CN103938179A - 沉积非晶硅膜的方法 - Google Patents

沉积非晶硅膜的方法 Download PDF

Info

Publication number
CN103938179A
CN103938179A CN201310493221.2A CN201310493221A CN103938179A CN 103938179 A CN103938179 A CN 103938179A CN 201310493221 A CN201310493221 A CN 201310493221A CN 103938179 A CN103938179 A CN 103938179A
Authority
CN
China
Prior art keywords
amorphous silicon
film
substrate
silicon film
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310493221.2A
Other languages
English (en)
Inventor
加施·帕特尔
刘玉菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPTS Technologies Ltd
Original Assignee
SPTS Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPTS Technologies Ltd filed Critical SPTS Technologies Ltd
Publication of CN103938179A publication Critical patent/CN103938179A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明提供一种在腔室中将非晶硅层沉积在半导体基板或绝缘基板的表面上的方法,其中,在沉积所述非晶硅层之前,用NH3等离子体预处理所述表面。

Description

沉积非晶硅膜的方法
技术领域
本发明涉及一种沉积非晶硅膜的方法,并且尤其是沉积厚度为3μm或以上厚度的非晶硅膜的方法。
背景技术
已经发现,当寻求沉积较厚(例如厚度为3μm或以上)的非晶硅膜时,可能存在膜与基板表面的粘附性的显著问题。目前,这就限制了非晶硅膜的应用,尤其是在MEMS工业中的应用。
非晶硅是硅的非晶体同素异形体形式。其能够以薄膜沉积在各种基板上,为各种电子应用提供某些独特的功能。非晶硅被用在大规模生产的微机电系统(MEMS)和纳米机电系统(NEMS)、太阳能电池、微晶硅和微非晶硅、甚至对于各种基板上的滚压工艺技术(roll-to-roll processing technique)是有用的。针对非晶硅膜的具体MEMS应用为:
1.薄膜装置,包括用于颜色或红外传感的光电二极管或薄膜晶体管,或用于压力传感器的压电电阻器;
2.由于非晶硅膜在高浓度HF溶液中的良好耐性,其在微流体应用中用于玻璃蚀刻的遮蔽层,或甚至在介电泳芯片中作为薄电极;
3.由于非晶硅膜在碱性溶液(TMAH或KOH)中易于去除,其用作电容式超声波换能器微加工中的牺牲层;
4.通过XeF2蚀刻干式去除(dry-release removal)a-Si:H膜,限定压电晶体谐振器中用于机械RF磁场调节的纳米间隙;
5.提供用于阳极接合的中间层以改善接合质量或用在纳米流体通道的制作中。
本申请已经开发了一种用于改善a-Si:H薄膜的粘附性方法,在具体实施方式的附加特征中,本申请已经开发了一种用于降低a-Si:H薄膜的应力且改善了a-Si:H薄膜的均匀性的方法。
发明内容
本发明包括一种在腔室中将非晶硅层沉积在基板表面上的方法,在沉积所述非晶硅层之前,用NH3等离子体预处理所述表面。
在本发明的实施方式中,NH3等离子体可具有下列工艺条件中的至少一个:
(a)供应的RF功率在150~250W的范围内;
(b)所述NH3的流量在80~110sccm之间
(c)所述腔室的压力在500~4000毫托之间;
(d)所述NH3等离子体流动约5分钟。
所述基板可由硅或含硅材料制成。所述基板可为硅或玻璃(SiO2)。所述基本可涂覆有二氧化硅或氮化硅的中间层。然而,本发明并不限于这些实施方式。
优选的是,通过使惰性气体流将所述基板加热至遍及其宽度范围内的恒定温度,从而改善后续工艺步骤的均匀性。适宜地,惰性气体为N2
可利用SiH4作为工艺气体来沉积所述非晶硅膜,并且SiH4可携带在载气(例如氩)中。
通常,所述腔室包括压板。在非晶硅膜的沉积期间,压板温度可在200~350℃之间,例如200℃。优选地,腔室壁处于75℃,在使用喷头输送工艺气体时,所述喷头可具有约200℃的温度。
当以上述方式沉积时,非晶硅膜的应力会较低,例如低于或等于50MPa。
尽管已经如上限定了本发明,应当理解的是,本发明包括任何前述或后附说明书、附图或权利要求书的特征的任何发明性组合。
附图说明
本发明可以以各种方式来进行,且现将结合附图描述具体实施例。其中:
图1a和图lb为对比在(a)利用常规沉积技术沉积时和(b)利用本发明的实施方式沉积时,关于3.2μm硅膜沉积的粘附性测试结果;
图2为上表面上带有Si-OH键的基板的结构示意图;以及
图3为示出了代表性的PECVD系统的示意图。
具体实施方式
为了改善粘附性,低应力以及改善在非晶硅沉积步骤期间的均匀性,已经开发了一种新型NH3等离子体基板处理步骤。
作为实施例,利用下列工艺步骤,已经成功地得到了未显示出任何剥离迹象的低应力非晶硅膜。表1中示出了工艺参数。
表1:用于3.26μm厚的非晶硅膜沉积的实施例工艺参数*具有良好的粘附性能。
将晶片装入工艺模具中,如图3所示,该工艺模具可包括真空处理腔室。在图3中,真空处理腔室(附图标记为1)包括抽吸孔2,抽吸孔2将腔室连接至泵(未示出)。基板3被放置在压板4上且可用已知的构件(例如静电夹)夹持在适当的位置。腔室1进一步包括喷头组件5,喷头组件5由面板6和带有气体入口8的背板7组成。孔9形成为通过面板。在面板和背板之间的容积(volume)10作为气体容器以允许在气体入口8和工艺容积11之间进行传导。例如在12和13处提供有合适的密封件。RF功率供应源14以本领域技术人员熟知的方式供应RF功率至喷头组件5以产生且维持等离子体。在US2004/0123800可找到对于PECVD系统的配置和操作的进一步详细描述,该专利通过引用而整体并入本文。
在低压下(<0.1Tor),将晶片装入工艺模具,且利用N2辅助气体(>2Torr以及~2000sccm)升至工艺温度。在该温度下,如图3所示,利用RF(14)驱动喷头(5、6)实施NH3等离子体处理步骤。该步骤对压板4上的基板3的表面进行了改性。
NH3等离子体基板处理步骤为提高沉积的非晶硅膜与基板之间的粘附性能的关键工艺步骤。例如,NH3等离子体基板处理步骤:200W的高频功率(13.56MHz),900毫托的压力以及95sccm的NH3气体流持续5min。对于极低应力膜沉积(≤50MPa),可进一步通过运行低温(200℃)沉积工艺来调节膜应力。
实验发现:在低温下结合RF频率、功率、压力和气流的最佳工艺参数沉积的非晶硅膜,可产生非常低应力(≤50MPa)的非晶硅膜。例如,对于喷头和压板温度为200℃,腔室侧壁温度为75℃下,120W高频功率(13.56MHz)、700毫托处理腔室压力,120sccm的SiH4和500sccm的Ar流的沉积可提供极低拉伸应力非晶硅膜沉积(+48.1MPa),且沉积速率约109m/min。
在未经NH3预处理的图1a以及经NH3等离子体处理的图1b中可以看到,该过程对于a-Si:H膜(3.25m厚)与硅晶片的粘附性的优势。使用ANSI/SDIA250.10-1998(R200)过程来进行粘附性测试。在图1a中,通过胶带去除了所有的a-Si:H沉积物,而图1b中并没有通过胶带去除a-Si:H。膜上的网格线为步骤的一部分以确保可重复的结果。通过变动温度、功率、气体流量和压力的工艺参数,这些膜的应力可从拉伸力控制为压缩力。例如,将压板温度从200℃升高至300℃,应力可由<50MPa的拉伸力转换为>200MPa的压缩力。通过降低RF功率,可增加拉伸应力。
将看到的是,NH3等离子体基板处理步骤显著地提高非晶硅膜的粘附性能。
用于增强沉积膜的粘附性能的常规方法可包括提高非晶硅膜沉积温度以及引入中间层,例如氮化硅和二氧化硅,但是这两种方法均具有不足。由于考虑应力和热预算,>350℃的高温在许多应用中是不被接受;而额外层的引入将导致成本增加、复杂化以及在后续中待去除的潜在的多余的膜。
进行了下列实验以比较膜的粘附性增强。
表2:在未经过NH3等离子体步骤的高温下沉积的非晶硅膜*。膜厚度~3.36μm。
表2中的结果显示出:较高的压板温度(350℃)可增强粘附性能,但其对沉积的非晶硅膜还引入了较高的压缩应力。通过上面的实施例,较高温度的沉积带来标准粘附测试的10%下降以及-332.9MPa高压缩应力的膜。
表3:未经过NH3等离子体步骤的情况下,用氮化硅(SiN)中间层沉积的非晶硅膜。
表4:未经过NH3等离子体步骤的情况下,用SiO2中间层沉积的非晶硅膜。
表3和表4中的结果(均对于~3.3μm的膜)表明:在未经过NH3等离子体步骤的情况下,利用SiN或SiO2中间层的非晶硅膜显示出较差的粘附性。
表5:硅晶片上的不同表面的剥离测试的总结
表5中总结了来自表1~4的关键发现。即,除了经过NH3等离子体处理的基板外,对于已经经历打破真空的Si、SiO2和SiN表面,所有的a-Si:H膜显示出剥离迹象。将工艺温度升高至350℃显著地降低了剥离量;然而,该有破坏性的工艺也不能如经过NH3等离子体步骤处理一样以200℃在Si上进行低应力的a-Si:H沉积。
以下,描述了a-Si:H膜粘附性改善的可能机理。已经暴露在大气中的硅表面将具有天然氧化物层。在晶片表面,硅原子经由氧原子以巨型共价结构结合。然而,在二氧化硅的表面处,硅-氧键随着时间经过在空气中水解,而形成-OH基团。因此,在表面处,如图2所示,Si-OH键代替了Si-O-Si键。表面由于-OH基团而被极化,并且可与围绕该表面的合适的化合物形成氢键,且具有范德华色散力和偶极-偶极引力。除了沉积的非晶硅的悬键外,基板表面上的这些Si-OH键显著地影响沉积的非晶硅膜和基板之间的粘附性能。
因此,利用NH3等离子体基板处理步骤来去除基板上表面上的Si-OH键,显著改善了沉积的非晶硅膜的粘附性。

Claims (9)

1.一种在腔室中将非晶硅层沉积在半导体基板或绝缘基板的表面上的方法,其中,在沉积所述非晶硅层之前,用NH3等离子体预处理所述表面。
2.根据权利要求1所述的方法,其中,所述NH3等离子体经历下列工艺条件中的至少一个:
(a)供应的RF功率在150~250W的范围内;
(b)所述腔室的压力在500~4000毫托之间;
(c)所述NH3等离子体流动约1~5分钟;以及
(d)随后在不打破真空的情况下完成所述非晶硅层。
3.根据权利要求1或2所述的方法,其中,所述基板由硅制成。
4.根据权利要求1或2所述的方法,其中,所述基板的表面由二氧化硅或氮化硅制成。
5.根据前述权利要求中任一项所述的方法,其中,在应用所述NH3等离子体之前,通过惰性气体流将所述基板加热至遍及所述基板的宽度范围内的恒定温度。
6.根据权利要求5所述的方法,其中,所述惰性气体为N2
7.根据前述权利要求中任一项所述的方法,其中,利用SiH4作为工艺气体来沉积所述非晶硅膜。
8.根据权利要求7所述的方法,其中,所述腔室包括压板,并且所述压板的温度在200~350℃之间,例如200℃。
9.根据权利要求8所述的方法,其中,所述膜的应力为≤50MPa。
CN201310493221.2A 2012-10-18 2013-10-18 沉积非晶硅膜的方法 Pending CN103938179A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261715411P 2012-10-18 2012-10-18
GBGB1218697.9A GB201218697D0 (en) 2012-10-18 2012-10-18 A method of depositing an amorphous silicon film
GB1218697.9 2012-10-18
US61/715,411 2012-10-18

Publications (1)

Publication Number Publication Date
CN103938179A true CN103938179A (zh) 2014-07-23

Family

ID=47324964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310493221.2A Pending CN103938179A (zh) 2012-10-18 2013-10-18 沉积非晶硅膜的方法

Country Status (7)

Country Link
US (1) US20140113439A1 (zh)
EP (1) EP2722871A1 (zh)
JP (1) JP2014086730A (zh)
KR (1) KR20140049952A (zh)
CN (1) CN103938179A (zh)
GB (1) GB201218697D0 (zh)
TW (1) TW201423841A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152864A (zh) * 2014-08-22 2014-11-19 中国科学院宁波材料技术与工程研究所 硅薄膜的制备方法
CN107464743A (zh) * 2017-07-17 2017-12-12 上海华虹宏力半导体制造有限公司 非晶硅薄膜成膜方法
CN109148263A (zh) * 2018-07-26 2019-01-04 上海华虹宏力半导体制造有限公司 沉积非晶硅的成膜方法
CN110088355A (zh) * 2017-04-26 2019-08-02 封闭型股份公司研究-工程中心“因科姆系统” 基底疏水化的方法
CN110970287A (zh) * 2018-09-28 2020-04-07 长鑫存储技术有限公司 制备非晶硅薄膜的方法
CN111589769A (zh) * 2020-05-25 2020-08-28 常州时创能源股份有限公司 硅片pecvd镀非晶硅用石墨舟的清洗方法
CN111826632A (zh) * 2019-04-22 2020-10-27 上海新微技术研发中心有限公司 一种非晶硅薄膜的沉积方法及沉积设备
CN112760615A (zh) * 2020-12-17 2021-05-07 武汉新芯集成电路制造有限公司 一种二氧化硅薄膜及其低温制备方法
US11239264B2 (en) 2018-12-06 2022-02-01 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Thin film transistor, display substrate, method for preparing the same, and display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102146543B1 (ko) * 2016-07-29 2020-08-20 주식회사 원익아이피에스 비정질 실리콘막의 형성 방법
US10483102B2 (en) * 2017-04-07 2019-11-19 Applied Materials, Inc. Surface modification to improve amorphous silicon gapfill
US10276379B2 (en) 2017-04-07 2019-04-30 Applied Materials, Inc. Treatment approach to improve film roughness by improving nucleation/adhesion of silicon oxide
JP7290634B2 (ja) * 2017-10-31 2023-06-13 ラム リサーチ コーポレーション リアクタの処理バッチサイズを増加させるための方法および装置
KR102608340B1 (ko) * 2021-07-26 2023-12-01 주식회사 지엔테크 엑시머 레이저 어닐링을 이용한 초저접합 실리사이드층 형성방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119733A (ja) * 1983-12-01 1985-06-27 Fuji Electric Corp Res & Dev Ltd シリコン板の重金属ゲッタリング方法
JPH07142416A (ja) * 1993-06-21 1995-06-02 Applied Materials Inc 改良された界面を有する層のプラズマ化学蒸着法
US20090181553A1 (en) * 2008-01-11 2009-07-16 Blake Koelmel Apparatus and method of aligning and positioning a cold substrate on a hot surface
KR20100033091A (ko) * 2008-09-19 2010-03-29 한국전자통신연구원 화학기상증착법에 의한 비정질 실리콘 박막의 증착방법

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152864A (zh) * 2014-08-22 2014-11-19 中国科学院宁波材料技术与工程研究所 硅薄膜的制备方法
CN110088355A (zh) * 2017-04-26 2019-08-02 封闭型股份公司研究-工程中心“因科姆系统” 基底疏水化的方法
CN107464743A (zh) * 2017-07-17 2017-12-12 上海华虹宏力半导体制造有限公司 非晶硅薄膜成膜方法
CN109148263A (zh) * 2018-07-26 2019-01-04 上海华虹宏力半导体制造有限公司 沉积非晶硅的成膜方法
CN110970287A (zh) * 2018-09-28 2020-04-07 长鑫存储技术有限公司 制备非晶硅薄膜的方法
US11239264B2 (en) 2018-12-06 2022-02-01 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Thin film transistor, display substrate, method for preparing the same, and display device
CN111826632A (zh) * 2019-04-22 2020-10-27 上海新微技术研发中心有限公司 一种非晶硅薄膜的沉积方法及沉积设备
CN111589769A (zh) * 2020-05-25 2020-08-28 常州时创能源股份有限公司 硅片pecvd镀非晶硅用石墨舟的清洗方法
CN112760615A (zh) * 2020-12-17 2021-05-07 武汉新芯集成电路制造有限公司 一种二氧化硅薄膜及其低温制备方法
CN112760615B (zh) * 2020-12-17 2023-04-28 武汉新芯集成电路制造有限公司 一种二氧化硅薄膜及其低温制备方法

Also Published As

Publication number Publication date
JP2014086730A (ja) 2014-05-12
EP2722871A1 (en) 2014-04-23
US20140113439A1 (en) 2014-04-24
KR20140049952A (ko) 2014-04-28
TW201423841A (zh) 2014-06-16
GB201218697D0 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
CN103938179A (zh) 沉积非晶硅膜的方法
US10432169B2 (en) Bonded body and elastic wave element
KR101164945B1 (ko) 플렉시블 소자의 제작 방법
CN109922952A (zh) 用于片材结合的硅氧烷等离子体聚合物
CN107427859A (zh) 用于降低胶带卷的卷绕平面粘性的方法
KR20100024995A (ko) 접합체 및 접합 방법
JP2009028923A (ja) 接合方法、接合体および配線基板
WO2005079198A3 (en) Wafer bonded virtual substrate and method for forming the same
WO2007105412A1 (ja) 成膜装置のシーズニング方法
Iliescu et al. Residual stress in thin films PECVD depositions
TW200728227A (en) Method of coating a substrate for adhesive bonding
JP2009028922A (ja) 接合方法、接合体、液滴吐出ヘッドおよび液滴吐出装置
CN101863447A (zh) 采用光刻和干法刻蚀制作倾斜侧壁二氧化硅结构的方法
JP2011201976A (ja) 接合方法
CN103871867A (zh) 一种低应力氮化硅薄膜的形成方法
EP4286556A1 (en) Pecvd coating system and coating method
CN105386002B (zh) 一种非晶碳薄膜材料的低温制备方法
CN102205942A (zh) Mems牺牲层结构制造方法
JP2009073943A (ja) 接合方法および接合体
JP2011235559A (ja) 接合膜転写シートおよび接合方法
CN109148263A (zh) 沉积非晶硅的成膜方法
CN106435503B (zh) 一种大的正温度系数的氧化硅薄膜及其沉积方法
JP2011129591A (ja) 接合方法および封止型デバイスの製造方法
WO2009058245A3 (en) Improved substrate compositions and methods for forming semiconductor on insulator devices
JP2011129590A (ja) 接合方法および封止型デバイスの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140723