CN104010983A - 减小由化学强化处理引起的玻璃基板的翘曲的方法及化学强化玻璃基板的制造方法 - Google Patents

减小由化学强化处理引起的玻璃基板的翘曲的方法及化学强化玻璃基板的制造方法 Download PDF

Info

Publication number
CN104010983A
CN104010983A CN201280064392.7A CN201280064392A CN104010983A CN 104010983 A CN104010983 A CN 104010983A CN 201280064392 A CN201280064392 A CN 201280064392A CN 104010983 A CN104010983 A CN 104010983A
Authority
CN
China
Prior art keywords
glass substrate
film
glass
inorganics
chemical enhanced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280064392.7A
Other languages
English (en)
Inventor
冈畑直树
中川浩司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of CN104010983A publication Critical patent/CN104010983A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/211SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/215In2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • C03C2218/1525Deposition methods from the vapour phase by cvd by atmospheric CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明的目的在于提供能够在短时间内有效地抑制由化学强化处理引起的玻璃基板的翘曲并且能够省略或简化化学强化前的磨削处理或研磨处理的方法。本发明涉及一种方法,其中,在通过浮法成形且具有在成形时与熔融金属接触的底面和与该底面相对的顶面的玻璃基板的至少顶面上形成至少1层包含H原子浓度处于1.0×1015~1.0×1019个原子/mm3范围的无机物的膜,由此,减小由之后的化学强化处理引起的玻璃基板的翘曲。

Description

减小由化学强化处理引起的玻璃基板的翘曲的方法及化学强化玻璃基板的制造方法
技术领域
本发明涉及减小由化学强化处理引起的玻璃基板的翘曲的方法及化学强化玻璃基板的制造方法。
背景技术
近年来,对于手机或便携信息终端(PDA)、触控面板等平板显示装置而言,为了保护显示器并且改善美观,以比图像显示部分更广的区域将薄的板状保护玻璃配置于显示器的正面。
对于这样的平板显示装置要求轻量和薄型化,因此,要求显示器保护用途中使用的保护玻璃也变薄。
但是,若使保护玻璃的厚度变薄,则强度降低,有时会由于使用时或携带时落下等而导致保护玻璃自身破裂,存在不能发挥保护显示装置这样的本来的作用的问题。
因此,对于以往的保护玻璃而言,为了提高耐擦伤性,通过对利用浮法制造的浮法玻璃进行化学强化而在表面形成压应力层,从而提高保护玻璃的耐擦伤性。
近年来,保护玻璃等所要求的耐擦伤性进一步增高。以往的对钠钙玻璃进行化学强化后的化学强化浮法玻璃的表面压应力为约500MPa,压应力层的深度为约10μm,但为了应对对于高耐擦伤性的要求,正在开发表面压应力为600MPa以上、压应力层的深度为15μm以上的化学强化浮法玻璃。
已报道浮法玻璃在化学强化后会产生翘曲从而使平坦性受损(专利文献1)。该翘曲是由于在浮法成形时未与熔融锡接触的玻璃面(以下也称为顶面)和与熔融锡接触的玻璃面(以下也称为底面)中化学强化的进行程度不同而造成的。
化学强化的进行程度越强,则上述浮法玻璃的翘曲越大,因此,为了应对对于高耐擦伤性的要求而开发的、上述表面压应力为600MPa以上且压应力层的深度为15μm以上的化学强化浮法玻璃,与以往的表面压应力为约500MPa且压应力层的深度为约10μm的化学强化浮法玻璃相比,翘曲的问题显著存在。
以往认为,浮法玻璃的顶面的化学强化的进行程度与底面不同的理由在于,在浮法成形时熔融金属会侵入到与熔融金属接触的玻璃面(专利文献1)。
在专利文献1中公开了如下的技术:在不对通过浮法方式制造、加工后的板状体进行表面研磨的情况下,在Li离子或Na离子或者它们的混合无机盐中浸渍或接触后进行化学强化,由此改善上述翘曲。
另外,以往,为了减小上述浮法玻璃的翘曲,进行如下的应对方法:减小由化学强化产生的强化应力,或者通过对浮法玻璃的顶面和底面进行磨削处理或研磨处理等而将表面异质层除去后进行化学强化。
现有技术文献
专利文献
专利文献1:日本专利第2033034号公报
发明内容
发明所要解决的问题
但是,专利文献1中记载的方法中,需要在化学强化前将浮法玻璃浸渍在混合无机盐中进行处理,很繁杂。另外,减小强化应力的方法有可能使化学强化后的浮法玻璃的强度不充分。
另外,在化学强化前对浮法玻璃的顶面和底面进行磨削处理或研磨处理的方法中,从提高生产率的观点出发,优选省略这些磨削处理或研磨处理。
因此,本发明的目的在于提供能够在短时内有效地抑制由化学强化处理引起的玻璃基板的翘曲并且能够省略或简化化学强化前的磨削处理或研磨处理的方法。
用于解决问题的手段
本发明人发现,通过在具有在成形时与熔融金属接触的底面和与该底面相对的顶面的玻璃基板的至少顶面上形成至少1层包含H原子浓度处于1.0×1015~1.0×1019个原子/mm3范围的无机物的膜,能够减小由之后的化学强化处理引起的玻璃基板的翘曲,从而完成了本发明。
即,本发明如下所述。
1.一种方法,其中,在通过浮法成形且具有在成形时与熔融金属接触的底面和与该底面相对的顶面的玻璃基板的至少顶面上形成至少1层包含H原子浓度处于1.0×1015~1.0×1019个原子/mm3范围的无机物的膜,由此,减小由之后的化学强化处理引起的玻璃基板的翘曲。
2.一种制造化学强化玻璃基板的方法,其特征在于,在通过浮法成形且具有在成形时与熔融金属接触的底面和与该底面相对的顶面的玻璃基板的至少顶面上形成至少1层包含H原子浓度处于1.0×1015~1.0×1019个原子/mm3范围的无机物的膜,并对形成有该膜的玻璃基板进行化学强化处理。
3.如前项1或2所述的方法,其特征在于,所述包含无机物的膜为无碱氧化物。
4.如前项3所述的方法,其特征在于,所述无碱氧化物含有包含选自由硅、钛、锡、铝、锌、铬、铜、锰、铁、钴、镍、锆、银、铌、钼、锑和铟组成的组中的至少1种元素的氧化物以及复合氧化物中的至少1种以上。
5.如前项1~4中任一项所述的方法,其中,所述包含无机物的膜为通过常压CVD法形成的膜。
发明效果
本发明的化学强化用玻璃基板在至少一个面上形成有包含含有H原子的无机物的膜,膜中的化学结构因该膜中含有的H原子而发生变化从而形成离子通道。由此,能够在玻璃基板上形成该膜后进行化学强化处理。
本发明的化学强化用玻璃基板,通过对形成在至少一个面上的包含含有H原子的无机物的膜中的H原子的含量进行调节,能够在化学强化处理前不进行磨削和研磨等处理的情况下减小化学强化后玻璃基板的翘曲。
本发明的化学强化用玻璃基板中包含H原子浓度处于1.0×1015~1.0×1019个原子/mm3范围的无机物的膜能够通过常压CVD或溶胶凝胶法等成膜法形成在玻璃基板上。
在常压CVD的情况下,能够在大面积的玻璃基板上形成包含H原子浓度处于1.0×1015~1.0×1019个原子/mm3范围的无机物的膜,能够在成膜后、即进行化学强化前切割为期望的大小,因此生产率高。
另外,将常压CVD法等成膜法应用于浮法生产线,在槽内、与其相连的退火区域进行成膜,由此,无需对玻璃基板进行再加热,成为环境负荷小且生产率高的工业工艺。
从溶胶凝胶法的观点出发,不需要用于设置物理性空隙所需的涂布液中的粒子,因此成本降低,并且,也不需要使粒子分散在涂布液中的技术,因此,涂布液的制造也变得廉价且容易,从生产率和成本这两方面而言是优良的。
另外,本发明的化学强化用玻璃基板能够在化学强化和形状加工的前一阶段在要成为化学强化玻璃的玻璃基板的表面上形成功能性膜。因此,根据本发明的化学强化用玻璃基板,能够高生产率且低成本地制造在化学强化玻璃的表面上具有功能性膜的化学强化玻璃制品。
附图说明
图1是实施例中使用的装置的概念图。
图2示出由SiO2膜的SIMS分布求出SiO2膜中的平均H原子浓度(个原子/cc)而得到的结果。例如,1E+23表示1×10+23的含义。
具体实施方式
以下,对本发明详细地进行说明。
<玻璃基板>
作为本发明中的玻璃基板,只要是通过浮法成形且具有能够通过化学强化处理进行强化的组成的玻璃基板,则可以使用各种组成的玻璃基板。
具体而言,可举出例如包含无色透明的钠钙硅酸盐玻璃、铝硅酸盐玻璃、硼酸盐玻璃、锂铝硅酸盐玻璃、硼硅酸玻璃和无碱玻璃以及其他各种玻璃的透明玻璃板。
其中,优选包含离子半径更小的碱金属离子或碱土金属离子的玻璃,更优选包含Na离子的玻璃。包含Na离子的玻璃基板能够用具有比Na大的离子半径的离子中离子半径相对较小的金属离子、例如K离子容易地进行置换,因此,即使是在其表面上形成有功能性膜的玻璃基板,也能够更有效地与Na离子置换而进行强化。
玻璃基板的厚度没有特别限制,但为了有效地进行后述的化学强化处理,通常优选为5mm以下,更优选为3mm以下。
作为本发明的化学强化用玻璃基板的组成,没有特别限定,例如可举出以下的玻璃组成。
(i)一种玻璃,以用摩尔%表示的组成计,含有50~80%的SiO2、2~25%的Al2O3、0~10%的Li2O、0~18%的Na2O、0~10%的K2O、0~15%的MgO、0~5%的CaO和0~5%的ZrO2
(ii)一种玻璃,以用摩尔%表示的组成计,含有50~74%的SiO2、1~10%的Al2O3、6~14%的Na2O、3~11%的K2O、2~15%的MgO、0~6%的CaO和0~5%的ZrO2,且SiO2和Al2O3的总含量为75%以下,Na2O和K2O的总含量为12~25%,MgO和CaO的总含量为7~15%;
(iii)一种玻璃,以用摩尔%表示的组成计,含有68~80%的SiO2、4~10%的Al2O3、5~15%的Na2O、0~1%的K2O、4~15%的MgO和0~1%的ZrO2
(iv)一种玻璃,以用摩尔%表示的组成计,含有67~75%的SiO2、0~4%的Al2O3、7~15%的Na2O、1~9%的K2O、6~14%的MgO和0~1.5%的ZrO2,且SiO2和Al2O3的总含量为71~75%,Na2O和K2O的总含量为12~20%,在含有CaO时其含量小于1%。
<包含无机物的膜>
本发明的化学强化用玻璃基板在至少一个面上形成有包含H原子浓度处于1.0×1015~1.0×1019个原子/mm3范围的无机物的膜。包含无机物的膜典型地是指氧化物膜、氮化物膜、氟化物膜或金属膜、或者这些膜的层叠膜。
作为上述氧化物,可举出例如:TiO2和SiO2等无碱氧化物、LiMnO4和BaTiO3等含有碱金属元素或碱土金属元素的复合氧化物以及K2O和Na2O等碱金属氧化物,但并不限定于这些物质。
作为上述氮化物,可举出例如:Si3N4、AlN和BN,但并不限定于这些物质。
作为上述氟化物膜,可举出例如:MgF2、CaF2、SrF2和BaF2,但并不限定于这些物质。
作为上述金属,可举出例如:Ag和Cu,但并不限定于这些物质。
无碱氧化物是指包含碱金属元素以外的元素的氧化物,包含1种以上碱金属以外的元素的氧化物以及复合氧化物、或2种以上氧化物和复合氧化物的混合氧化物、或者上述氧化物、复合氧化物的层叠体。
作为无碱氧化物,优选含有包含选自由硅、钛、锡、铝、锌、铬、铜、锰、铁、钴、镍、锆、银、铌、钼、锑和铟组成的组中的至少1种元素的氧化物以及复合氧化物中的至少1种以上的氧化物。
仅含有氧化物的膜中,也可以含有氮化物、氟化物、硫化物等其他化合物,可以与任意一种元素组合。可以是掺杂有少量镧系元素或锕系元素等的膜。
作为含有碱金属元素的复合氧化物,可举出例如:LiMnO4或BaTiO3等,但并不限定于这些物质。
包含无机物的膜中的无机物的含量优选为50质量%以上,更优选为70质量%以上。通过使包含无机物的膜中的无机物的含量为50质量%以上,能够均匀地进行化学强化。
包含H原子浓度处于1.0×1015~1.0×1019个原子/mm3范围的无机物的膜可以仅形成在化学强化用玻璃基板的表面的单面,也可以形成在两面。包含无机物的膜通常优选覆盖玻璃基板的表面的50%以上,更优选覆盖70%以上。
包含无机物的膜的膜厚通常优选为5~600nm,更优选为10~400nm。通过使膜厚为5~600nm,能够均匀地进行化学强化。
关于无机物中的H原子的含量,优选H原子浓度为1.0×1015~1.0×1019个原子/mm3的范围,更优选H原子浓度为0.05~5个原子%。通过使无机物中的H原子浓度为1.0×1015~1.0×1019个原子/mm3,化学强化中的离子的置换变得容易,并且可保证致密的膜。无机物中的H原子浓度可以通过二次离子质谱分析法进行测定。
本发明的化学强化用玻璃基板在至少一个面上形成有包含无机物的膜,通过使无机物中含有H原子,可使膜中的化学结构发生变化而形成离子通道。由此,能够在玻璃基板上形成该膜后进行化学强化处理。
另外,根据本发明,也能够解决浮法玻璃在化学强化后产生翘曲从而使平坦性受损的问题。该翘曲是由于在浮法成形时未与熔融锡接触的玻璃面(顶面)和与熔融金属(通常为锡)接触的玻璃面(底面)中化学强化的进行程度不同而造成的。
化学强化玻璃的翘曲的原因在于由于在玻璃的浮法成形时熔融锡侵入接触玻璃面(底面)而产生的影响,底面比顶面更难以进行化学强化,顶面的由化学强化产生的压应力更大,玻璃在顶面侧以凸起的方式产生翘曲。因此,以往一直减小强化应力或者在将底面磨削和研磨后进行化学强化处理。
根据本发明的化学强化用玻璃基板,通过对形成在玻璃基板上的膜中含有的无机物中的H原子的含量进行调节,能够调节顶面和底面中的离子的扩散速度,能够使顶面和底面的化学强化的进行变得均衡。因此,本发明的化学强化用玻璃基板能够在不减小强化应力或者不在化学强化处理前进行磨削和研磨等处理的情况下减小化学强化后的玻璃基板的翘曲。
本发明的化学强化用玻璃基板中,为了减小化学强化后的玻璃基板的翘曲,优选在顶面和底面中容易进行化学强化的面、通常为顶面上形成包含无机物的膜。
另外,可以在顶面和底面这两个面上形成包含无机物的膜,此时,通过在顶面侧的膜和底面侧的膜间调节无机物中的H原子的量或膜厚,能够减小化学强化后的玻璃基板的翘曲。
<包含无机物的膜的形成方法>
作为包含无机物的膜的形成方法,可举出例如:常压CVD法和等离子体CVD法等CVD(化学蒸镀、Chemical Vapor Deposition)法、溅射法、湿涂法以及蒸镀法。其中,从能够大面积且容易地进行成膜的观点出发,优选CVD法,更优选常压CVD法。
作为具体的方法,例如对于通过CVD法在玻璃基板上形成包含无机物的膜的情况,以下通过图1所示的示意图进行说明。
使用大气压CVD法中使用的喷射器10向玻璃基板的表面供给包含无机物源和氧化剂的气体,使无机物源与氧化剂在玻璃基板表面反应,得到形成有包含无机物的膜的玻璃基板。
即,将优选0.01~10SLM的优选0.01~50质量%的无机物源与优选1~1000SLM的载气混合而成的气体加热至优选10~200℃后从图1所示的中央狭缝1吹入,从外狭缝2吹入优选0.5~2000SLM的氧化剂和优选1~5000SLM的载气,得到成膜有优选5~600nm的无机物的玻璃基板。关于流量和温度的条件,在此所示的示例仅为一例,只要无机物能够以期望量成膜,则不限定于这些条件。需要说明的是,SLM为standardlitter per minute(标准升每分钟)的简称。
气体通过流路4在玻璃基板20上流过,排气狭缝5将导入到喷射器中的总气体流量的优选1.0~20倍量排出。气体的温度和流速的测定使用热线风速计(例如加野公司制、クリモマスター6543)。
玻璃基板优选加热至300~700℃。玻璃基板的温度可以在即将要开始吹送气体前设置辐射温度计来测定。
无机物源优选为无碱源,作为无碱源,优选硅源、钛源、锡源或铟源,但并不限定于这些物质。
作为硅源,可举出例如:SiH4、SiHCl3、SiH2Cl2、SiH3Cl、SiCl4、Si(CH3)2Cl2、SiBr4、SiI4、SiF4和Si(OC2H5)4等,但并不限定于这些物质。
作为钛源,可举出例如:Ti(OiPr)4和TiCl4等,但并不限定于这些物质。需要说明的是,(OiPr)表示异丙氧(iso-propoxy)基。
作为锡源,可举出例如:SnCl4、n-C4H9SnCl3、乙酸锡、Sn(CH3)4和(CH3)2SnCl2等,但并不限定于这些物质。
作为铟源,可举出例如:InCl3、InBr3和In(NO3)3等,但并不限定于这些物质。
作为氧化剂,可举出例如:O2、O3、NO、NO2、N2O、CO和CO2等。
作为载气,优选为在常温下不与无机物源和氧化剂反应的气体,可举出例如:N2、空气、H2、O2、Ne、Xe、CO2、Ar、He和Kr等,它们可以单独使用或组合使用2种以上。其中,优选N2或Ar等惰性气体。
包含无机物的膜可以为各种功能性膜。作为功能性膜,可举出例如:低反射膜、热吸收膜、热反射膜、UV吸收膜、导电膜和玻璃的防变色(ヤケ)膜,但并不限定于这些膜。可以对玻璃基板的两面赋予相同的功能,也可以对玻璃基板的两面赋予不同的功能。
作为对玻璃基板的两面赋予相同或不同的功能的方法,具体而言,可举出例如:在浮法的退火区域中,向玻璃基板两面的各表面供给能够赋予相同或不同的功能性膜的无机物源和氧化剂,从而能够不改变玻璃组成且通过单一工艺制造在两面具有相同或不同的功能的玻璃基板。通过这样的方法,能够配合通常的玻璃基板的制造方法通过单一工艺在玻璃基板上形成功能性膜,因此,作为成本低且生产率高的工艺非常有用。
本发明的玻璃基板通过浮法成形,因此,通常能够利用辊输送来输送玻璃基板。浮法中,使用具备熔化玻璃原料的熔炉、使熔融玻璃浮在熔融金属(锡等)上从而成形为玻璃带的浮法槽和对该玻璃带进行退火的退火炉的玻璃制造装置来制造玻璃基板。
因此,玻璃在熔融金属(锡)浴上成形时,可以从未与金属面接触的一侧向在熔融金属浴上输送的玻璃基板供给无机物源和氧化剂,从而在该玻璃基板表面形成包含无机物的膜。
与熔融金属(锡)浴相连的退火区域中,玻璃基板通过辊输送进行输送。在此,退火区域不仅包括退火炉内,也包括在浮法槽内从上述熔融金属(锡)浴搬出后被输送至退火炉内为止的部分。退火区域中,可以从未与熔融金属(锡)接触的顶面供给无机物源和氧化剂。或者,也可以从与熔融金属(锡)接触的底面供给无机物源和氧化剂。
另外,通过CVD法、喷涂法、辊涂法或流涂法等与基于浮法的玻璃制造技术的组合,能够以在线的方式制造在表面上形成有包含无机物的膜的玻璃基板。此时,可以从未与熔融金属(锡)接触的面或未与辊接触的面(顶面)供给包含无机物源和氧化剂的气体而在玻璃基板上形成包含无机物的膜,另外,可以适当地供给液体而在玻璃基板上形成包含无机物的膜。
本发明的化学强化用浮法玻璃可以在玻璃基板的表面上形成层叠有物性不同的多个膜的多层结构。作为在玻璃基板的表面上形成层叠有物性不同的多个膜的多层结构的方法,具体而言,例如通过在玻璃基板的表面上形成第一层TiO2膜、在TiO2膜上形成第二层二氧化硅膜且在二氧化硅膜上形成第三层SnO2层的方法,可得到包含多层结构的透明导电性氧化物膜。
<化学强化处理>
化学强化处理可以通过以往公知的方法来进行。另外,优选在化学强化处理前根据用途进行形状加工,例如切割、端面加工和开孔加工等机械加工。需要说明的是,切割等也可以在进行化学强化处理后进行。
利用化学强化处理,通过浸渍等使玻璃基板与包含离子半径大的金属离子(典型地为K离子)的金属盐(例如硝酸钾)的熔液接触,由此,将玻璃基板中离子半径小的金属离子(典型地为Na离子或Li离子)置换为离子半径大的金属离子。
化学强化处理例如可以通过将玻璃板在300~550℃的硝酸钾溶液中浸渍5分钟~20小时来进行。离子交换条件可以考虑玻璃的粘度特性、用途、板厚、玻璃内部的拉应力等来选择最适的条件。
作为用于进行离子交换处理的熔盐,可举出例如:硝酸钾、硫酸钠、硫酸钾、氯化钠和氯化钾等碱金属硫酸盐和碱金属氯化盐等。这些熔盐可以单独使用,也可以组合使用多种。
本发明中,化学强化处理的处理条件没有特别限定,考虑玻璃的特性和熔盐等来选择最适的条件即可。
通过对本发明的化学强化用玻璃基板进行化学强化,能够得到在化学强化玻璃基板的表面上具有功能性膜的化学强化玻璃制品。作为这样的化学强化玻璃制品,可举出例如数码相机、手机、PDA和触控面板等显示装置等的保护玻璃以及显示器的玻璃基板。也能够应用于组装到显示装置或设备中的玻璃基板。
实施例
以下,对本发明的实施例进行具体说明,但本发明并不限定于这些实施例。
(1)浮法玻璃的制造
通过浮法将以下组成的玻璃材料制成板厚0.8mm,切割为50×50mm,制造浮法平板玻璃。
(玻璃材料A)以摩尔%表示含有64.3%的SiO2、8.0%的Al2O3、12.5%的Na2O、4.0%的K2O、10.5%的MgO、0.1%的CaO、0.1%的SrO、0.1%的BaO和0.5%的ZrO2的玻璃
(2)化学强化用玻璃基板的制作
使用大气压CVD法中使用的喷射器10,按照图1所示的示意图,向(1)中制造的浮法平板玻璃的表面供给包含单硅烷(SiH4)、氧气(O2)的气体,使单硅烷与氧气在玻璃基板表面反应,得到形成有SiO2膜的玻璃基板。
即,将0.09SLM的30%SiH4与40.4SLM的氮气(N2)混合而成的气体加热至150℃后以72cm/秒的流速从图1所示的中央狭缝1吹入,从外狭缝2吹送氧气4.1SLM和氮气36.5SLM,得到成膜有32nm的SiO2的玻璃基板。
气体通过流路4在基板20上流过,排气狭缝5将导入到喷射器中的总气体流量的2倍量排出。气体的温度和流速的测定使用热线风速计(例如加野公司制、クリモマスター6543)。
玻璃基板使用旭硝子制铝钠系玻璃(厚度0.8mm、Tg:617℃)。将玻璃基板加热至580℃,以2m/分钟的速度进行输送。玻璃基板的温度通过在即将要开始吹送气体前设置辐射温度计来测定。
(3)化学强化用玻璃基板的包含无机物的膜中的H原子量的测定
通过二次离子质谱分析法(Secondary ion mass spectrometry:SIMS)测定形成在(2)中得到的化学强化用玻璃基板的表面上的包含无机物(SiO2)的膜中的H原子量。由SiO2膜的SIMS分布求出SiO2膜中的平均H原子浓度(个原子/cc),将其作为H原子量。分析条件如下所示。
·装置:ULVAC-PHI公司制ADEPT1010
·一次离子种:Cs+
·一次离子加速电压:1kV
·一次离子电流值:100nA
·一次离子栅网尺寸:300×300μm2
·入射角:60度
需要说明的是,作为定量用标准试样,使用通过以下条件制作的注入H+的石英玻璃。
·离子种:1H+
·注入能:3kV
·注入量:5.5×10+14cm-2
其结果如图2所示。化学强化前的膜中的平均H原子浓度为7.9E+20个原子/cc、即7.9×10+20个原子/cc。
(4)化学强化处理
利用硝酸钾熔盐在435℃下对(2)中得到的化学强化用玻璃基板进行4小时化学强化处理。
(5)表面应力和压应力层的深度的测定
对化学强化后的浮法玻璃测定表面应力的平均值(CS、单位为MPa)、压应力层的深度(DOL、单位为μm)。表面应力的平均值(CS)和压应力层的深度使用折原制作所公司制的表面应力计(FSM-6000LE)进行测定。其结果如表1所示。
表1
如表1所示,对在表面上形成有100nm包含SiO2的膜的化学强化用玻璃基板进行化学强化后的实施例1和实施例2中形成有该膜的面的应力值与对未形成膜的化学强化用玻璃基板进行化学强化后的比较例1进行比较,结果可知赋予了同等的应力值。
由这些结果可知,根据本发明的化学强化用玻璃基板,通过在玻璃基板上形成包含含有H原子的无机物的膜,能够在玻璃基板上形成该膜后进行化学强化处理。
另外,如表1所示可知,通过对形成在玻璃基板的表面上的膜中含有的无机物中的H原子的含量为1.0×1015~1.0×1019个原子/mm3的化学强化用玻璃进行化学强化,使化学强化前后的玻璃基板的翘曲量的差即Δ翘曲量减小。另外,伴随压应力层的深度减小,Δ翘曲量减少。
另外,如表1所示,使包含SiO2的膜为厚膜的实施例2中,Δ翘曲量成为负值。由该结果可知,通过对形成在玻璃基板上的包含无机物的膜的膜厚进行调节,能够对化学强化后的玻璃基板的翘曲量进行控制。
由该结果可知,通过在玻璃基板上形成包含含有H原子的无机物的膜,压应力层的深度减小,化学强化后的玻璃基板的翘曲减小。
使用特定的方式详细地说明了本发明,但在不脱离本发明的意图和范围的情况下可以进行各种变更和变形,这对本领域技术人员而言是显而易见的。需要说明的是,本申请基于2012年12月26日提出的日本专利申请(日本特愿2011-283756),其整体通过引用援引于本发明中。
标号说明
1:中央狭缝
2:外狭缝
4:流路
5:排气狭缝
10:喷射器
20:玻璃基板

Claims (5)

1.一种方法,其中,
在通过浮法成形且具有在成形时与熔融金属接触的底面和与该底面相对的顶面的玻璃基板的至少顶面上形成至少1层包含H原子浓度处于1.0×1015~1.0×1019个原子/mm3范围的无机物的膜,由此,减小由之后的化学强化处理引起的玻璃基板的翘曲。
2.一种制造化学强化玻璃基板的方法,其特征在于,
在通过浮法成形且具有在成形时与熔融金属接触的底面和与该底面相对的顶面的玻璃基板的至少顶面上形成至少1层包含H原子浓度处于1.0×1015~1.0×1019个原子/mm3范围的无机物的膜,并对形成有该膜的玻璃基板进行化学强化处理。
3.如权利要求1或2所述的方法,其特征在于,
所述包含无机物的膜为无碱氧化物。
4.如权利要求3所述的方法,其特征在于,
所述无碱氧化物含有包含选自由硅、钛、锡、铝、锌、铬、铜、锰、铁、钴、镍、锆、银、铌、钼、锑和铟组成的组中的至少1种元素的氧化物以及复合氧化物中的至少1种以上。
5.如权利要求1~4中任一项所述的方法,其特征在于,
所述包含无机物的膜为通过常压CVD法形成的膜。
CN201280064392.7A 2011-12-26 2012-12-13 减小由化学强化处理引起的玻璃基板的翘曲的方法及化学强化玻璃基板的制造方法 Pending CN104010983A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011-283756 2011-12-26
JP2011283756 2011-12-26
PCT/JP2012/082297 WO2013099620A1 (ja) 2011-12-26 2012-12-13 化学強化処理によるガラス基板の反りを低減する方法、および化学強化ガラス基板の製造方法

Publications (1)

Publication Number Publication Date
CN104010983A true CN104010983A (zh) 2014-08-27

Family

ID=48697112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280064392.7A Pending CN104010983A (zh) 2011-12-26 2012-12-13 减小由化学强化处理引起的玻璃基板的翘曲的方法及化学强化玻璃基板的制造方法

Country Status (6)

Country Link
US (1) US9090501B2 (zh)
JP (1) JPWO2013099620A1 (zh)
KR (1) KR20140118998A (zh)
CN (1) CN104010983A (zh)
TW (1) TW201331142A (zh)
WO (1) WO2013099620A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107207333A (zh) * 2015-01-20 2017-09-26 旭硝子株式会社 化学强化玻璃及其制造方法
CN107848875A (zh) * 2015-07-16 2018-03-27 旭硝子欧洲玻璃公司 用于化学强化的玻璃基板和用受控曲率进行化学强化的方法
CN108298827A (zh) * 2018-01-24 2018-07-20 苏州新吴光电科技有限公司 玻璃化学强化后改善翘曲的方法
CN111592233A (zh) * 2020-05-29 2020-08-28 醴陵旗滨电子玻璃有限公司 化学强化玻璃、浮法玻璃原片及其制备方法和生产线

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999101B2 (ja) * 2011-12-19 2016-09-28 旭硝子株式会社 化学強化用ガラス基板およびその製造方法
CN104010983A (zh) * 2011-12-26 2014-08-27 旭硝子株式会社 减小由化学强化处理引起的玻璃基板的翘曲的方法及化学强化玻璃基板的制造方法
JP5996124B2 (ja) * 2014-03-27 2016-09-21 日本板硝子株式会社 化学強化処理によりガラス板に発生する反りを低減する方法、化学強化用ガラス板の製造方法及び化学強化ガラス板の製造方法
JP2017132644A (ja) * 2014-06-06 2017-08-03 旭硝子株式会社 機能膜付き化学強化ガラス板、その製造方法および物品
JPWO2017026190A1 (ja) * 2015-08-11 2018-05-31 日本電気硝子株式会社 強化ガラス基板の製造方法及び強化ガラス基板
KR102500473B1 (ko) 2015-10-26 2023-02-16 삼성디스플레이 주식회사 플로트 유리 및 이의 제조방법
EP3181533A1 (en) 2015-12-18 2017-06-21 AGC Glass Europe Glass substrate for chemical strengthening and method for chemically strengthening with controlled curvature
JP2019511447A (ja) 2016-03-09 2019-04-25 コーニング インコーポレイテッド 複雑に湾曲したガラス物品の冷間成形
WO2018005646A1 (en) 2016-06-28 2018-01-04 Corning Incorporated Laminating thin strengthened glass to curved molded plastic surface for decorative and display cover application
CN115327805A (zh) 2016-07-05 2022-11-11 康宁公司 固定装置和汽车内饰系统
EP3532442A1 (en) 2016-10-25 2019-09-04 Corning Incorporated Cold-form glass lamination to a display
US11016590B2 (en) 2017-01-03 2021-05-25 Corning Incorporated Vehicle interior systems having a curved cover glass and display or touch panel and methods for forming the same
KR102606798B1 (ko) 2017-01-03 2023-11-29 코닝 인코포레이티드 만곡된 커버 유리 및 디스플레이 또는 터치 패널을 갖는 차량 인테리어 시스템 및 이를 형성시키는 방법
JP7357546B2 (ja) 2017-05-15 2023-10-06 コーニング インコーポレイテッド 輪郭形成済みガラス物品及びその作製方法
WO2019017915A1 (en) 2017-07-18 2019-01-24 Corning Incorporated COLD FORMING GLASS ARTICLES WITH COMPLEX CURVATURE
KR102574235B1 (ko) 2017-09-12 2023-09-11 코닝 인코포레이티드 데드프론트 유리용 촉각 요소 및 이를 제조하는 방법
TWI806897B (zh) 2017-09-13 2023-07-01 美商康寧公司 用於顯示器的基於光導器的無電面板、相關的方法及載具內部系統
US11065960B2 (en) 2017-09-13 2021-07-20 Corning Incorporated Curved vehicle displays
KR20200068690A (ko) 2017-10-10 2020-06-15 코닝 인코포레이티드 신뢰성이 개선된 만곡된 커버 유리를 갖는 차량 내부 시스템 및 이를 형성하는 방법
WO2019103469A1 (en) 2017-11-21 2019-05-31 Corning Precision Materials Co., Ltd. Aspheric mirror for head-up display system and methods for forming the same
KR20200084360A (ko) 2017-11-30 2020-07-10 코닝 인코포레이티드 비구면 미러를 진공 성형하기 위한 시스템 및 방법
EP3717415B1 (en) 2017-11-30 2023-03-01 1/4 Corning Incorporated Vacuum mold apparatus and methods for forming curved mirrors
US11718071B2 (en) 2018-03-13 2023-08-08 Corning Incorporated Vehicle interior systems having a crack resistant curved cover glass and methods for forming the same
JP2021531187A (ja) 2018-07-16 2021-11-18 コーニング インコーポレイテッド 冷間曲げガラス基板を有する乗物内装システムおよびその形成方法
CN111348837A (zh) * 2018-12-20 2020-06-30 康宁股份有限公司 强化制品、强化玻璃制品以及制造强化制品的方法
EP3771695A1 (en) 2019-07-31 2021-02-03 Corning Incorporated Method and system for cold-forming glass
US11772361B2 (en) 2020-04-02 2023-10-03 Corning Incorporated Curved glass constructions and methods for forming same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859636A (en) * 1985-03-08 1989-08-22 Central Glass Company, Limited Chemically strengthened glass article formed of float glass
US5279851A (en) * 1991-04-03 1994-01-18 Nippon Sheet Glass Co., Ltd. Method of manufacturing a conductive glass with high strength and wear resistance

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145642A (ja) * 1982-02-22 1983-08-30 Hoya Corp ガラス強化法
JPH0772093B2 (ja) * 1986-02-19 1995-08-02 セントラル硝子株式会社 化学強化フロ−トガラス
JPH0660040B2 (ja) * 1986-08-28 1994-08-10 セントラル硝子株式会社 ガラスの化学強化法
JP2792276B2 (ja) * 1991-04-03 1998-09-03 日本板硝子株式会社 導電ガラス
JPH0772093A (ja) 1993-06-30 1995-03-17 Hitachi Ltd 異物等の欠陥検出方法および検査装置
JP2001192239A (ja) * 1999-12-28 2001-07-17 Asahi Techno Glass Corp 強化ガラスの製造方法、強化ガラスおよびガラス基板
JP2003221257A (ja) * 2002-01-31 2003-08-05 Nippon Sheet Glass Co Ltd 透明薄膜の成形方法およびそれを備える透明基体
US20060115651A1 (en) * 2004-11-30 2006-06-01 Guardian Industries Corp. Painted glass tiles, panels and the like and method for producing painted glass tiles and panels
WO2008004481A1 (fr) * 2006-07-07 2008-01-10 Asahi Glass Co., Ltd. Procédé de production de substrat de verre destiné à du verre de type panneaux plats
CN102891181B (zh) * 2009-09-16 2016-06-22 株式会社半导体能源研究所 晶体管及显示设备
KR101608923B1 (ko) * 2009-09-24 2016-04-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
JP5433372B2 (ja) * 2009-10-20 2014-03-05 フクビ化学工業株式会社 反射防止強化ガラスの製造方法
TWI398423B (zh) * 2010-05-28 2013-06-11 Wintek Corp 玻璃強化方法及應用其之玻璃
US20120196110A1 (en) * 2011-01-19 2012-08-02 Takashi Murata Tempered glass and tempered glass sheet
CN106966609A (zh) * 2011-07-01 2017-07-21 旭硝子株式会社 化学强化用浮法玻璃
JP5999101B2 (ja) * 2011-12-19 2016-09-28 旭硝子株式会社 化学強化用ガラス基板およびその製造方法
CN104010983A (zh) * 2011-12-26 2014-08-27 旭硝子株式会社 减小由化学强化处理引起的玻璃基板的翘曲的方法及化学强化玻璃基板的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859636A (en) * 1985-03-08 1989-08-22 Central Glass Company, Limited Chemically strengthened glass article formed of float glass
US5279851A (en) * 1991-04-03 1994-01-18 Nippon Sheet Glass Co., Ltd. Method of manufacturing a conductive glass with high strength and wear resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107207333A (zh) * 2015-01-20 2017-09-26 旭硝子株式会社 化学强化玻璃及其制造方法
CN107848875A (zh) * 2015-07-16 2018-03-27 旭硝子欧洲玻璃公司 用于化学强化的玻璃基板和用受控曲率进行化学强化的方法
CN107848875B (zh) * 2015-07-16 2021-04-06 旭硝子欧洲玻璃公司 用于化学强化的玻璃基板和用受控曲率进行化学强化的方法
CN108298827A (zh) * 2018-01-24 2018-07-20 苏州新吴光电科技有限公司 玻璃化学强化后改善翘曲的方法
CN111592233A (zh) * 2020-05-29 2020-08-28 醴陵旗滨电子玻璃有限公司 化学强化玻璃、浮法玻璃原片及其制备方法和生产线

Also Published As

Publication number Publication date
TW201331142A (zh) 2013-08-01
US9090501B2 (en) 2015-07-28
JPWO2013099620A1 (ja) 2015-04-30
US20140305165A1 (en) 2014-10-16
KR20140118998A (ko) 2014-10-08
WO2013099620A1 (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
CN104010983A (zh) 减小由化学强化处理引起的玻璃基板的翘曲的方法及化学强化玻璃基板的制造方法
CN104039730A (zh) 化学强化用玻璃基板及其制造方法
CN104220393B (zh) 能够减小化学强化时的翘曲的玻璃板
CN104884399B (zh) 能够减小化学强化时的翘曲的玻璃板的制造方法及玻璃板
WO2014200097A1 (ja) 化学強化処理によるガラス基板の反りを低減する方法、化学強化ガラス及びその製造方法
JP2004131314A (ja) 透明導電膜付き化学強化ガラス基板、およびその製造方法
EP3322676B1 (en) Method for chemically strengthening with controlled curvature
CN105593177A (zh) 玻璃板的制造方法
US20160200623A1 (en) Glass sheet
JP2013006749A (ja) 化学強化用フロートガラス
TW201512126A (zh) 玻璃板
JP2004142998A (ja) 薄膜を有するガラス物品およびその製造方法
CN105579407A (zh) 玻璃板及化学强化玻璃板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140827