CN1039857C - 用含氧高温超导体母体制造模制体的方法 - Google Patents

用含氧高温超导体母体制造模制体的方法 Download PDF

Info

Publication number
CN1039857C
CN1039857C CN91105723A CN91105723A CN1039857C CN 1039857 C CN1039857 C CN 1039857C CN 91105723 A CN91105723 A CN 91105723A CN 91105723 A CN91105723 A CN 91105723A CN 1039857 C CN1039857 C CN 1039857C
Authority
CN
China
Prior art keywords
copper
anode
electrolyte
copper mold
bscco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN91105723A
Other languages
English (en)
Other versions
CN1059228A (zh
Inventor
艾伯哈德·波雷斯勒
夭齐姆·柏克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of CN1059228A publication Critical patent/CN1059228A/zh
Application granted granted Critical
Publication of CN1039857C publication Critical patent/CN1039857C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F5/00Electrolytic stripping of metallic layers or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/728Etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/739Molding, coating, shaping, or casting of superconducting material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Glass Compositions (AREA)

Abstract

用BSCCO类含氧高温超导体母体制造模制体的方法,其中包括在阳极、阴极和电解液构成的直流电路中将内含固化铋锶钙铜酸盐熔体的要求形状铜模用电线连成阳极,用稀硫酸作电解液并通以1-50mA·cm2的直流电,直到连成铜模溶解并露出BSCCO模制体为止。

Description

用含氧高温超导体母体制造模制体的方法
用铋锶钙铜酸盐熔体合成高温超导体的方法已见于DE3830092A1,其中或按其它办法制成的“BSCCO”高温超导体组成为Bi2(Sr,Ca)3Cu2Ox(“2层化合物”),锶/钙比(2-5):1(BSCCO代表铋锶钙铜氧化物)。另外,“1层化合物”Bi2(Sr,Ca)2CuOx和“3层化合物”Bi2(Sr,Ca)4Cu3Ox也称为BSCCO高温超导体。氧指数“x”由Bi,Sr,Ca和Cu化合价之和决定,但因Bi可为3价或5价且Cu可为1价或2价,所以x也可在一定程度上变化。
DE3830092A1也提到用铋锶钙铜酸盐制造模制体,如该模制品制法可为在多种模中浇注,若模开口,如在有倾斜侧壁或半圆柱体腔情形下,并且可根据形状而脱除注入体,则模优选由铜制成。重要的是浇注用冷模制行,以使固熔体在模壁上迅速冷却,与铜模壁不发生化学反应。即使模壁为挠性的并且用冷却后可侧向弯曲的薄金属板制成,也不会出现问题。
更困难的是生产更复杂的模制体,这要求复杂形状的闭口模。在这种情况下,也不常用迅速冷却而避免壁反应的办法,因为模可能需要预热而避免流入熔体不应有的过早固化。在相对简单情况下,如生产相当厚的圆柱形模制体,其中在管状模中浇注,仍可设想机械办法脱除壳体材料,如将模壁分成两半部分。但即使直径相当小,这办法也不可行并且对于复杂几何形状,如环或圈情况下也不再应用该方法。
为使高温超导体组合物熔料固化后转化成超导状态,需在空气或氧气中800℃左右将固化熔体后续加热处理6-30小时。但仅有一种金属已知适于作BSCCO高温超导体的壳体材料并在热处理温度下可渗透氧,从而使得在金属壳内将固化熔体转化成所需的高温超导体成为可能,这种金属就是银。不幸的是960.8℃的银熔点低于超导熔体可有效浇注的温度。因此,银模在超导熔体固化之前就熔化了。
为此需借助于铜模,因为铜为仅有的适用于此目的体系固定金属。但绝对需要从固化熔体脱除铜模。因机械去除铜模用途有限,又建议其化学溶除,原则上讲,用氧化性酸或酸加氧化剂可达到。已用钇钡铜酸盐超导体粉进行了试验,其中将粉倒入铜管中并深冲和轧制而压实。
但若在铋基超导体情况下要求以同样方式进行,则只要铜壳在某一点溶解并裸露出固化熔体表面,就可观察到酸对固化熔体超导体或其母体的严重侵蚀。也就是说已发现超导铋化合物为酸溶性的。
本发明目的是提出可溶解铜壳而又不明显侵蚀内部超导体或其母体的方法。其中在稀硫酸中进行阳极氧化。本发明原理是形成保护层,抑制酸对超导化合物的进一步侵蚀,该层由硫酸中所含硫酸根和超导化合物中所含碱土金属形成的硫酸锶和/或硫酸钙构成。
待脱除铜壳的模塑物连成电解池阳极,以铜作阴极。加适当电流后,铜从壳中溶解,同时沉积在阴极上。因此使与原用硫酸结合的铜量很小,游离硫酸溶度也保持很低。这对在裸露出的模制体上的碱土金属硫酸盐保护层的稳定性而言是极有利的。
具体的讲,本发明涉及用BSCCO类含氧高温超导体母体制造模制体的方法,其中包括在阳极,阴极和电解液构成的直流电路中将内含固化铋锶钙铜酸盐熔体的要求形状铜模用电线连成阳极,用稀硫酸作电解液并通以1-50mA.cm-2的直流电,直到连成阳极的铜模溶解并露出BSCCO模制体为止。
另外,本发明优选或必要时的方法中
(a)一个或多个铜制模制体用作阴极;
(b)15-70℃下进行铜模电解溶解;
(c)连成阳极的铜模内含铋锶钙铜酸盐熔体并有一个或多个开口。
附图示出进行电解(阳极氧化)的可行方案。内填固化超导体熔体1的铜管2(阳极)垂直浸入烧杯3中,其中填有电解液(如20%H2SO4)。阳极2周围有两根铜阴极4,其本身经电镀电势恒定器5与阳极2相连。此外,烧杯3中还浸有接触温度计6,以控制放烧杯3的可加热磁力搅拌器。
因按图将含超导体芯的模连成电解池阳极,铜在阳极溶解并在阴极沉积而提供电流。但该法仅在电解液中低Cu浓度下阴极沉积氢之前才有可能。阴极沉积铜的优点是选定硫酸浓度可相当低,因为硫酸并不明显消耗。也可在适当高温,如50℃下进行电解,此时反应过压降低。此时也不象室温下阴极上沉积出海绵状铜,而是以相当稠密的形式沉积,因此电极间短路危险明显消失。阳极电流密度20mA.cm-2,浴温40℃,则工作电压为0.2V。
尽管未空气处理的未回火状态超导体芯并不为良好的电子导体(室温电阻1-3ohm.cm),但其导电率会足以使芯阳极化,以致最终铜壳溶解步骤中形成的不连续铜层并不成为电绝缘的,而是仍可溶解,而已裸露出的芯料已受到形成的碱土金属硫酸盐膜的保护。此外,硫酸盐膜增大了裸露芯表面的电阻并因此降低这些点的阳极电流。
酸浓度和处理温度并不关键,如可用2-35wt%H2SO4。所用含硫酸根稀硫酸量可很小,只是需超过选定温度下存在硫酸时的硫酸钙和硫酸锶溶解产品,其中形成致密硫酸盐保护膜。
壁厚0.8mm,内径6mm并内填式Bi2Sr2CaCu2Ox铋锶钙铜酸盐超导体熔体的5螺圈铜管在烧杯中用线连成阳极,而螺圈外围空心铜柱连同螺圈中心铜棒作为阴极。20%硫酸作电解液。电解时电流密度40mA.cm-2,室温持续20h。浸入电解液的超导体芯基本上从铜壳中露出并覆盖一白色薄层,未观察到侵蚀点。

Claims (3)

1.用BSCCO类含氧高温超导体母体制造模制体的方法,其特征在于在阳极、阴极和电解液构成的直流电路中将内含固化铋锶钙铜酸盐熔体的要求形状铜模用电线连成阳极,用2-35重量%浓度的稀硫酸作电解液,用一个或多个铜模制体作为阴极并通以1-50mA.cm-2的直流电,直到连成铜模溶解并露出BSCCO模制体为止,其中在电解过程中,超导体材料或其母体由形成的硫酸锶和/或硫酸钙保护层进行保护。
2.根据权利要求1的方法,其特征是15-70℃进行铜模电解溶解。
3.根据权利要求1或2的方法,其特征是连成阳极的、内含固化铋锶钙铜酸盐熔体的铜模含有一个或多个开口。
CN91105723A 1990-08-17 1991-08-16 用含氧高温超导体母体制造模制体的方法 Expired - Fee Related CN1039857C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4026014A DE4026014A1 (de) 1990-08-17 1990-08-17 Verfahren zur herstellung von formkoerpern aus vorstufen oxidischer hochtemperatursupraleiter
DEP4026014.3 1990-08-17

Publications (2)

Publication Number Publication Date
CN1059228A CN1059228A (zh) 1992-03-04
CN1039857C true CN1039857C (zh) 1998-09-16

Family

ID=6412387

Family Applications (1)

Application Number Title Priority Date Filing Date
CN91105723A Expired - Fee Related CN1039857C (zh) 1990-08-17 1991-08-16 用含氧高温超导体母体制造模制体的方法

Country Status (10)

Country Link
US (1) US5250507A (zh)
EP (1) EP0471975B1 (zh)
JP (1) JPH04321518A (zh)
KR (1) KR920004307A (zh)
CN (1) CN1039857C (zh)
AT (1) ATE133932T1 (zh)
CA (1) CA2048011A1 (zh)
DE (2) DE4026014A1 (zh)
ES (1) ES2084734T3 (zh)
NO (1) NO301707B1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3830092A1 (de) * 1988-09-03 1990-03-15 Hoechst Ag Verfahren zur herstellung eines hochtemperatursupraleiters sowie daraus bestehende formkoerper

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD59149A (zh) *
BE629890A (zh) * 1962-03-21
JPH01157010A (ja) * 1987-12-11 1989-06-20 Sumitomo Metal Ind Ltd 酸化物超電導線材の製造方法
US5151407A (en) * 1990-02-28 1992-09-29 The United States Of America As Represented By The Secretary Of The Navy Method of producing Bi-Sr-Ca-Cu-O superconducting materials in cast form
US5059581A (en) * 1990-06-28 1991-10-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Passivation of high temperature superconductors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3830092A1 (de) * 1988-09-03 1990-03-15 Hoechst Ag Verfahren zur herstellung eines hochtemperatursupraleiters sowie daraus bestehende formkoerper
EP0362492A2 (de) * 1988-09-03 1990-04-11 Hoechst Aktiengesellschaft Verfahren zur Herstellung eines Hochtemperatursupraleiters sowie daraus bestehende Formkörper

Also Published As

Publication number Publication date
EP0471975A3 (en) 1993-04-14
CN1059228A (zh) 1992-03-04
ES2084734T3 (es) 1996-05-16
US5250507A (en) 1993-10-05
NO913219L (no) 1992-02-18
JPH04321518A (ja) 1992-11-11
NO301707B1 (no) 1997-12-01
ATE133932T1 (de) 1996-02-15
CA2048011A1 (en) 1992-02-18
EP0471975B1 (de) 1996-02-07
EP0471975A2 (de) 1992-02-26
KR920004307A (ko) 1992-03-27
DE59107378D1 (de) 1996-03-21
NO913219D0 (no) 1991-08-16
DE4026014A1 (de) 1992-02-20

Similar Documents

Publication Publication Date Title
JP2000309830A (ja) 銅ワイヤー作製プロセス
JP2003534459A (ja) 過マンガン酸塩エッチング溶液の電気化学再生用のカソード
CN1039857C (zh) 用含氧高温超导体母体制造模制体的方法
CN110129799B (zh) 一种基于硫酸-铁盐体系的退锡废液的回收利用方法
US20050016854A1 (en) Materials fabrication method and apparatus
Ondoño-Castillo et al. Superconducting YBa2Cu3O7-. delta. coatings by simultaneous electrodeposition of Y, Ba, and Cu in the presence of cyanide
US5362712A (en) Process for removing a copper mold from a molded body
JPH0423000B2 (zh)
DE19939144C2 (de) Verfahren zur metallischen Beschichtung von Hochtemperatur-Supraleiter
JP2594799B2 (ja) 低銀品位の高純度電気銅の製造法
KR102280173B1 (ko) 방사율이 향상된 구리 도금 형성 방법
JPS61117282A (ja) 酸化銅皮膜形成方法
EP0400057A1 (en) Preparation of superconducting oxides by electrochemical oxidation: anodic superconductors
JP2517870B2 (ja) 複合酸化物超伝導薄膜の製造方法
SU759607A1 (ru) Способ выщелачивания окисленного цинксодержащего материала 1
JPH03219095A (ja) 希土類―バリウム―銅合金めっき方法
LeHuy et al. Laboratory scale electroplating and processing of long lengths of in situ Cu 3Sn superconductors
JPH05310420A (ja) 超電導プリフォーム及び超電導ファイバ
JPH04180584A (ja) 酸化物系超電導体の製造方法
JPH0272512A (ja) 超伝導ケーブルの作製方法
JPS63259926A (ja) 超電導線の製造方法
AU2002330638A1 (en) Superconductor materials fabrication method using electrolytic reduction and infiltration
JPH04180585A (ja) 酸化物系超電導体の製造方法
PL48319B1 (zh)
JPH02263754A (ja) 酸化物超電導体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee