link
CN (1) CN104018249B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105862174B (zh) * 2016-04-08 2018-02-06 合肥工业大学 一种新型金属有机配合物纤维及其衍生多孔碳纤维的制备方法
CN107048538A (zh) * 2017-05-26 2017-08-18 青岛海之星生物科技有限公司 一种防雾霾口罩滤片
CN110739095B (zh) * 2019-10-15 2021-04-23 江苏科技大学 一种用聚丙烯腈凝胶制备的导电剂及其制备方法
CN111235698B (zh) * 2020-03-24 2022-09-23 北华大学 一种氮掺杂多孔碳纤维材料的制备方法及其应用
CN112316899B (zh) * 2020-09-15 2023-04-11 济南国科医工科技发展有限公司 一种多孔掺杂柔性活性炭气体吸附薄膜的制备方法
CN114381829B (zh) * 2022-01-13 2023-03-21 华南理工大学 利用聚丙烯腈制备高选择性分离多种小分子气体的微孔碳纤维材料及其制备方法与用途
CN115106057A (zh) * 2022-05-12 2022-09-27 山西新华防化装备研究院有限公司 一种高温煤气吸附材料的制备方法
CN115537974A (zh) * 2022-10-27 2022-12-30 浙江科技学院 碱木质素和聚丙烯腈制备表面微孔形貌的碳纳米纤维方法
CN115849865B (zh) * 2022-12-28 2024-04-16 佛山市南海科友陶瓷原料有限公司 一种陶瓷洁具用高性能球土的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044074A (ja) * 2002-06-17 2004-02-12 Sgl Carbon Ag 活性炭素繊維及びその製造方法
CN102021677A (zh) * 2010-10-13 2011-04-20 清华大学 含过渡金属与氮元素的碳纳米纤维的制备方法及其在燃料电池催化剂中的应用
CN102162154A (zh) * 2011-03-10 2011-08-24 江苏国正新材料科技有限公司 一种超能电池活性电碳中空纤维的制备方法
CN103225135A (zh) * 2013-05-09 2013-07-31 中国科学院化学研究所 多孔碳纤维及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044074A (ja) * 2002-06-17 2004-02-12 Sgl Carbon Ag 活性炭素繊維及びその製造方法
CN102021677A (zh) * 2010-10-13 2011-04-20 清华大学 含过渡金属与氮元素的碳纳米纤维的制备方法及其在燃料电池催化剂中的应用
CN102162154A (zh) * 2011-03-10 2011-08-24 江苏国正新材料科技有限公司 一种超能电池活性电碳中空纤维的制备方法
CN103225135A (zh) * 2013-05-09 2013-07-31 中国科学院化学研究所 多孔碳纤维及其制备方法与应用

Also Published As

Publication number Publication date
CN104018249A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
CN104018249B (zh) 一种高比表面积微孔活性炭纳米纤维的制备方法
CN104099725B (zh) 一种纳米纤维膜、其制备方法及纳米纤维复合材料、其制备方法
Wang et al. Recent progress of the preparation and application of electrospun porous nanofibers
CN102718205B (zh) 一种3维层次多孔碳的制备方法
CN104689724A (zh) 一种有机无机复合纳米纤维膜过滤材料及其制备方法
CN104722281B (zh) 一种纳米二氧化钛/壳聚糖三维多孔复合材料及其制备方法
CN106521717A (zh) 一种高比表面积多孔碳纤维的制备方法
CN106521715B (zh) 一种高比表面积微孔碳纤维的制备方法
Ahn et al. Incorporation of phase change materials into fibers for sustainable thermal energy storage
CN108630453A (zh) 一步法制备类石墨烯碳纳米片材料的方法及其用途
CN107413295A (zh) 多孔活性炭纳米纤维负载羟基磷灰石除氟材料的制备方法
CN105970325A (zh) 一种连续纤维素气凝胶纤维及其制备方法
CN103060938A (zh) 一种功能性黏胶纤维的制造方法
CN105019142A (zh) 一种高孔容微纳米pet纤维的制备方法
CN1837435B (zh) 一种复合型纳米级蚕丝纤维制品及其制备方法
CN108726516A (zh) 一种载银木质基活性炭微球及其制备方法和应用
CN103272562B (zh) 一种滤料基活性炭纤维的制备方法
CN110451490A (zh) 一种多孔石墨烯材料的制备方法
CN105692585B (zh) 一种含石墨烯结构的碳纳米材料及其制法与应用
CN104695059A (zh) 一种具有大比表面积的木质素基活性碳纤维的制备方法
CN108355629A (zh) 一种均匀负载碳质颗粒的碳纳米纤维复合材料及其应用
CN103320902B (zh) 一种生物基活性碳纤维过滤材料及其制备方法
CN103566668B (zh) 空气净化过滤网
CN103623778A (zh) 一种活性碳纤维的改性方法
CN109232993A (zh) 一种纤维素/微米纤维素长丝多孔小球的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160518

Termination date: 20190610