CN104009824A - 一种基站协作上行链路系统中基于差分进化的导频辅助数据融合方法 - Google Patents

一种基站协作上行链路系统中基于差分进化的导频辅助数据融合方法 Download PDF

Info

Publication number
CN104009824A
CN104009824A CN201410243442.9A CN201410243442A CN104009824A CN 104009824 A CN104009824 A CN 104009824A CN 201410243442 A CN201410243442 A CN 201410243442A CN 104009824 A CN104009824 A CN 104009824A
Authority
CN
China
Prior art keywords
vector
base station
individual
weight
represent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410243442.9A
Other languages
English (en)
Other versions
CN104009824B (zh
Inventor
张喆
穆晓敏
赵海峰
韩刚涛
李双志
郭歆莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201410243442.9A priority Critical patent/CN104009824B/zh
Publication of CN104009824A publication Critical patent/CN104009824A/zh
Application granted granted Critical
Publication of CN104009824B publication Critical patent/CN104009824B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

基站协作被认为是多蜂窝通信系统中抗共信道干扰的一种潜在技术,该技术在基站间利用高速光纤回路交换信息。本发明提出了一种新颖的基站协作上行链路系统中的基于差分进化的导频辅助加权数据融合方法。所提方法利用预先设定的导频信息,以导频信息作为用户发送数据的采样,设计次优权重设计模型。针对所建模型的非线性规划问题,本发明提出一种基于差分进化算法的次优融合权重迭代搜索方法。与传统的基于等权重的软合并方法相比,该方案能够根据待融合信息的准确度,自适应调整权重,以较低的计算复杂度及回路负荷获得良好的性能。仿真结果显示,该方法能够基于已有导频配置标准,能够有效设计融合权重,提升系统性能。

Description

一种基站协作上行链路系统中基于差分进化的导频辅助数据融合方法
技术领域
本发明涉及多蜂窝通信领域。更具体地,本发明涉及一种基站协作上行链路系统中基于差分进化的导频辅助数据融合方法。
背景技术
随着对高频谱效率需求的日益增长,多蜂窝通信系统在提高频谱复用率的同时也会带来共信道干扰。共信道干扰可能对移动用户的服务质量造成严重的影响,这一现象对于蜂窝边缘用户尤为突出。由于具有降低蜂窝间干扰的潜在能力,基站协作技术近年来获得了较多的关注。其基本思想是邻近基站通过高速光纤回路交换信息,利用协作信息获得分集增益,实现多基站联合接收。上行链路基站协作中,协作基站联合处理移动用户的发射信息;而在下行链路基站协作中,协作基站联合实现预编码或波束赋形。
上行链路中,基站的接收信号由三部分组成:本地信息,即当前基站(本地基站)服务用户的信息;邻近信息,即其他基站(邻近基站)服务用户的信息;噪声信息。考虑共信道用户的存在,共信道干扰主要由上述三种信息中的邻近信息造成。在非基站协作系统中,邻近信息通常被视作噪声;而在基站协作系统中,该信息则被视作有用信息。基于上述接收信号分类,基站协作可有两种对抗共信道干扰的方案。一种是通过干扰消除类算法抑制邻近信息,其具体操作是邻近基站通过回路向本地基站传输其接收到的自身服务用户的信息,而本地基站则利用该信息进行干扰消除,其中涉及到本地基站对于邻近基站的服务用户至自身的信道信息估计问题。该方案可在一定程度上抑制共信道干扰,但其性能较大程度依赖于信道估计的精度,因而其可获得的性能增益将受到信道估计性能的制约。另一种方案是通过数据融合方式加强本地信息的可靠度。该方案中邻近基站通过回路传输的是其自身恢复所得的本地基站服务用户的发射信息,本地基站对接收到的回路信息进行数据融合以提升服务用户信息的可靠度。
非专利文献“Distributed probabilistic data association based soft reception employing basestation cooperation in MIMO-aided multi-user multi-cell systems”(S.Yang,T.Lv,R.Maunder,and L.Hanzo,IEEE Transactions on Vehicular Technology,vol.60,no.7,pp.3532-3538,2011)首次提出了概率数据关联及软合并(Distributed Probabilistic Data Association and SoftCombining,DPDA-SC)辅助的上行链路基站协作方法,协作基站以软信息的形式交换其恢复信号,本地基站对协作信息进行数据融合。得益于“信息共享与数据融合”,该文献中的方法能够在一定程度上降低共信道干扰,并且持有适中的计算复杂度。然而,该方法在数据融合时对来自不同基站的协作信息赋予了相等的权重,失去了对于基站协作信息可靠度的辨识能力,当不同信道链路的质量差异较大时,这一现象将更为突出。因此,对于信道链路质量互异的情形,有必要采用能够自适应分配融合权重的数据融合方法。
发明内容
基于现有技术的该问题,本发明提出了一种基于差分进化的导频辅助加权数据融合方法。该方法以导频信息为辅助,对各基站恢复出的协作信息使用差分进化算法进行次优权重拟合,根据协作信息的准确度自适应调整融合权重。与等权重的软合并方案相比,本发明所提出的融合方法与信道链路质量有更高的关联度,能够增加高质量信道链路上所传信息的权重,并削弱历经较差信道链路信息的影响。
本发明提出了一种基于差分进化的导频辅助加权数据融合方法包括如下步骤:
一、建立系统模型
假设存在一个由Nr个基站构成的协作簇,其中每个基站配置Kr根接收天线,该协作簇内存在Nt个共信道用户,每个用户配置单根发射天线,将第nr个基站作为本地基站,则其第kr根接收天线上接收到的频域信号可表示为
Y n r k r = Σ n t = 1 N t X n t H n t , n r k r + W n r k r - - - ( 1 )
= Σ i ∈ A n r X i H i , n r k r + Σ j ∈ B n r X j H j , n r k r + W n r k r , - - - ( 2 )
其中表示第nt个用户的频域发射信息,其时域表示为 表示第nt个用户至第nr个基站第kr根接收天线间链路的频域信道传输函数,表示加性高斯白噪声。根据第nt个用户是否由本地基站(即第nr个基站)服务,可将Nt个共信道用户标号分为两类:由本地基站服务的用户标号为第一类,记为且其标号数目由其它基站服务的用户标号归为第二类,记为其标号数目为式(2)的第一项和式表示第nr个基站第kr根接收天线接收到的,由本地基站服务用户发送的信号,记为第二项和式表示该天线接收到的由协作基站服务用户发送的信号,记为
经过信道估计和多用户检测等处理后,本地基站恢复到了一些关于第nt个用户发射信号的信息
其中,表示第nr个基站对的恢复值,
其中,表示接收信号时原始发射信号为u=0,1的后验概率,
假设使用加权数据融合方案后,本地基站的关于的融合结果可写为:
s ( x ^ n t | Y coop ) = ω n t , n r s ( x ^ n t | Y n r ) + Σ n ′ = 1 , n ′ ≠ n r N r ω n t , n ′ s ( x ^ n t | Y n ′ ) - - - ( 5 )
其中Ycoop的下标表示该估值结果基于本地基站与协作基站恢复信号的融合,而Nr表示融合信息的融合权重。将原始的1/0比特转为1/-1,则式(5)的判决模型可表示为:
x ^ n t , coop = 1 , ifs ( x ^ n t | Y coop ) &GreaterEqual; 0 - 1 , ifs ( x ^ n t | Y coop ) < 0 - - - ( 6 )
不失一般性,使用初步恢复的比特信息作为待融合信息,即:则式(5)可写为:
x ^ n t , coop = &omega; n t , n r x ^ n t , n r + &Sigma; n &prime; = 1 , n &prime; &NotEqual; n r N r &omega; n t , n &prime; x ^ n t , n &prime; - - - ( 7 )
式(7)中加权数据融合的最终目标是使趋近于原始发送信号则最优的权重设计目标函数可写为:
J opt ( &omega; n t ) = | | x ^ n t , coop - x n t | | 2 , - - - ( 8 )
其中, &omega; n t = [ &omega; n t , 1 , &Lambda; , &omega; n t , n r , &Lambda; , &omega; n t , N r ] 为权重向量,
导频辅助的分布式基站协作上行链路系统中,基站处的权重设计(Weights Calculating,WC)过程可被描述为:
其中,表示数据融合处理器中的权重设计子处理器,表示第nt个用户发送的预设导频信息,
将式(8)中的最优目标函数演化为次优目标函数,即最小化式(10)中的最小均方误差问题:
J sub - opt ( &omega; n t ) = | | x ^ n t , coop p - x n t p | | 2 , - - - ( 10 )
其中,表示融合后导频位置处信息,
二、利用差分进化算法辅助权重优化
a、初始化
设定交叉概率Cr的均值尺度因子λ的定位参数μλ=0.5,使用随机数生成器生成在[bL,bU)内均匀分布的随机数,其中bL和bU分别为原始权重的上界及下界(0和1),即:
&omega; 1 , p s , n &omega; = b L + rand n &omega; ( 0,1 ) &CenterDot; ( b U - b L ) . - - - ( 11 )
其中ps=1,Λ,Ps,Ps为种群大小,nω=1,Λ,Nω,Nω表示权重维度(此处等于Nr),归一化 &omega; 1 , p s , n &omega; , n &omega; = 1 , &Lambda; , Nω生成即:
&omega; ~ 1 , p s , n &omega; = &omega; 1 , p s , n &omega; / &Sigma; n &omega; &prime; = 1 N &omega; &omega; 1 , p s , n &omega; &prime; . - - - ( 12 )
由Ps个实值权重向量构成初代种群(g=1),其中第ps个向量可表示为:
&omega; 1 , p s = [ &omega; ~ 1 , p s , 1 , &omega; ~ 1 , p s , 2 , &Lambda; , &omega; ~ 1 , p s , N &omega; ] , - - - ( 13 )
使用式(10)评估每个权重向量的代价函数并将其从低到高进行排序,
b、突变
使用高斯分布随机生成尺度因子其定位参数为μλ,尺度参数为0.1,即尺度因子控制种群的演化速度,选择具有最低代价函数的(100pPs)%个最优向量作为“最优文档”,这些向量包含了更多的优良性质,将被用于生成新的权重向量,其中p表示贪婪因子,决定突变策略的贪婪程度,对于每一个ps,ps=1,Λ,Ps,随机从“最优文档”中选取第r1个向量作为“最优”向量,并随机从当前种群中选取第r2和r3个向量生成差分向量,其中ps≠r1≠r2≠r3,联合“最优”向量与差分向量ωg,r2和ωg,r3,对目标向量进行差分扰动,生成突变向量即:
v g , p s = &omega; g , p s + &lambda; p s &CenterDot; ( &omega; g , r 1 best - &omega; g , p s ) + &lambda; p s &CenterDot; ( &omega; g , r 2 - &omega; g , r 3 ) . - - - ( 14 )
c、交叉
随机生成交叉概率Cr∈[0,1],该参数对突变向量复制至试验向量的过程具有控制作用,第ps个试验向量的交叉概率即交叉概率服从均值为标准差为0.1的正态分布,第g代种群第ps个试验向量的第nω个元素可表示为:
t g , p s , n &omega; = v g , p s , n &omega; , rand n &omega; ( 0,1 ) &le; C r p s or n &omega; = n &omega; , rand &omega; g , p s , n &omega; , else - - - ( 15 )
其中,nω,rand从nω=1,Λ,Nω中随机选取,以保证试验向量中至少有一个元素复制自突变向量,
d、选择
对试验向量进行归一化,并使用式(10)计算其代价函数比较试验向量与目标向量的代价函数值,选取二者中较优的向量存活至下一代种群,即:
&omega; g + 1 , p s = t g , p s , J ( t g , p s ) &le; J ( &omega; g , p s ) &omega; g , p s , J ( t g , p s ) > J ( &omega; g , p s ) - - - ( 16 )
e、自适应
根据成功存活时的尺度因子与交叉概率对尺度因子定位参数μλ和交叉概率均值进行自适应更新:
μλ=(1-c)·μλ+c·meanL(Sλ)   (17)
&mu; C r = ( 1 - c ) &CenterDot; &mu; C r + c &CenterDot; mean A ( S C r ) - - - ( 18 )
其中,c∈(0,1]为自适应更新因子,控制参数更新的速率,Sλ分别对应于当前代内成功存活的的集合,的更新使用算术平均meanA(·),μλ的更新则使用Lehmer平均[10][11],即 mean L ( S &lambda; ) = &Sigma; &lambda; p s &Element; S &lambda; &lambda; p s 2 / &Sigma; &lambda; p s &Element; S &lambda; &lambda; p s ,
f、终止
足下列任一条件时,优化过程即可终止:
*达到预设的最大迭代次数Gmax
*连续代内没有试验向量存活。
具体而言,本发明的主要技术效果有:
1、建立了基站协作上行链路系统中导频辅助的次优权重设计模型。针对最优权重设计模型难以求解的问题,基于导频信息寻找次优解,为融合权重的优化设计提供了可靠依据。
2、提出了基站协作上行链路系统中一种新颖的基于差分进化的数据融合方法。该方法针对所提次优权重设计模型中的非线性规划问题,使用差分进化算法对次优目标函数进行迭代优化,搜索次优融合权重。所提算法能够有效降低共信道干扰,改善上行链路的接收性能,并且不额外增加过多的回路传输负荷以及计算复杂度。
3、BER=10-3时,与软合并方案相比,本发明所提出的方案能获得近2dB的性能增益。
附图说明
图1为三蜂窝基站协作上行链路系统示意图
图2为基于数据融合的基站协作上行链路系统框图
图3为差分进化算法操作原理示意图
图4为种群大小Ps与终止条件Δgmax对平均代价函数评估次数的影响仿真图
图5为种群大小Ps和终止条件Δgmax对系统BER性能的影响仿真图
图6为导频比例对系统BER性能的影响仿真图
图7为本发明提出的数据融合方法的系统BER性能仿真图。
具体实施方式
首先建立系统模型。图1给出了一个三蜂窝基站协作上行链路系统的示意图,其中粗实线标识的三个蜂窝构成了一个协作簇,其协作区域为位于三蜂窝交汇处的阴影区域。蜂窝间的协作由彼此之间相连的高速光纤回路实现。
假设存在一个由Nr个基站构成的协作簇,其中每个基站配置Kr根接收天线。该协作簇内存在Nt个共信道用户,每个用户配置单根发射天线。将第nr个基站作为本地基站,则其第kr根接收天线上接收到的频域信号可表示为:
Y n r k r = &Sigma; n t = 1 N t X n t H n t , n r k r + W n r k r - - - ( 1 )
= &Sigma; i &Element; A n r X i H i , n r k r + &Sigma; j &Element; B n r X j H j , n r k r + W n r k r , - - - ( 2 )
其中表示第nt个用户的频域发射信息,其时域表示为 表示第nt个用户至第nr个基站第kr根接收天线间链路的频域信道传输函数,表示加性高斯白噪声。根据第nt个用户是否由本地基站(即第nr个基站)服务,可将Nt个共信道用户标号分为两类:由本地基站服务的用户标号为第一类,记为且其标号数目由其它基站服务的用户标号归为第二类,记为其标号数目为式(2)的第一项和式表示第nr个基站第kr根接收天线接收到的,由本地基站服务用户发送的信号,记为第二项和式表示该天线接收到的由协作基站服务用户发送的信号,记为
图2为基于数据融合的基站协作上行链路系统接收处理框图。经过信道估计和多用户检测等处理后,本地基站恢复到了一些关于第nt个用户发射信号的信息该信息可以是初步恢复的比特信息或比特的对数似然比(Log-Likelihood Ratio,LLR)信息,用公式可表示为:
其中,表示第nr个基站对的恢复值,
其中,表示接收信号时原始发射信号为u=0,1的后验概率。
假设使用加权数据融合方案后,本地基站的关于的融合结果可写为:
s ( x ^ n t | Y coop ) = &omega; n t , n r s ( x ^ n t | Y n r ) + &Sigma; n &prime; = 1 , n &prime; &NotEqual; n r N r &omega; n t , n &prime; s ( x ^ n t | Y n &prime; ) - - - ( 5 )
其中Ycoop的下标表示该估值结果基于本地基站与协作基站恢复信号的融合,而Nr表示融合信息的融合权重。将原始的1/0比特转为1/-1,则式(5)的判决模型可表示为:
x ^ n t , coop = 1 , ifs ( x ^ n t | Y coop ) &GreaterEqual; 0 - 1 , ifs ( x ^ n t | Y coop ) < 0 . - - - ( 6 )
下面基于差分进化进行加权数据融合。不失一般性,使用初步恢复的比特信息作为待融合信息,即:则式(5)可写为:
x ^ n t , coop = &omega; n t , n r x ^ n t , n r + &Sigma; n &prime; = 1 , n &prime; &NotEqual; n r N r &omega; n t , n &prime; x ^ n t , n &prime; . - - - ( 7 )
式(7)中加权数据融合的最终目标是使趋近于原始发送信号则最优的权重设计目标函数可写为:
J opt ( &omega; n t ) = | | x ^ n t , coop - x n t | | 2 , - - - ( 8 )
其中,为权重向量。然而,实际通信中,原始发送信号是未知量,难以直接对式(8)进行求解。
导频辅助的通信过程中,某些特定的资源会被分配给预设的导频信息,以辅助信道估计或接收端的其他处理[8]。因此,在导频辅助的分布式基站协作上行链路系统中,基站处的权重设计(Weights Calculating,WC)过程可被描述为:
其中,表示数据融合处理器中的权重设计子处理器,表示第nt个用户发送的预设导频信息。
式(8)中,接收端并不知道确切的由于导频信息是接收端已知的预设信息,因此它可以视为的采样。此时,式(8)中的最优目标函数可以演化为次优目标函数,即最小化式(10)中的最小均方误差问题:
J sub - opt ( &omega; n t ) = | | x ^ n t , coop p - x n t p | | 2 , - - - ( 10 )
其中,表示融合后导频位置处信息。
容易看出,式(10)是一个目标非线性的多维度全局优化问题,难以得到闭式解。因此,本发明使用差分进化对解空间进行迭代搜索,以式(10)为代价函数,提出了一种基于差分进化算法的加权数据融合方案。
接下来在差分进化算法辅助下进行权重优化。差分进化算法(Differential Evolution,DE)[9]是一种基于群体智能的优化算法,具有操作简单、易于实现、可靠性强、收敛速度快等特性,是进化类算法中全局优化能力十分出色的一种算法。其主要流程如图3所示,由初始化、突变、交叉、选择、自适应及终止等操作形成迭代过程。其具体步骤可表示为:
1)初始化
设定交叉概率Cr的均值尺度因子λ的定位参数μλ=0.5。使用随机数生成器生成在[bL,bU)内均匀分布的随机数,其中bL和bU分别为原始权重的上界及下界(0和1),即:
&omega; 1 , p s , n &omega; = b L + rand n &omega; ( 0,1 ) &CenterDot; ( b U - b L ) . - - - ( 11 )
其中ps=1,Λ,Ps,Ps为种群大小。nω=1,Λ,Nω,Nω表示权重维度(此处等于Nr)。
归一化 &omega; 1 , p s , n &omega; , n &omega; = 1 , &Lambda; , Nω生成即:
&omega; ~ 1 , p s , n &omega; = &omega; 1 , p s , n &omega; / &Sigma; n &omega; &prime; = 1 N &omega; &omega; 1 , p s , n &omega; &prime; . - - - ( 12 )
由Ps个实值权重向量构成初代种群(g=1),其中第ps个向量可表示为:
&omega; 1 , p s = [ &omega; ~ 1 , p s , 1 , &omega; ~ 1 , p s , 2 , &Lambda; , &omega; ~ 1 , p s , N &omega; ] , - - - ( 13 )
使用式(10)评估每个权重向量的代价函数并将其从低到高进行排序。
2)突变
使用高斯分布随机生成尺度因子其定位参数为μλ,尺度参数为0.1,即尺度因子控制种群的演化速度。选择具有最低代价函数的(100pPs)%个最优向量作为“最优文档”,这些向量包含了更多的优良性质,将被用于生成新的权重向量。其中p表示贪婪因子,决定突变策略的贪婪程度。对于每一个ps,ps=1,Λ,Ps,随机从“最优文档”中选取第r1个向量作为“最优”向量,并随机从当前种群中选取第r2和r3个向量生成差分向量,其中ps≠r1≠r2≠r3。联合“最优”向量与差分向量ωg,r2和ωg,r3,对目标向量进行差分扰动,生成突变向量即:
v g , p s = &omega; g , p s + &lambda; p s &CenterDot; ( &omega; g , r 1 best - &omega; g , p s ) + &lambda; p s &CenterDot; ( &omega; g , r 2 - &omega; g , r 3 ) . - - - ( 14 )
3)交叉
随机生成交叉概率Cr∈[0,1],该参数对突变向量复制至试验向量的过程具有控制作用。第ps个试验向量的交叉概率即交叉概率服从均值为标准差为0.1的正态分布。第g代种群第ps个试验向量的第nω个元素可表示为:
t g , p s , n &omega; = v g , p s , n &omega; , rand n &omega; ( 0,1 ) &le; C r p s or n &omega; = n &omega; , rand &omega; g , p s , n &omega; , else - - - ( 15 )
其中,nω,rand从nω=1,Λ,Nω中随机选取,以保证试验向量中至少有一个元素复制自突变向量。
4)选择
对试验向量进行归一化,并使用式(10)计算其代价函数比较试验向量与目标向量的代价函数值,选取二者中较优的向量存活至下一代种群,即:
&omega; g + 1 , p s = t g , p s , J ( t g , p s ) &le; J ( &omega; g , p s ) &omega; g , p s , J ( t g , p s ) > J ( &omega; g , p s ) - - - ( 16 )
5)自适应
根据成功存活时的尺度因子与交叉概率对尺度因子定位参数μλ和交叉概率均值进行自适应更新:
μλ=(1-c)·μλ+c·meanL(Sλ)   (17)
&mu; C r = ( 1 - c ) &CenterDot; &mu; C r + c &CenterDot; mean A ( S C r ) - - - ( 18 )
其中,c∈(0,1]为自适应更新因子,控制参数更新的速率。Sλ分别对应于当前代内成功存活的的集合。的更新使用算术平均meanA(·),μλ的更新则使用Lehmer平均[10][11],即 mean L ( S &lambda; ) = &Sigma; &lambda; p s &Element; S &lambda; &lambda; p s 2 / &Sigma; &lambda; p s &Element; S &lambda; &lambda; p s .
6)终止
满足下列任一条件时,优化过程即可终止:
*达到预设的最大迭代次数Gmax
*连续代内没有试验向量存活。
显然,Gmax的设定十分重要。过小的Gmax都可能导致优化器无法收敛至最优解。
然后进行收敛性分析。式(10)给出的次优目标函数主要依赖于预设导频。假设原始发送符号中,预设导频所占比例为pp,0<pp<1。显然,当pp→1时,所有的发送符号均被作为导频使用,于是有:
lim p p &RightArrow; 1 x n t p = x n t - - - ( 19 )
式(19)说明,当pp→1时,式(10)的次优目标函数趋近于式(9)的最优目标函数,即:
lim p p &RightArrow; 1 | | x ^ n t , coop p - x n t p | | 2 = | | x ^ n t , coop - x n t | | 2 - - - ( 20 )
本发明所提方法中的DE优化算法具有收敛至全局最优解的能力。由于式(10)的非连续性,可能存在多个最优解。假设最优解集合为Ωopt,对于第g代种群,假设新生成的个体向量不属于Ωopt的概率为pg。由于DE的择优原则,随着种群进化(g的增加),pg单调递减。当g趋于无穷大时,有:
lim g &RightArrow; &infin; Pr ( Pr ( &omega; ^ g , p s I &Omega; opt = &phi; ) < &epsiv; ) = 1 - - - ( 21 )
其中ε为任意小的正值,Pr(·)表示事件发生的概率。式(21)可进一步写为:
lim g &RightArrow; &infin; Pr ( Pr ( &omega; ^ g , p s I &Omega; opt = &phi; ) > &epsiv; ) = 0 - - - ( 22 )
结合式(20)与(22)可知,本发明所提方法具有收敛至最优权重的能力。
然后进行计算复杂度分析。基于种群的随机搜索算法如DE等,其计算复杂度主要由终止条件决定[12]。本发明仅考虑加法及乘法运算。由算法流程可知,DE的计算复杂度主要由初始化、突变、选择及自适应操作产生。假设有Nr个协作基站,其中每个权重计算周期内有Np个OFDM符号作为导频,使用M-QAM调制发射及接收天线配置如图2所示。设置种群大小为Ps,假设经过G次迭代后,算法达到收敛。本发明提出的差分进化辅助的加权数据融合算法最多需要(G+1)Np(NrA-A+2)Ps+5GNrPs+2NrPs+GPs-2Ps-2G+2次加法和(G+1)Np(NrA+1)+3GNrPs+2NrPs+GPs+6G次乘法运算。使用表1中的DE参数时,与基于DE的多用户检测(DE aided Multi-User Detection,DE-MUD)[10]相比较,其加法运算次数约为DE-MUD的0.0059%,乘法运算次数约为DE-MUD的0.0119%。因此,本发明所提算法的计算复杂度可被实际系统接受。
表1 DE算法默认参数
初始种群生成方式 随机生成
种群大小Ps 10
最大迭代次数Gmax 20
Δgmax 4
贪婪因子p 0.1
自适应更新因子c 0.9
最后对所提出的基站协作上行链路系统中基于差分进化的加权数据融合方法的性能进行仿真分析。假设存在两个分属于不同蜂窝的单天线移动用户彼此构成共信道干扰,而其对应的协作簇由三个相邻基站构成,其中包含了这两个用户的服务基站,并假设每个基站配置8根接收天线,每个发射-接收链路均假设为5径瑞利衰落信道。仿真中使用64子载波的OFDM调制,帧长度为50,星座映射类型为16-QAM,同时信道编码部分使用(2,1,3)卷积码。无特殊说明外,使用块状导频,默认导频比例为0.04%,即每帧中使用2个OFDM符号作为导频。接收端使用最大近似技术生成比特LLR信息。仿真中DE算法部分默认参数见表1。
本发明首先分析不同种群大小Ps与终止条件Δgmax对系统性能的影响。图4给出了Eb/N0=6dB,Gmax=40时,不同(Ps,Δgmax)组合对平均代价函数评估次数的影响。由图4可知,随着Ps的增大,平均代价函数评估次数也随之均匀增大。当总迭代次数为G时,所需平均迭代次数为(G+1)Ps。但是随着终止条件Δgmax的增大,平均代价函数评估次数的增加呈现非均匀现象。这是因为随着Δgmax的增加,搜索终止的难度增大,平均代价函数评估次数会加速增长。图5对不同(Ps,Δgmax)组合时的误比特率(Bit Error Rate,BER)性能进行了仿真。可以看出,Ps或Δgmax的增加均能在一定程度上降低误比特率。显然,过小的Ps和Δgmax会导致算法的过早终止,尤其是当Δgmax≤4或Ps≤5时,系统误比特率性能较差。当Δgmax≥8且Ps≥12时,随着Ps或Δgmax的增加,误比特率呈现出稳定趋势。综合考虑计算复杂度与误比特率性能,本发明默认设定Δgmax=10,Ps=15。
图6分析了导频比例对数据融合后系统BER性能的影响。从图中可以看出,随着导频比例的增加,SNR分别为6dB、10dB、14dB时,系统BER性能均呈现稳定趋势,这说明即使导频比例仅为0.02%,以导频作为传输数据的采样,所提出的导频辅助的次优数据融合算法也足够有效。而现有标准中,可用于辅助信道估计等处理的导频通常设置为每帧1-2个OFDM符号,即导频比例为0.02-0.04%,如IEEE802.11a/p标准[13][14]。因此,本发明所提出的方法可以基于已有标准中的导频辅助完成权重设计,不需要额外增加导频开销。
图7将本发明所提方法与传统软合并方法进行了比较。假设基站2为所考虑用户的服务基站,用户至三个基站的链路质量各不相同,因此基站所提供的待融合数据的准确度也有差异。此时,使用传统的软合并方法,对三个基站的待融合数据赋予相等权重,忽视了融合数据准确度的差异,不能有效地提取待融合数据中的有用信息,其融合后的系统BER性能甚至不如非融合情况下基站2的系统BER性能。而本发明所提出的方法以导频信息作为辅助,充分考虑用户至不同基站间上行信道链路的差异性,通过次优准则设计融合权重,优化系统BER性能。从图中可以看出,当BER=10-3时,与基于等权重的软合并方案相比,本发明所提出的方案能获得近2dB的性能增益。

Claims (1)

1.一种基于差分进化的导频辅助加权数据融合方法包括如下步骤: 
一、建立系统模型 
假设存在一个由Nr个基站构成的协作簇,其中每个基站配置Kr根接收天线,该协作簇内存在Nt个共信道用户,每个用户配置单根发射天线,将第nr个基站作为本地基站,则其第kr根接收天线上接收到的频域信号可表示为 
其中表示第nt个用户的频域发射信息,其时域表示为 表示第nt个用户至第nr个基站第kr根接收天线间链路的频域信道传输函数,表示加性高斯白噪声。根据第nt个用户是否由本地基站(即第nr个基站)服务,可将Nt个共信道用户标号分为两类:由本地基站服务的用户标号为第一类,记为且其标号数目 由其它基站服务的用户标号归为第二类,记为其标号数目为 式(2)的第一项和式表示第nr个基站第kr根接收天线接收到的,由本地基站服务用户发送的信号,记为第二项和式表示该天线接收到的由协作基站服务用户发送的信号,记为
经过信道估计和多用户检测等处理后,本地基站恢复到了一些关于第nt个用户发射信号的信息
其中,表示第nr个基站对的恢复值, 
其中,表示接收信号时原始发射信号为u=0,1的后验概率,假设使用加权数据融合方案后,本地基站的关于的融合结果可写为: 
其中Ycoop的下标表示该估值结果基于本地基站与协作基站恢复信号的融合,而 Nr表示融合信息的融合权重。将原始的1/0比特转为1/-1,则式(5)的判决模型可表示为: 
不失一般性,使用初步恢复的比特信息作为待融合信息,即:则式(5)可写为: 
式(7)中加权数据融合的最终目标是使趋近于原始发送信号则最优的权重设计目标函数可写为: 
其中,为权重向量, 
导频辅助的分布式基站协作上行链路系统中,基站处的权重设计(Weights Calculating,WC)过程可被描述为: 
其中,表示数据融合处理器中的权重设计子处理器,表示第nt个用户发送的预设导频信息, 
将式(8)中的最优目标函数演化为次优目标函数,即最小化式(10)中的最小均方误差问题: 
其中,表示融合后导频位置处信息, 
二、利用差分进化算法辅助权重优化 
a、初始化 
设定交叉概率Cr的均值尺度因子λ的定位参数μλ=0.5,使用随机数生成器生成在[bL,bU)内均匀分布的随机数,其中bL和bU分别为原始权重的上界及下界(0和1),即: 
其中ps=1,Λ,Ps,Ps为种群大小,nω=1,Λ,Nω,Nω表示权重维度(此处等于Nr),归一化Nω生成即: 
由Ps个实值权重向量构成初代种群(g=1),其中第ps个向量可表示为: 
使用式(10)评估每个权重向量的代价函数并将其从低到高进行排序, 
b、突变 
使用高斯分布随机生成尺度因子其定位参数为μλ,尺度参数为0.1,即 尺度因子控制种群的演化速度,选择具有最低代价函数的(100pPs)%个最优向量作为“最优文档”,这些向量包含了更多的优良性质,将被用于生成 新的权重向量,其中p表示贪婪因子,决定突变策略的贪婪程度,对于每一个ps,ps=1,Λ,Ps,随机从“最优文档”中选取第r1个向量作为“最优”向量,并随机从当前种群中选取第r2和r3个向量生成差分向量,其中ps≠r1≠r2≠r3,联合“最优”向量与差分向量ωg,r2和ωg,r3,对目标向量进行差分扰动,生成突变向量即: 
c、交叉 
随机生成交叉概率Cr∈[0,1],该参数对突变向量复制至试验向量的过程具有控制作用,第ps个试验向量的交叉概率即交叉概率服从均值为标准差为0.1的正态分布,第g代种群第ps个试验向量的第nω个元素可表示为: 
其中,nω,rand从nω=1,Λ,Nω中随机选取,以保证试验向量中至少有一个元素复制自突变向量, 
d、选择 
对试验向量进行归一化,并使用式(10)计算其代价函数比较试验向量 与目标向量的代价函数值,选取二者中较优的向量存活至下一代种群,即: 
e、自适应 
根据成功存活时的尺度因子与交叉概率对尺度因子定位参数μλ和交叉概率均值进行自适应更新: 
μλ=(1-c)·μλ+c·meanL(Sλ)   (17) 
其中,c∈(0,1]为自适应更新因子,控制参数更新的速率,Sλ分别对应于当前代内成功存活的的集合,的更新使用算术平均meanA(·),μλ的更新则使用Lehmer平均[10][11],即
f、终止 
足下列任一条件时,优化过程即可终止: 
*达到预设的最大迭代次数Gmax; 
*连续代内没有试验向量存活。 
CN201410243442.9A 2014-06-01 2014-06-01 一种基站协作上行链路系统中基于差分进化的导频辅助数据融合方法 Expired - Fee Related CN104009824B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410243442.9A CN104009824B (zh) 2014-06-01 2014-06-01 一种基站协作上行链路系统中基于差分进化的导频辅助数据融合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410243442.9A CN104009824B (zh) 2014-06-01 2014-06-01 一种基站协作上行链路系统中基于差分进化的导频辅助数据融合方法

Publications (2)

Publication Number Publication Date
CN104009824A true CN104009824A (zh) 2014-08-27
CN104009824B CN104009824B (zh) 2018-01-02

Family

ID=51370322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410243442.9A Expired - Fee Related CN104009824B (zh) 2014-06-01 2014-06-01 一种基站协作上行链路系统中基于差分进化的导频辅助数据融合方法

Country Status (1)

Country Link
CN (1) CN104009824B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400948A (zh) * 2018-01-25 2018-08-14 西安交通大学 基于机器学习诱导最优恢复度量的环境自适应感知无线通信信道估计与信号重构方法
CN109615242A (zh) * 2018-12-13 2019-04-12 大连海事大学 一种基于循环神经网络和代价敏感的软件bug分派方法
CN110580390A (zh) * 2019-09-04 2019-12-17 电子科技大学 基于改进遗传算法与信息熵的地质统计学随机反演方法
CN112130215A (zh) * 2019-06-24 2020-12-25 中国石油天然气集团有限公司 电磁法勘探数据处理方法及装置
CN112782737A (zh) * 2020-12-30 2021-05-11 深圳市金溢科技股份有限公司 基于车路协同的差分定位、路侧单元及车载单元

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104932A (zh) * 2010-12-14 2011-06-22 北京邮电大学 一种lte-a系统中选取协作节点的方法、基站和协作节点
CN102185632A (zh) * 2011-03-18 2011-09-14 华中科技大学 超宽带系统中基于遗传算法的差分多用户检测方法
CN102724683A (zh) * 2012-06-11 2012-10-10 上海交通大学 多小区协作的分布式鲁棒波束成形方法
US20130303220A1 (en) * 2012-05-10 2013-11-14 Hitachi, Ltd. Configuration of pilot signals by network for enabling comp
CN103427892A (zh) * 2013-07-29 2013-12-04 南京邮电大学 蜂窝网络中基站自适应协作通信的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104932A (zh) * 2010-12-14 2011-06-22 北京邮电大学 一种lte-a系统中选取协作节点的方法、基站和协作节点
CN102185632A (zh) * 2011-03-18 2011-09-14 华中科技大学 超宽带系统中基于遗传算法的差分多用户检测方法
US20130303220A1 (en) * 2012-05-10 2013-11-14 Hitachi, Ltd. Configuration of pilot signals by network for enabling comp
CN102724683A (zh) * 2012-06-11 2012-10-10 上海交通大学 多小区协作的分布式鲁棒波束成形方法
CN103427892A (zh) * 2013-07-29 2013-12-04 南京邮电大学 蜂窝网络中基站自适应协作通信的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李双志等: "一种新的多址信道有效阶数估计算法", 《电讯技术》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400948A (zh) * 2018-01-25 2018-08-14 西安交通大学 基于机器学习诱导最优恢复度量的环境自适应感知无线通信信道估计与信号重构方法
CN108400948B (zh) * 2018-01-25 2020-01-14 西安交通大学 一种环境自适应感知无线通信信道估计与信号重构方法
CN109615242A (zh) * 2018-12-13 2019-04-12 大连海事大学 一种基于循环神经网络和代价敏感的软件bug分派方法
CN112130215A (zh) * 2019-06-24 2020-12-25 中国石油天然气集团有限公司 电磁法勘探数据处理方法及装置
CN110580390A (zh) * 2019-09-04 2019-12-17 电子科技大学 基于改进遗传算法与信息熵的地质统计学随机反演方法
CN110580390B (zh) * 2019-09-04 2021-05-11 电子科技大学 基于改进遗传算法与信息熵的地质统计学随机反演方法
CN112782737A (zh) * 2020-12-30 2021-05-11 深圳市金溢科技股份有限公司 基于车路协同的差分定位、路侧单元及车载单元

Also Published As

Publication number Publication date
CN104009824B (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
CN110417496B (zh) 一种基于能效的认知noma网络顽健资源分配方法
Zhang et al. Performance analysis of digital communication systems over composite $\eta {-}\mu $/Gamma fading channels
CN104702390B (zh) 分布式压缩感知信道估计中的导频分配方法
CN110430613B (zh) 多载波非正交多址接入系统基于能效的资源分配方法
Wang et al. Joint interference alignment and power control for dense networks via deep reinforcement learning
CN106304112B (zh) 一种基于中继协作的蜂窝网络能量效率优化方法
CN108737057A (zh) 基于深度学习的多载波认知noma资源分配方法
CN104009824B (zh) 一种基站协作上行链路系统中基于差分进化的导频辅助数据融合方法
CN107708197B (zh) 一种高能效的异构网络用户接入和功率控制方法
CN102523585A (zh) 基于改进遗传算法的认知无线电方法
Ali et al. Deep learning based power optimizing for NOMA based relay aided D2D transmissions
CN111107645B (zh) 一种均衡长期能效和网络稳定性的c-ran系统资源分配方法
CN107343268B (zh) 非正交多播和单播传输波束赋型方法及系统
CN105657700A (zh) 基于多个源节点协作的无线防窃听通信方法
CN105188124A (zh) 多用户ofdma中继系统中非完美csi下的鲁棒博弈功率控制方法
CN102347820A (zh) 一种多小区协作无线通信系统联合编解码方法
CN104135769B (zh) 不完备信道状态信息下ofdma遍历容量最大化资源分配方法
CN104079335B (zh) 一种多小区ofdma网络下鲁棒性的三维波束赋形方法
CN107426775B (zh) 一种面向高能效异构网络的分布式多用户接入方法
Liu et al. Power allocation in ultra-dense networks through deep deterministic policy gradient
CN110601736B (zh) 一种多天线全双工认知无线电能量捕获与信息传输方法
CN104320170A (zh) 大规模mimo系统中导频污染抑制波束赋形方法
CN102186232A (zh) 一种多小区ofdma系统的功率分配方法
CN103369658A (zh) 物理层安全约束下协同ofdma系统功率控制方法
CN114286336B (zh) 一种基于人工噪声的多小区网络安全传输方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhang Zhe

Inventor after: Zhang Jiankang

Inventor after: Mu Xiaomin

Inventor after: Zhao Haifeng

Inventor after: Han Gangtao

Inventor after: Li Shuangzhi

Inventor after: Guo Xinying

Inventor before: Zhang Zhe

Inventor before: Mu Xiaomin

Inventor before: Zhao Haifeng

Inventor before: Han Gangtao

Inventor before: Li Shuangzhi

Inventor before: Guo Xinying

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180102