CN111107645B - 一种均衡长期能效和网络稳定性的c-ran系统资源分配方法 - Google Patents

一种均衡长期能效和网络稳定性的c-ran系统资源分配方法 Download PDF

Info

Publication number
CN111107645B
CN111107645B CN201911296078.1A CN201911296078A CN111107645B CN 111107645 B CN111107645 B CN 111107645B CN 201911296078 A CN201911296078 A CN 201911296078A CN 111107645 B CN111107645 B CN 111107645B
Authority
CN
China
Prior art keywords
energy
energy efficiency
long
remote antenna
time slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911296078.1A
Other languages
English (en)
Other versions
CN111107645A (zh
Inventor
朱鹏程
徐冰倩
李佳珉
王东明
尤肖虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201911296078.1A priority Critical patent/CN111107645B/zh
Publication of CN111107645A publication Critical patent/CN111107645A/zh
Application granted granted Critical
Publication of CN111107645B publication Critical patent/CN111107645B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种均衡长期能效和网络稳定性的C‑RAN系统资源分配方法,包括:建立结合能量协作的混合能量供应C‑RAN数学模型;建立长期能效优化问题的目标函数和约束条件;基于李雅普诺夫方程和罚函数的思想,将系统长期能效优化问题转化为单时隙优化问题;采用联合资源分配优化算法求解转化后的单时隙优化问题。本发明能够优化分配系统资源(传输功率、协作能量、电网供能),在有效提高系统长期能效和网络稳定性之间实现均衡,优化系统性能,使得采用能量协作的混合能量供应C‑RAN系统满足各种长期和瞬时服务质量需求,具有广阔的应用前景。

Description

一种均衡长期能效和网络稳定性的C-RAN系统资源分配方法
技术领域
本发明涉及无线通信技术领域,具体涉及一种均衡长期能效和网络稳定性的C-RAN系统资源分配方法。
背景技术
随时随地无处不在的无线通信需求带来了数据流量的急剧增长和能量消耗的大规模升级。为了满足日益增加的业务量和服务质量需求,云无线接入网(Cloud-radioaccess network,C-RAN)作为体系结构的改进,被认为是第五代移动通信网络的一种关键技术架构。其中,基带处理在基带单元的集中式池中进行管理,协作处理来自用户的请求;基于云的集中式基带单元池共享资源减少了电力消耗,也减少了成本支出;分布式的远端天线单元协作多点传输,可扩展性和灵活性强。与传统无线接入网相比,C-RAN可以实现传输性能的良好提升。此外,越来越多的研究开始关注利用可再生能源(如太阳能、风能等)实现环境友好、可持续的通信传输,能量采集技术被应用到无线通信中,无线电子设备配备可采集的能量装置,从外界环境中采集可再生能源用于通信传输。
目前现有的研究大多针对单个时隙内的性能优化,而忽略了能量采集框架下的网络动态特性。数据的到达以及基站能力的限制会导致实时变化的数据队列积压,这将影响网络的稳定性。实际的方案研究应该基于考虑数据到达的随机性和信道时变特性,而不是静态的信道状态。尽管这类问题可以用动态规划解决,但往往需要掌握动态系统的详尽瞬时和统计信息,并且数据队列较大时系统空间状态常常呈指数级增长,这些都给制定资源分配方案带来了很大的困难。而现有技术中尚无合适的解决方案。
发明内容
为解决上述问题,本发明提供了一种均衡长期能效和网络稳定性的C-RAN系统资源分配方法,使得采用能量协作的混合能量供应C-RAN系统能够在有效提高系统长期能效和网络稳定性之间实现均衡,优化系统的长期性能。
为了达到上述目的,本发明提供如下技术方案:
一种均衡长期能效和网络稳定性的C-RAN系统资源分配方法,包括:
S1.建立结合能量协作的混合能量供应C-RAN数学模型;
S2.建立长期能效优化问题的目标函数和约束条件;
S3.基于李雅普诺夫方程和罚函数的思想,将系统长期能效优化问题转化为单时隙优化问题;
S4.采用联合资源分配优化算法求解S3转化后的单时隙优化问题。
进一步的,所述步骤1具体包括如下子步骤:
S11.配置拥有1个基带单元、M个单天线远端天线单元和K个单天线用户的C-RAN系统,其中基带单元已知统计信道状态信息,且由电网供能,远端天线单元由电网和采集能量同时供能,远端天线单元间存在能量协作;
S12.建立数据传输模型,用户k的迫零预编码向量为
Figure BDA0002320574060000021
接收的数据速率为
Figure BDA0002320574060000022
其中k∈{1,...,K},ak为辅助信道矩阵,pk为分配给用户的功率,
Figure BDA0002320574060000023
为信道增益矩阵的共轭转置,σ2为噪声方差,log表示对数运算,|·|表示绝对值运算,||·||表示范数运算;
S13.构造远端天线单元的能量模型,时隙t内输入远端天线单元m能量为Ein,m(t)=gm(t)+Hm(t)+∑n≠mnmenm(t)-emn(t)),远端天线单元m所消耗的能量为
Figure BDA0002320574060000024
其中m∈{1,...,M},gm为电网供能,Hm为采集的能量,enm为两个远端天线单元间的能量协作,εnm为能量协作效率,η为功放效率,
Figure BDA0002320574060000025
为远端天线单元和用户间的预编码,Cm为电路能耗,∑·表示求和运算;
S14.构造动态数据能量队列,包括数据队列Qk(t+1)={Qk(t)-Rk(t)}++Ak(t)、能量队列Em(t+1)=Em(t)-Pm(t)+Ein,m(t),其中Ak为到达用户端的数据速率,{·}+表示取0和此数中的较大值。
进一步的,所述步骤S13中,系统无需远端天线单元采集的能量的先验统计信息。
进一步的,所述步骤S14中,系统无需用户端数据到达速率的先验统计信息。
进一步的,所述步骤2具体包括如下子步骤:
S21.建立长期能效的目标函数:
Figure BDA0002320574060000026
其中
Figure BDA0002320574060000027
表示分别优化传输功率、协作能量、电网供能p,e,g使得其后函数值最大,Rsum为用户和速率,gsum为电网总耗能,EB为基带单元的电路耗能,∞表示无穷大,
Figure BDA0002320574060000031
表示数学期望运算,
Figure BDA0002320574060000032
表示求取平均值运算;
S22.建立既包括时间平均意义上的约束条件,又包括单时隙的约束条件,如下:
Figure BDA0002320574060000033
Figure BDA0002320574060000034
Figure BDA00023205740600000320
Figure BDA0002320574060000035
Figure BDA0002320574060000036
Figure BDA0002320574060000037
Figure BDA0002320574060000038
Figure BDA0002320574060000039
其中
Figure BDA00023205740600000310
为远端天线单元平均传输能耗阈值,
Figure BDA00023205740600000311
为远端天线单元瞬时传输能耗最大值,Rmin为用户要求的最小和速率,diag(·)为取矩阵的对角的运算。
进一步的,所述步骤3具体包括如下子步骤:
S31.构造关于传输能耗的虚拟队列
Figure BDA00023205740600000312
S32.将原问题转化为单个时隙内最小化李雅普诺夫加罚漂移函数的问题:
Figure BDA00023205740600000313
Figure BDA00023205740600000314
Figure BDA00023205740600000315
Figure BDA00023205740600000316
Figure BDA00023205740600000317
Figure BDA00023205740600000318
其中
Figure BDA00023205740600000319
表示优化分配p,e,g使得其后函数值最小,s.t.表示使其满足后述条件,V为控制参数调整系统在能效和稳定性之前的均衡。
进一步的,所述步骤S32利用Dinkelbach变换转化问题。
进一步的,所述步骤4具体包括如下子步骤:
S41.初始化系统场景的各项参数,包括初始化收敛门限、控制参数V和总时隙数Tmax,设定t时隙内的的数据能量队列以及能效初始值均为0;
S42.求解所述S32中单时隙优化问题,得到系统资源的联合分配方案,所述系统资源包括传输功率、协作能量、电网供能;
S43.比较
Figure BDA0002320574060000041
和收敛门限的大小,如果前者的值小于后者,则认为此时隙内迭代算法达到收敛,计算得出并更新此时隙内最优能效
Figure BDA0002320574060000042
接着转到步骤S44;否则返回步骤S42;
S44.按照S14和S31中构造的队列公式,动态更新系统中各数据能量队列及关于传输能耗的虚拟队列;
S45.进入下一个时隙t+1,重复步骤S42-S44,直到遍历到Tmax个时隙。
进一步的,还包括以下步骤:
在通信过程中,远端天线单元和用户位置固定,信道大尺度衰落信息保持不变,而信道小尺度衰落随时隙变化,系统根据不同时隙的统计信道状态信息,动态实施S4步骤资源分配方法中的内层迭代和外层更新算法。
与现有技术相比,本发明具有如下优点和有益效果:
本发明能够优化分配系统资源(传输功率、协作能量、电网供能),在有效提高系统长期能效和网络稳定性之间实现均衡,优化系统性能,使得采用能量协作的混合能量供应C-RAN系统满足各种长期和瞬时服务质量需求,具有广阔的应用前景。
附图说明
图1为本发明提供的均衡长期能效和网络稳定性的C-RAN系统资源分配方法流程图。
图2为本发明实施例提供的联合资源分配优化算法的示意图。
具体实施方式
以下将结合具体实施例对本发明提供的技术方案进行详细说明,应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。
本发明提供的一种均衡长期能效和网络稳定性的C-RAN系统资源分配方法,其流程如图1所示,包括如下步骤:
S1.建立结合能量协作的混合能量供应C-RAN数学模型,其中包括数据传输模型、能量模型、动态队列模型;
具体的,本例按照以下步骤建立结合能量协作的混合能量供应C-RAN数学模型:
S11.配置拥有1个基带单元、M个单天线远端天线单元和K个单天线用户的C-RAN系统,其中基带单元已知统计信道状态信息,且由电网供能,远端天线单元由电网和采集能量同时供能,远端天线单元间存在能量协作;
S12.建立数据传输模型,用户k的迫零预编码向量为
Figure BDA0002320574060000051
接收的数据速率为
Figure BDA0002320574060000052
其中k∈{1,...,K},ak为辅助信道矩阵,pk为分配给用户的功率,
Figure BDA0002320574060000053
为信道增益矩阵的共轭转置,σ2为噪声方差,log表示对数运算,|·|表示绝对值运算,||·||表示范数运算;
S13.构造远端天线单元的能量模型,时隙t内输入远端天线单元m能量为Ein,m(t)=gm(t)+Hm(t)+∑n≠mnmenm(t)-emn(t)),远端天线单元m所消耗的能量为
Figure BDA0002320574060000054
其中m∈{1,...,M},gm为电网供能,Hm为采集的能量,enm为两个远端天线单元间的能量协作,εnm为能量协作效率,η为功放效率,
Figure BDA0002320574060000055
为远端天线单元和用户间的预编码,Cm为电路能耗,∑·表示求和运算;作为优选方案,系统无需远端天线单元采集的能量的先验统计信息;
S14.构造动态数据能量队列,包括数据队列Qk(t+1)={Qk(t)-Rk(t)}++Ak(t)、能量队列Em(t+1)=Em(t)-Pm(t)+Ein,m(t),其中Ak为到达用户端的数据速率,{·}+表示取0和此数中的较大值;作为优选方案,系统无需用户端数据到达速率的先验统计信息。
S2.建立长期能效优化问题的目标函数和约束条件;
本例按照以下步骤建立长期能效优化问题的目标函数和约束条件:
S21.建立长期能效的目标函数:
Figure BDA0002320574060000056
其中
Figure BDA0002320574060000057
表示分别优化传输功率、协作能量、电网供能p,e,g使得其后函数值最大,Rsum为用户和速率,gsum为电网总耗能,EB为基带单元的电路耗能,∞表示无穷大,
Figure BDA0002320574060000058
表示数学期望运算,
Figure BDA0002320574060000059
表示求取平均值运算;
S22.建立既包括时间平均意义上的约束条件,又包括单时隙的约束条件,如下:
Figure BDA0002320574060000061
Figure BDA0002320574060000062
Figure BDA0002320574060000063
Figure BDA0002320574060000064
Figure BDA0002320574060000065
Figure BDA0002320574060000066
Figure BDA0002320574060000067
Figure BDA0002320574060000068
其中
Figure BDA0002320574060000069
为远端天线单元平均传输能耗阈值,
Figure BDA00023205740600000610
为远端天线单元瞬时传输能耗最大值,Rmin为用户要求的最小和速率,diag(·)为取矩阵的对角的运算。
步骤3.基于李雅普诺夫方程和罚函数的思想,将原来的系统长期能效优化问题转化单时隙优化问题;
具体的,按照如下步骤转化:
S31.构造关于传输能耗的虚拟队列
Figure BDA00023205740600000611
S32.利用Dinkelbach变换,将原问题转化为单个时隙内最小化李雅普诺夫加罚漂移函数的问题:
Figure BDA00023205740600000612
Figure BDA00023205740600000613
Figure BDA00023205740600000614
Figure BDA00023205740600000615
Figure BDA00023205740600000616
Figure BDA00023205740600000617
其中
Figure BDA00023205740600000618
表示优化分配p,e,g使得其后函数值最小,s.t.表示使其满足后述条件,V为控制参数,用于调整系统在能效和稳定性之前的均衡。
S4.采用联合资源分配优化算法求解S3中的问题。
具体包括如下步骤:
S41.初始化系统场景的各项参数,包括初始化收敛门限、控制参数V和总时隙数Tmax,设定t时隙内的的数据能量队列以及能效初始值均为0;
S42.求解所述S32中单时隙优化问题,得到系统资源(传输功率、协作能量、电网供能)的联合分配方案;
S43.比较
Figure BDA0002320574060000071
和收敛门限的大小,如果前者的值小于后者,则认为此时隙内迭代算法达到收敛,计算得出并更新此时隙内最优能效
Figure BDA0002320574060000072
接着转到步骤S44;否则返回步骤S42,继续进行内层迭代;
S44.按照S14和S31中构造的队列公式,动态更新系统中各数据能量队列及关于传输能耗的虚拟队列;
S45.进入下一个时隙t+1,重复步骤S42-S44,直到遍历到Tmax个时隙。
在应用本发明方法时,在通信过程中,远端天线单元和用户位置固定,信道大尺度衰落信息保持不变,而信道小尺度衰落随时隙变化,系统根据不同时隙的统计信道状态信息,动态实施S4步骤资源分配方法中的内层迭代和外层更新算法。基于本发明方法得到的系统资源的优化分配方案应用在C-RAN系统中,能够均衡C-RAN系统的长期能效和网络稳定性,从而提升系统性能,使得系统满足各种长期和瞬时服务质量需求。
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (5)

1.一种均衡长期能效和网络稳定性的C-RAN系统资源分配方法,其特征在于,包括:
S1.建立结合能量协作的混合能量供应C-RAN数学模型;
所述步骤S1具体包括如下子步骤:
S11.配置拥有1个基带单元、M个单天线远端天线单元和K个单天线用户的C-RAN系统,其中基带单元已知统计信道状态信息,且由电网供能,远端天线单元由电网和采集能量同时供能,远端天线单元间存在能量协作;
S12.建立数据传输模型,用户k的迫零预编码向量为
Figure FDA0003792666620000011
接收的数据速率为
Figure FDA0003792666620000012
其中k∈{1,...,K},ak为辅助信道矩阵,pk为分配给用户的功率,
Figure FDA0003792666620000013
为信道增益矩阵的共轭转置,σ2为噪声方差,log表示对数运算,|·|表示绝对值运算,||·||表示范数运算;
S13.构造远端天线单元的能量模型,时隙t内输入远端天线单元m能量为Ein,m(t)=gm(t)+Hm(t)+∑n≠mnmenm(t)-emn(t)),远端天线单元m所消耗的能量为
Figure FDA0003792666620000014
其中m∈{1,...,M},gm为电网供能,Hm为采集的能量,enm为两个远端天线单元间的能量协作,εnm为能量协作效率,η为功放效率,
Figure FDA0003792666620000015
为远端天线单元和用户间的预编码,Cm为电路能耗,∑·表示求和运算;
S14.构造动态数据能量队列,包括数据队列Qk(t+1)={Qk(t)-Rk(t)}++Ak(t)、能量队列Em(t+1)=Em(t)-Pm(t)+Ein,m(t),其中Ak为到达用户端的数据速率,{·}+表示取0和此数中的较大值;
S2.建立长期能效优化问题的目标函数和约束条件;
所述步骤S2具体包括如下子步骤:
S21.建立长期能效的目标函数:
Figure FDA0003792666620000016
其中
Figure FDA0003792666620000017
表示分别优化传输功率p、协作能量e、电网供能g使得其后函数值最大,Rsum为用户的速率,gsum为电网总耗能,EB为基带单元的电路耗能,∞表示无穷大,
Figure FDA0003792666620000021
表示数学期望运算,
Figure FDA0003792666620000022
表示求取平均值运算;
S22.建立既包括时间平均意义上的约束条件,又包括单时隙的约束条件,如下:
Figure FDA0003792666620000023
Figure FDA0003792666620000024
Figure FDA0003792666620000025
Figure FDA0003792666620000026
Figure FDA0003792666620000027
Figure FDA0003792666620000028
Figure FDA0003792666620000029
Figure FDA00037926666200000210
其中
Figure FDA00037926666200000211
为远端天线单元平均传输能耗阈值,
Figure FDA00037926666200000212
为远端天线单元瞬时传输能耗最大值,Rmin为用户要求的最小和速率,diag(·)为取矩阵的对角的运算;
S3.基于李雅普诺夫方程和罚函数的思想,将系统长期能效优化问题转化为单时隙优化问题;
所述步骤S3具体包括如下子步骤:
S31.构造关于传输能耗的虚拟队列
Figure FDA00037926666200000213
S32.将原问题转化为单个时隙内最小化李雅普诺夫加罚漂移函数的问题:
Figure FDA00037926666200000214
Figure FDA00037926666200000215
Figure FDA00037926666200000216
Figure FDA00037926666200000217
Figure FDA00037926666200000218
Figure FDA00037926666200000219
其中
Figure FDA00037926666200000220
表示优化分配p,e,g使得其后函数值最小,s.t.表示使其满足后述条件,V为控制参数调整系统在能效和稳定性之前的均衡;
S4.采用联合资源分配优化算法求解S3转化后的单时隙优化问题;
所述步骤S4具体包括如下子步骤:
S41.初始化系统场景的各项参数,包括初始化收敛门限、控制参数V和总时隙数Tmax,设定t时隙内的数据能量队列以及能效初始值均为0;
S42.求解所述S32中单时隙优化问题,得到系统资源的联合分配方案,所述系统资源包括传输功率、协作能量、电网供能;
S43.比较
Figure FDA0003792666620000031
和收敛门限的大小,如果前者的值小于后者,则认为此时隙内迭代算法达到收敛,计算得出并更新此时隙内最优能效
Figure FDA0003792666620000032
接着转到步骤S44;否则返回步骤S42;
S44.按照S14和S31中构造的队列公式,动态更新系统中各数据能量队列及关于传输能耗的虚拟队列;
S45.进入下一个时隙t+1,重复步骤S42-S44,直到遍历到Tmax个时隙。
2.根据权利要求1 所述的均衡长期能效和网络稳定性的C-RAN系统资源分配方法,其特征在于:所述步骤S13中,系统无需远端天线单元采集的能量的先验统计信息。
3.根据权利要求2所述的均衡长期能效和网络稳定性的C-RAN系统资源分配方法,其特征在于:所述步骤S14中,系统无需用户端数据到达速率的先验统计信息。
4.根据权利要求1所述的均衡长期能效和网络稳定性的C-RAN系统资源分配方法,其特征在于,所述步骤S32利用Dinkelbach变换转化问题。
5.根据权利要求1-4中任意一项所述的均衡长期能效和网络稳定性的C-RAN系统资源分配方法,其特征在于,还包括以下步骤:
在通信过程中,远端天线单元和用户位置固定,信道大尺度衰落信息保持不变,而信道小尺度衰落随时隙变化,系统根据不同时隙的统计信道状态信息,动态实施S4步骤资源分配方法中的内层迭代和外层更新算法。
CN201911296078.1A 2019-12-16 2019-12-16 一种均衡长期能效和网络稳定性的c-ran系统资源分配方法 Active CN111107645B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911296078.1A CN111107645B (zh) 2019-12-16 2019-12-16 一种均衡长期能效和网络稳定性的c-ran系统资源分配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911296078.1A CN111107645B (zh) 2019-12-16 2019-12-16 一种均衡长期能效和网络稳定性的c-ran系统资源分配方法

Publications (2)

Publication Number Publication Date
CN111107645A CN111107645A (zh) 2020-05-05
CN111107645B true CN111107645B (zh) 2022-10-18

Family

ID=70422841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911296078.1A Active CN111107645B (zh) 2019-12-16 2019-12-16 一种均衡长期能效和网络稳定性的c-ran系统资源分配方法

Country Status (1)

Country Link
CN (1) CN111107645B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111726855B (zh) * 2020-06-30 2021-07-13 华北电力大学 一种面向通信系统的功率控制优化方法
CN112468197B (zh) * 2020-12-01 2021-11-12 东南大学 一种联合优化c-ran中波束成形和用户关联方法
CN114710195B (zh) * 2022-03-24 2023-07-25 重庆邮电大学 一种基于跳波束技术的低轨卫星高能效资源分配方法
CN114928382B (zh) * 2022-05-18 2023-12-26 东南大学 一种基于网络切片和混合能量供应的分布式大规模mimo能效优化方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109089271A (zh) * 2018-09-17 2018-12-25 中南大学 一种混合能量供能的无线协同网络资源随机分配方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109618312B (zh) * 2019-01-18 2020-09-22 华北电力大学 一种面向d2d中继网络的低复杂度在线资源分配优化算法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109089271A (zh) * 2018-09-17 2018-12-25 中南大学 一种混合能量供能的无线协同网络资源随机分配方法

Also Published As

Publication number Publication date
CN111107645A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
CN111107645B (zh) 一种均衡长期能效和网络稳定性的c-ran系统资源分配方法
CN107087305B (zh) 一种基于能量收集的终端直通通信资源管理方案
CN107708197B (zh) 一种高能效的异构网络用户接入和功率控制方法
CN109327894B (zh) 基于干扰抑制的多小区mimo-noma最优功率分配方法
CN105656538A (zh) 一种大规模mimo系统的低复杂度置信传播检测算法
Gao et al. Outage-constrained energy efficiency maximization for RIS-assisted WPCNs
CN110492915A (zh) 一种基于mimo-noma短包传输的功率分配方法
CN107135544A (zh) 一种基于干扰动态更新的能效资源分配方法
CN103825677B (zh) 一种骨干网容量受限时的多基站协作传输方法
CN101079660B (zh) 多用户jt mimo系统中的下行链路功率分配方法
CN107343268B (zh) 非正交多播和单播传输波束赋型方法及系统
Li et al. Practical interference exploitation precoding without symbol-by-symbol optimization: A block-level approach
Lu et al. Training optimization and performance of single cell uplink system with massive-antennas base station
Wang et al. Energy-efficient power and subcarrier allocation in multiuser OFDMA networks
CN103944618B (zh) 大规模miso协同能效发送方法
Reifert et al. Energy efficiency in rate-splitting multiple access with mixed criticality
CN104009824A (zh) 一种基站协作上行链路系统中基于差分进化的导频辅助数据融合方法
CN107426775B (zh) 一种面向高能效异构网络的分布式多用户接入方法
CN112770398A (zh) 一种基于卷积神经网络的远端射频端功率控制方法
CN106330608A (zh) 在数能一体化通信网络中上行用户吞吐量公平性优化方法
CN108848519B (zh) 一种基于交叉熵学习的异构网络用户接入方法
CN109150333B (zh) 基于能量共享的分布式基站远程天线单元选择方法
Tan et al. Robust energy efficiency maximization in multicast downlink C-RAN
CN110248403A (zh) 一种基于非正交多址的最大化d2d连接数的资源管控方法
Cui et al. Downlink power allocation in SCMA with finite-alphabet constraints

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant