CN103937760A - 双羰基还原酶、其编码基因及应用 - Google Patents

双羰基还原酶、其编码基因及应用 Download PDF

Info

Publication number
CN103937760A
CN103937760A CN201410188169.4A CN201410188169A CN103937760A CN 103937760 A CN103937760 A CN 103937760A CN 201410188169 A CN201410188169 A CN 201410188169A CN 103937760 A CN103937760 A CN 103937760A
Authority
CN
China
Prior art keywords
pet
seq
alkyl
carbonyl reduction
reduction enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410188169.4A
Other languages
English (en)
Inventor
洪浩
詹姆斯·盖吉
陈朝勇
周炎
高峰
吕彤
郭丽娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asymchem Laboratories Fuxin Co Ltd
Asymchem Laboratories Tianjin Co Ltd
Asymchem Laboratories Jilin Co Ltd
Asymchem Life Science Tianjin Co Ltd
Tianjin Asymchem Pharmaceutical Co Ltd
Original Assignee
Asymchem Laboratories Fuxin Co Ltd
Asymchem Laboratories Tianjin Co Ltd
Asymchem Laboratories Jilin Co Ltd
Asymchem Life Science Tianjin Co Ltd
Tianjin Asymchem Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asymchem Laboratories Fuxin Co Ltd, Asymchem Laboratories Tianjin Co Ltd, Asymchem Laboratories Jilin Co Ltd, Asymchem Life Science Tianjin Co Ltd, Tianjin Asymchem Pharmaceutical Co Ltd filed Critical Asymchem Laboratories Fuxin Co Ltd
Priority to CN201410188169.4A priority Critical patent/CN103937760A/zh
Publication of CN103937760A publication Critical patent/CN103937760A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种双羰基还原酶、其编码基因及应用。该双羰基还原酶具有下列之一的氨基酸序列:1)SEQ NO.1的氨基酸序列;2)将SEQ NO.1的氨基酸序列经过一个或几个氨基酸的取代、和/或缺失、和/或添加,且具有将立体选择性地还原为功能的由SEQ NO.1衍生的氨基酸序列,且SEQ NO.1衍生的氨基酸序列与SEQ NO.1具有80%以上的同源性,其中,R1选自芳香基、烷基、环烷基、烷基取代的芳香基、卤素取代的芳香基、芳烷杂环基、环状杂烷基或环状杂烷化烷基,R2选自烷基、环烷基、卤烷基或卤环烷基。采用本发明的双羰基还原酶可以一步还原二酮底物,制备得到单一光学纯度的3R,5S-二羟基化合物。

Description

双羰基还原酶、其编码基因及应用
技术领域
本发明涉及生物催化合成技术领域,具体而言,涉及一种双羰基还原酶、其编码基因及应用。
背景技术
手性醇是一类重要的中间体化合物,广泛应用于手性药物和其他手性精细化学品的合成。3R,5S-二羟基-6-苄氧基-己酸叔丁酯是3-羟基-3-甲基戊二酰辅酶A还原酶的抑制剂他汀类降血脂药物的关键手性中间体,可以通过化学合成和生物催化合成的方法制得。然而,通过化学合成3R,5S-双羟基产物存在下列问题:一般需用手性金属催化剂,生产成本高;产物的光学纯度较难达到要求;大量使用有机溶剂,造成环境污染严重。
采用生物催化合成这类化合物是一种有效的方法,即将含有羰基的底物通过特定的酶催化还原为相应的手性醇。Wolberg等利用细菌Lactobacllus brevis将一种β,δ-双羰基底物中的δ-羰基还原成δ-羟基,ee为98.1%;去氧核糖-5-磷酸醛缩酶(DERA)能够以乙醛和氯乙醛为底物,通过两步醛缩反应同时引入两个手性中心得到3R,5S-双羟基产物,ee>99.9%,de=96.6%,但去氧核糖-5-磷酸醛缩酶催化反应生产成本较高。Guo等利用Acinetobacter species SC13874还原制备得到3R,5S-二羟基-6-苄氧基-己酸酯,但de=63.3%。也有报道腈基水解酶通过对3-羟基戊二腈去对称化得到单羟基中间体R-4氰基-3-羟基丁酸,再经过多步反应得到3R,5S-二羟基-6-苄氧基-己酸酯。可见,通过生物催化方法合成3R,5S-双羟基产物的现有技术也仍存在一些技术问题:腈水解酶反应路线较长难度较大,成本较高;Wolberg等利用细菌Lactobacllus brevis合成方法中需用其他方法引入另一个手性中心;利用去氧核糖-5-磷酸醛缩酶(DERA)合成方法中需要用酶量较大,底物抑制作用很强并且初始反应原料为易燃易爆试剂,工业化生产难度较高。
发明内容
本发明旨在提供一种双羰基还原酶、其编码基因及应用,以简化3R,5S-二羟基化合物的合成步骤,降低生产污染和生产成本。
为了实现上述目的,根据本发明的一个方面,提供了一种双羰基还原酶。该双羰基还原酶具有下列之一的氨基酸序列:1)SEQ NO.1的氨基酸序列:MTATITKVTVLGTGVLGSQIAFQTAYSGFDVVAYDIDDAALDKAKTRFDGLVQTYREEVAGAADGKAEDARSRIRLTADLADAVREADLVIEAIPEVLKIKIDTYTQLGKLAPPSTIFATNSSTLLPSDMKDATGRPDRFLALHFANRVWTFNTAEVMGTADTDPEVFRTVVRFAEDIGMVPIELHKEKAGYVLNSLLVPFLNAAGELVADGYAEPETVDKTWKIATGAPMGPFQIFDIIGLTTPYNISVHGDAAAQRFAAFLKENYIDKGKLGIATGEGFYKYPGK;2)将SEQ NO.1的氨基酸序列经过一个或几个氨基酸的取代、和/或缺失、和/或添加且具有将立体选择性地还原为功能的由SEQ NO.1衍生的氨基酸序列,且SEQ NO.1衍生的氨基酸序列与SEQ NO.1具有80%以上的同源性,,其中,R1选自芳香基、烷基、环烷基、烷基取代的芳香基、卤素取代的芳香基、芳烷杂环基、环状杂烷基或环状杂烷化烷基,R2选自烷基、环烷基、卤烷基或卤环烷基。
根据本发明的另一个方面,提供一种上述双羰基还原酶的编码基因。
进一步地,上述编码基因,具有下述之一的脱氧核苷酸序列:1)SEQ NO.2的脱氧核苷酸序列:ATGACCGCGACCATCACCAAGGTCACCGTGCTCGGCACGGGCGTGCTCGGTTCGCAGATCGCTTTCCAGACCGCCTACAGCGGCTTCGATGTGGTCGCCTACGACATCGACGATGCGGCGCTGGACAAGGCGAAGACTCGGTTCGACGGCTTGGTGCAGACCTATCGGGAAGAAGTGGCCGGTGCCGCCGACGGTAAGGCCGAGGACGCGCGGTCGCGGATCCGGCTTACCGCCGACCTCGCCGACGCCGTCCGCGAGGCCGACCTGGTGATCGAGGCGATCCCCGAGGTACTGAAGATCAAGATCGACACCTACACCCAGCTGGGCAAGCTGGCCCCGCCGTCGACGATCTTCGCCACCAACTCCTCCACCCTGCTGCCCAGCGATATGAAGGACGCGACCGGCCGCCCCGACCGGTTCCTGGCCCTGCACTTCGCCAATCGCGTGTGGACGTTCAATACCGCCGAGGTGATGGGCACCGCCGACACCGATCCCGAGGTCTTCCGCACGGTCGTGCGGTTCGCCGAGGACATCGGCATGGTGCCGATCGAACTGCACAAGGAGAAGGCGGGCTACGTCCTGAACTCGCTGCTGGTGCCGTTCCTCAACGCGGCGGGCGAACTGGTCGCCGACGGCTACGCCGAACCCGAGACCGTCGACAAGACCTGGAAGATCGCCACCGGAGCACCCATGGGGCCGTTCCAGATCTTCGACATCATCGGGCTCACCACCCCGTACAACATCTCCGTGCACGGTGACGCGGCCGCCCAGCGTTTCGCCGCGTTCCTGAAGGAGAACTACATCGACAAGGGCAAACTCGGCATCGCCACCGGCGAAGGGTTCTATAAGTACCCGGGCAAGTGA;2)与SEQ NO.2的脱氧核苷酸序列具有80%同源性且编码的蛋白质具有将立体选择性还原为功能的脱氧核苷酸序列。
根据本发明的再一个方面,提供一种含有上述双羰基还原酶的编码基因的重组表达载体。
根据本发明的又一个方面,提供一种含有上述双羰基还原酶的编码基因的转基因细胞系。
根据本发明的再一个方面,提供一种含有上述双羰基还原酶的编码基因的转基因重组菌。
根据本发明的又一个方面,提供一种上述双羰基还原酶在将立体选择性还原为中的应用。
进一步地,双羰基还原酶在制备3R,5S-二羟基-6-苄氧基-己酸叔丁酯中的应用。
进一步地,
采用本发明的双羰基还原酶(Diketoreductase,DKR)为生物催化剂,可以一步还原二酮底物,制备得到单一光学纯度的3R,5S-二羟基化合物,将其应用到合成他汀类药物中间体,得到ee值为96%,de值为85%左右的3R,5S-二羟基化合物,简化了合成步骤,降低了生产污染和生产成本,适合于大规模工业化生产。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
本发明的羰基还原酶基因来源于Nocardia cyriacigeorgica GUH-2该羰基还原酶具有双羰基还原酶的功能。
根据本发明一种典型的实施方式,提供一种双羰基还原酶。该双羰基还原酶具有下列之一的氨基酸序列:1)SEQ NO.1的氨基酸序列(SEQ NO.1为:MTATITKVTVLGTGVLGSQIAFQTAYSGFDVVAYDIDDAALDKAKTRFDGLVQTYREEVAGAADGKAEDARSRIRLTADLADAVREADLVIEAIPEVLKIKIDTYTQLGKLAPPSTIFATNSSTLLPSDMKDATGRPDRFLALHFANRVWTFNTAEVMGTADTDPEVFRTVVRFAEDIGMVPIELHKEKAGYVLNSLLVPFLNAAGELVADGYAEPETVDKTWKIATGAPMGPFQIFDIIGLTTPYNISVHGDAAAQRFAAFLKENYIDKGKLGIATGEGFYKYPGK);2)将SEQ NO.1的氨基酸序列经过一个或几个氨基酸的取代、和/或缺失、和/或添加且具有将立体选择性还原为功能的由SEQ NO.1衍生的氨基酸序列,其中,R1选自芳香基,R2选自烷基。采用本发明的双羰基还原酶(Diketoreductase,DKR)为生物催化剂,可以一步还原二酮底物,制备得到单一光学纯度的3R,5S-二羟基化合物,将其应用到合成他汀类药物中间体,简化了合成步骤,降低了生产污染和生产成本,适合于大规模工业化生产。
根据本发明一种典型的实施方式,提供一种上述双羰基还原酶的编码基因,该编码基因具有下述之一的脱氧核苷酸序列:1)SEQ NO.2的脱氧核苷酸序列(SEQ NO.2为:ATGACCGCGACCATCACCAAGGTCACCGTGCTCGGCACGGGCGTGCTCGGTTCGCAGATCGCTTTCCAGACCGCCTACAGCGGCTTCGATGTGGTCGCCTACGACATCGACGATGCGGCGCTGGACAAGGCGAAGACTCGGTTCGACGGCTTGGTGCAGACCTATCGGGAAGAAGTGGCCGGTGCCGCCGACGGTAAGGCCGAGGACGCGCGGTCGCGGATCCGGCTTACCGCCGACCTCGCCGACGCCGTCCGCGAGGCCGACCTGGTGATCGAGGCGATCCCCGAGGTACTGAAGATCAAGATCGACACCTACACCCAGCTGGGCAAGCTGGCCCCGCCGTCGACGATCTTCGCCACCAACTCCTCCACCCTGCTGCCCAGCGATATGAAGGACGCGACCGGCCGCCCCGACCGGTTCCTGGCCCTGCACTTCGCCAATCGCGTGTGGACGTTCAATACCGCCGAGGTGATGGGCACCGCCGACACCGATCCCGAGGTCTTCCGCACGGTCGTGCGGTTCGCCGAGGACATCGGCATGGTGCCGATCGAACTGCACAAGGAGAAGGCGGGCTACGTCCTGAACTCGCTGCTGGTGCCGTTCCTCAACGCGGCGGGCGAACTGGTCGCCGACGGCTACGCCGAACCCGAGACCGTCGACAAGACCTGGAAGATCGCCACCGGAGCACCCATGGGGCCGTTCCAGATCTTCGACATCATCGGGCTCACCACCCCGTACAACATCTCCGTGCACGGTGACGCGGCCGCCCAGCGTTTCGCCGCGTTCCTGAAGGAGAACTACATCGACAAGGGCAAACTCGGCATCGCCACCGGCGAAGGGTTCTATAAGTACCCGGGCAAGTGA);2)与SEQ NO.2的脱氧核苷酸序列具有80%同源性且编码的蛋白质具有将立体选择性还原为功能的脱氧核苷酸序列。
根据本发明一种典型的实施方式,提供一种含有上述双羰基还原酶的编码基因的重组表达载体。该载体可以是pET-22b(+)、pET-22b(+)、pET-3a(+)、pET-3d(+)、pET-11a(+)、pET-12a(+)、pET-14b(+)、pET-15b(+)、pET-16b(+)、pET-17b(+)、pET-19b(+)、pET-20b(+)、pET-21a(+)、pET-23a(+)、pET-23b(+)、pET-24a(+)、pET-25b(+)、pET-26b(+)、pET-27b(+)、pET-28a(+)、pET-29a(+)、pET-30a(+)、pET-31b(+)、pET-32a(+)、pET-35b(+)、pET-38b(+)、pET-39b(+)、pET-40b(+)、pET-41a(+)、pET-41b(+)、pET-42a(+)、pET-43a(+)、pET-43b(+)、pET-44a(+)、pET-49b(+)、pQE2、pQE9、pQE30、pQE31、pQE32、pQE40、pQE70、pQE80、pRSET-A、pRSET-B、pRSET-C、pGEX-5X-1、pGEX-6p-1、pGEX-6p-2、pBV220、pBV221、pBV222、pTrc99A、pTwin1、pEZZ18、pKK232-18、pUC-18或pUC-19。表达载体在大肠杆菌中过量表达,经过量表达的双羰基还原酶在SDS-PAGE上呈现的分子量约为30KD,在30℃,pH6.0条件下,可以一步还原得到光学纯度较高的3R,5S-双羟基化合物。
当然,包括上述编码基因的转基因细胞系、转基因重组菌也在本发明的保护范围之内。根据本发明一种典型的实施方式,提供一种上述双羰基还原酶在将立体选择性还原为中的应用。该酶可以一步还原二酮底物,制备得到单一光学纯度的3R,5S-二羟基化合物,可以应用到合成他汀类药物中间体。优选的,双羰基还原酶在制备3R,5S-二羟基-6-苄氧基-己酸叔丁酯中应用,其中,可以为
下面将结合实施例进一步说明本发明的有益效果。
实施例1
(1)来源于Nocardia cyriacigeorgica GUH-2的双羰基还原酶的克隆与表达
为了便于双羰基还原酶基因(DKR)的表达以及鉴定,在寡聚核苷酸引物的5’和3’末端设计了兼容的限制性酶切位点。其引物对如下:上游引物SEQ ID NO.3:5’-GGAATTCCATATGACTGCAACCATTACGAAAGTAACTG-3’;下游引物SEQ ID NO.4:5’-CCGCTCGAGCTTACCCGGGTACTTGTAGAAGCCC-3’。扩增得基因序列(SEQ ID NO.2:ATGACCGCGACCATCACCAAGGTCACCGTGCTCGGCACGGGCGTGCTCGGTTCGCAGATCGCTTTCCAGACCGCCTACAGCGGCTTCGATGTGGTCGCCTACGACATCGACGATGCGGCGCTGGACAAGGCGAAGACTCGGTTCGACGGCTTGGTGCAGACCTATCGGGAAGAAGTGGCCGGTGCCGCCGACGGTAAGGCCGAGGACGCGCGGTCGCGGATCCGGCTTACCGCCGACCTCGCCGACGCCGTCCGCGAGGCCGACCTGGTGATCGAGGCGATCCCCGAGGTACTGAAGATCAAGATCGACACCTACACCCAGCTGGGCAAGCTGGCCCCGCCGTCGACGATCTTCGCCACCAACTCCTCCACCCTGCTGCCCAGCGATATGAAGGACGCGACCGGCCGCCCCGACCGGTTCCTGGCCCTGCACTTCGCCAATCGCGTGTGGACGTTCAATACCGCCGAGGTGATGGGCACCGCCGACACCGATCCCGAGGTCTTCCGCACGGTCGTGCGGTTCGCCGAGGACATCGGCATGGTGCCGATCGAACTGCACAAGGAGAAGGCGGGCTACGTCCTGAACTCGCTGCTGGTGCCGTTCCTCAACGCGGCGGGCGAACTGGTCGCCGACGGCTACGCCGAACCCGAGACCGTCGACAAGACCTGGAAGATCGCCACCGGAGCACCCATGGGGCCGTTCCAGATCTTCGACATCATCGGGCTCACCACCCCGTACAACATCTCCGTGCACGGTGACGCGGCCGCCCAGCGTTTCGCCGCGTTCCTGAAGGAGAACTACATCGACAAGGGCAAACTCGGCATCGCCACCGGCGAAGGGTTCTATAAGTACCCGGGCAAGTGA)。
其氨基酸序列为(SEQ ID NO.1:MTATITKVTVLGTGVLGSQIAFQTAYSGFDVVAYDIDDAALDKAKTRFDGLVQTYREEVAGAADGKAEDARSRIRLTADLADAVREADLVIEAIPEVLKIKIDTYTQLGKLAPPSTIFATNSSTLLPSDMKDATGRPDRFLALHFANRVWTFNTAEVMGTADTDPEVFRTVVRFAEDIGMVPIELHKEKAGYVLNSLLVPFLNAAGELVADGYAEPETVDKTWKIATGAPMGPFQIFDIIGLTTPYNISVHGDAAAQRFAAFLKENYIDKGKLGIATGEGFYKYPGK)。
双羰基还原酶基因全合成后,连接到pUC57载体上,用NdeⅠ和XhoⅠ分别将目的基因和pET22b(+)(pET-22b(+)也可以为pET-3a(+),pET-3d(+),pET-11a(+),pET-12a(+),pET-14b(+),pET-15b(+),pET-16b(+),pET-17b(+),pET-19b(+),pET-20b(+),pET-21a(+),pET-23a(+),pET-23b(+),pET-24a(+),pET-25b(+),pET-26b(+),pET-27b(+),pET-28a(+),pET-29a(+),pET-30a(+),pET-31b(+),pET-32a(+),pET-35b(+),pET-38b(+),pET-39b(+),pET-40b(+),pET-41a(+),pET-41b(+),pET-42a(+),pET-43a(+),pET-43b(+),pET-44a(+),pET-49b(+),pQE2,pQE9,pQE30,pQE31,pQE32,pQE40,pQE70,pQE80,pRSET-A,pRSET-B,pRSET-C,pGEX-5X-1,pGEX-6p-1,pGEX-6p-2,pBV220,pBV221,pBV222,pTrc99A,pTwin1,pEZZ18,pKK232-18,pUC-18,pUC-19)质粒同时进行酶切,T4DNA连接酶进行连接反应,将连接产物转化到大肠杆菌感受态DH5α菌株中,涂布于含有50μg/ml含氨苄青霉素的固体LB培养基(Luria-Bertani培养基)中,37℃培养过夜。挑取上述培养基上的单菌落接种于含有50μg/ml含氨苄青霉素的LB液体培养基中,37℃振荡培养过夜,经过质粒提取,PCR鉴定和双酶切鉴定后,将正确的克隆载体pET-22b(+)-DKR转化到大肠杆菌BL21(DE3)中,涂布于含有50μg/ml含氨苄青霉素的LB培养基中,37℃培养过夜。挑取上述培养基中上的单菌落接种于5ml含50μg/ml含氨苄青霉素的LB液体培养基中,经过菌落PCR(聚合酶链式反应)鉴定正确的表达载体进行诱导表达,将上述菌液转接于5ml含50μg/ml含氨苄青霉素的LB液体培养基中,37℃振荡培养至OD600=0.6时,加入IPTG(异丙基硫代半乳糖苷)至终浓度分别为0.02mM,0.05mM,0.1mM,0.2mM,0.4mM,0.6mM,0.8mM和1.0mM,在18℃下进行诱导表达,并设立不加IPTG诱导剂的阴性对照。诱导16h后,取出菌液,8000rpm/min离心10min收集菌体。菌体用超声破碎仪破碎细胞,4℃,12000rpm/min离心20min获得上清液和沉淀,上清液用垂直电泳仪进行SDS-PAGE检测。结果发现在终浓度为0.02mM IPTG浓度时诱导表达双羰基还原酶的量最多。为提高双羰基还原酶的表达量,将含有重组质粒的大肠杆菌BL21(DE3)在IPTG终浓度为0.02mM,分别于37℃诱导8h,30℃诱导8h以及25℃诱导16h条件下表达,并同时设立不加IPTG诱导剂的阴性对照。诱导表达结束后,分别将三个温度的诱导菌体于8000rpm/min离心10min收集菌体。菌体用超声破碎仪破碎细胞,4℃,12000rpm/min离心20min获得上清液和沉淀,上清液用垂直电泳仪进行SDS-PAGE检测。结果发现在37℃诱导8h时表达双羰基还原酶的量最多。
(2)来源于Nocardia cyriacigeorgica GUH-2的双羰基还原酶的活性鉴定
选用已经在市场上商业化的原料或者容易制备的酮类化合物为初始原料,其中R1选自芳香基、烷基、环烷基、烷基取代的芳香基、卤素取代的芳香基、芳烷杂环基、环状杂烷基或环状杂烷化烷基;R2选自烷基、环烷基、卤烷基或卤环烷基。所述的双羟基产物由以下化学通式表达:其中R1选自芳香基、烷基、环烷基、烷基取代的芳香基、卤素取代的芳香基、芳烷杂环基、环状杂烷基或环状杂烷化烷基;R2选自烷基、环烷基、卤烷基或卤环烷基。
向500ml反应瓶中,加入10g主原料40ml聚乙二醇PEG-400(聚乙二醇400),原料溶解后,加入360ml磷酸盐缓冲液(100mM,pH=6.0),底物均匀分散于缓冲液中;加酮还原酶:加入0.3g NAD+(烟酰胺腺嘌呤二核苷酸),41.2g甲酸铵,0.5g辅酶甲酸脱氢酶和1g双羰基还原酶,体系pH=6.0,并于30±3℃保温17h;用400ml乙酸乙酯停止反应,用250g硅藻土过滤,400ml乙酸乙酯萃取两次,静置分液,有机相经干燥,过滤,浓缩得到粗品,再经柱层析纯化得到7g纯度较高的产品纯度98.0%,收率70%,ee值94.8%,de值84.5%
所得产品的核磁数据如下:400Hz,CDCl3:δ7.29(m,5H),4.54(s,2H),4.22(m,1H),4.07(m,1H),3.45~3.40(m,4H),2.41(d,2H),1.65(t,2H),1.43(S,9H)。
所得产品质谱数据如下:MW=310±1。
向500ml反应瓶中,加入10g主原料40ml聚乙二醇PEG-400(聚乙二醇400),原料溶解后,加入360ml磷酸盐缓冲液(100mM,pH=6.0),底物均匀分散于缓冲液中;加酮还原酶:加入0.3g NAD+(烟酰胺腺嘌呤二核苷酸),41.2g甲酸铵,0.5g辅酶甲酸脱氢酶和1g双羰基还原酶,体系pH=6.0,并于30±3℃保温17h;用400ml乙酸乙酯停止反应,用250g硅藻土过滤,400ml乙酸乙酯萃取两次,静置分液,有机相经干燥,过滤,浓缩得到粗品,产品80%,收率90%,ee值94%,de值85%
所得产品质谱数据如下:MW=282±1。
向500ml反应瓶中,加入10g主原料40ml聚乙二醇PEG-400(聚乙二醇400),原料溶解后,加入360ml磷酸盐缓冲液(100mM,pH=6.0),底物均匀分散于缓冲液中;加酮还原酶:加入0.3g NAD+(烟酰胺腺嘌呤二核苷酸),41.2g甲酸铵,0.5g辅酶甲酸脱氢酶和1g双羰基还原酶,体系pH=6.0,并于30±3℃保温17h;用400ml乙酸乙酯停止反应,用250g硅藻土过滤,400ml乙酸乙酯萃取两次,静置分液,有机相经干燥,过滤,浓缩得到粗品,产品75%,收率90%,ee值93.2%,de值85%
所得产品质谱数据如下:MW=268±1。
向500ml反应瓶中,加入10g主原料40ml聚乙二醇PEG-400(聚乙二醇400),原料溶解后,加入360ml磷酸盐缓冲液(100mM,pH=6.0),底物均匀分散于缓冲液中;加酮还原酶:加入0.3g NAD+(烟酰胺腺嘌呤二核苷酸),41.2g甲酸铵,0.5g辅酶甲酸脱氢酶和3g双羰基还原酶,体系pH=6.0,并于30±3℃保温17h;用400ml乙酸乙酯停止反应,用250g硅藻土过滤,400ml乙酸乙酯萃取两次,静置分液,有机相经干燥,过滤,浓缩得到粗品,产品80%,收率90%,ee值95%,de值83%
所得产品质谱数据如下:MW=324±1。
实施例2
与实施例1中序列同源性大于90%的双羰基还原酶(SEQ ID NO.5:)。
为了便于双羰基还原酶基因的表达以及鉴定,在寡聚核苷酸引物的5’和3’末端设计了兼容的限制性酶切位点。其引物对如下:上游引物SEQ ID NO.6:5’-GGAATTCCATATGACTGCAACCATTACGAAAGTAACTG-3’;下游引物SEQ ID NO.7:5’-GGAATTCCATATGACTGCAACCATTACGAAAGTAACTG-3’。扩增得基因序列(SEQ IDNO.5:ATGACCGCGACCATCACCAAGGTCACCGTGCTCGGCACGGGCGTGCTCGGTTCGCAGATCGCTTTCCAGACCGCCTACAGCGGCTTCGATGTGGTCGCCTACGACATCGACGATGCGGCGCTGGACAAGGCGAAGACTCGGTTCGACGGCTTGGTGCAGACCTATCGGGAAGAAGTGGCCGGTGCCGCCGACGGTAAGGCCGAGGACGCGCGGTCGCGGATCCGGCTTACCGCCGACCTCGCCGACGCCGTCCGCGAGGCCGACCTGGTGATCGAGGCGATCGCTGAGGTACTGAAGATCAAGATCGACACCTACACCCAGCTGGGCAAGCTGGCCCCGCCGTCGACGATCTTCGCCACCAACTCCTCCACCCTGCTGCCCAGCGATATGAAGGACGCGACCGGCCGCCCCGACCGGTTCCTGGCCCTGCACTTCGCCAATCGCGTGTGGACGTTCAATACCGCCGAGGTGATGGGCACCGCCGACACCGATCCCGAGGTCTTCCGCACGGTCGTGCGGTTCGCCGAGGACATCGGCATGGTGCCGATCGAACTGCACAAGGAGAAGGCGGGCTACGTCCTGAACTCGCTGCTGGTGCCGTTCCTCAACGCGGCGGGCGAACTGGTCGCCGACGGCTACGCCGAACCCGAGACCGTCGACAAGACCTGGAAGATCGCCACCGGAGCACCCATGGGGCCGTTCCAGATCTTCGACATCATCGGGCTCACCACCCCGTACAACATCTCCGTGCACGGTGACGCGGCCGCCCAGCGTTTCGCCGCGTTCCTGAAGGAGAACTACATCGACAAGGGCAAACTCGGCATCGCCACCGGCGAAGGGTTCTATAAGTACCCGGGCAAGTGA)。
其氨基酸序列为(SEQ ID NO.8:MTATITKVTVLGTGVLGSQIAFQTAYSGFDVVAYDIDDAALDKAKTRFDGLVQTYREEVAGAADGKAEDARSRIRLTADLADAVREADLVIEAIAEVLKIKIDTYTQLGKLAPPSTIFATNSSTLLPSDMKDATGRPDRFLALHFANRVWTFNTAEVMGTADTDPEVFRTVVRFAEDIGMVPIELHKEKAGYVLNSLLVPFLNAAGELVADGYAEPETVDKTWKIATGAPMGPFQIFDIIGLTTPYNISVHGDAAAQRFAAFLKENYIDKGKLGIATGEGFYKYPGK)。
双羰基还原酶基因全合成后,连接到pUC57载体上,用NdeⅠ和XhoⅠ分别将目的基因和pET-22b(+)(pET-22b(+)也可以为pET-3a(+),pET-3d(+),pET-11a(+),pET-12a(+),pET-14b(+),pET-15b(+),pET-16b(+),pET-17b(+),pET-19b(+),pET-20b(+),pET-21a(+),pET-23a(+),pET-23b(+),pET-24a(+),pET-25b(+),pET-26b(+),pET-27b(+),pET-28a(+),pET-29a(+),pET-30a(+),pET-31b(+),pET-32a(+),pET-35b(+),pET-38b(+),pET-39b(+),pET-40b(+),pET-41a(+),pET-41b(+),pET-42a(+),pET-43a(+),pET-43b(+),pET-44a(+),pET-49b(+),pQE2,pQE9,pQE30,pQE31,pQE32,pQE40,pQE70,pQE80,pRSET-A,pRSET-B,pRSET-C,pGEX-5X-1,pGEX-6p-1,pGEX-6p-2,pBV220,pBV221,pBV222,pTrc99A,pTwin1,pEZZ18,pKK232-18,pUC-18,pUC-19)质粒同时进行酶切,T4DNA连接酶进行连接反应,将连接产物转化到大肠杆菌DH5α菌株的感受态中,涂布于含有50μg/ml含氨苄青霉素的固体LB培养皿中,37℃培养过夜。挑取上述培养基上的单菌落接种于含有50μg/ml含氨苄青霉素的LB液体培养基中,37℃振荡培养过夜,经过质粒提取,PCR鉴定和双酶切鉴定后,将正确的克隆载体pET22b(+)-DKR转化到大肠杆菌BL21(DE3)中,涂布于含有50μg/ml含氨苄青霉素的LB培养基中,37℃培养过夜。挑取上述培养基中上的单菌落接种于5ml含50μg/ml含氨苄青霉素的LB液体培养基中,经过菌落PCR鉴定正确的表达载体进行诱导表达,将上述菌液转接于5ml含50μg/ml含氨苄青霉素的LB液体培养基中,37℃振荡培养至OD600=0.6时,加入IPTG至终浓度分别为0.02mM,0.05mM,0.1mM,0.2mM,0.4mM,0.6mM,0.8mM和1.0mM,在18℃下进行诱导表达,并设立不加IPTG诱导剂的阴性对照。诱导16h后,取出菌液,8000rpm/min离心10min收集菌体。菌体用超声破碎仪破碎细胞,4℃,12000rpm/min离心20min获得上清液和沉淀,上清液用垂直电泳仪进行SDS-PAGE检测。结果发现在终浓度为0.02mM IPTG浓度时诱导表达双羰基还原酶的量最多。为提高双羰基还原酶的表达量,将含有重组质粒的大肠杆菌BL21(DE3)在IPTG终浓度为0.02mM,分别于37℃诱导8h,30℃诱导8h以及25℃诱导16h条件下表达,并同时设立不加IPTG诱导剂的阴性对照。诱导表达结束后,分别将三个温度的诱导菌体于8000rpm/min离心10min收集菌体。菌体用超声破碎仪破碎细胞,4℃,12000rpm/min离心20min获得上清液和沉淀,上清液用垂直电泳仪进行SDS-PAGE检测。结果发现在37℃诱导8h时表达双羰基还原酶的量最多。
选用已经在市场上商业化的原料或者容易制备的酮类化合物为初始原料,R1选自芳香基、烷基、环烷基、烷基取代的芳香基、卤素取代的芳香基、芳烷杂环基、环状杂烷基或环状杂烷化烷基;R2选自烷基、环烷基、卤烷基或卤环烷基。所述的双羟基产物由以下化学通式表达:其中R1选自芳香基、烷基、环烷基、烷基取代的芳香基、卤素取代的芳香基、芳烷杂环基、环状杂烷基或环状杂烷化烷基;R2选自烷基、环烷基、卤烷基或卤环烷基。
向10ml反应瓶中,加入0.01g主原料0.04ml聚乙二醇PEG-400,原料溶解后,加入0.86ml磷酸盐缓冲液(100mM,pH=6.0),底物均匀分散于缓冲液中;加入1mgNAD+,4.12mg甲酸铵,2mg辅酶甲酸脱氢酶和4mg双羰基还原酶,体系pH=6.0,并于30±3℃保温15-24h;用1ml乙酸乙酯停止反应,用0.25g硅藻土过滤,1ml乙酸乙酯萃取两次,静置分液,有机相经干燥,过滤,浓缩得到粗品,产品收率90%,ee值94.8%,de值84.5%。
所得产品的核磁数据如下:400Hz,CDCl3:δ7.29(m,5H),4.54(s,2H),4.22(m,1H),4.07(m,1H),3.45~3.40(m,4H),2.41(d,2H),1.65(t,2H),1.43(S,9H)。
所得产品质谱数据如下:MW=310±1。
实施例3
与实施例1中序列同源性大于90%的双羰基还原酶(SEQ ID NO.9)。
为了便于双羰基还原酶基因的表达以及鉴定,在寡聚核苷酸引物的5’和3’末端设计了兼容的限制性酶切位点。其引物对如下:上游引物SEQ ID NO.10:5’-GGAATTCCATATGACTGCAACCATTACGAAAGTAACTG-3’;下游引物SEQ ID NO.11:5’-CCGCTCGAGCTTACCCGGGTACTTGTAGA AGCCC-3’。扩增得基因序列(SEQ ID NO.9:ATGACCGCGACCATCACCAAGGTCACCGTGCTCGGCACGGGCGTGATTGGTTCGCAGATCGCTTTCCAGACCGCCTACAGCGGCTTCGATGTGGTCGCCTACGACATCGACGATGCGGCGCTGGACAAGGCGAAGACTCGGTTCGACGGCTTGGTGCAGACCTATCGGGAAGAAGTGGCCGGTGCCGCCGACGGTAAGGCCGAGGACGCGCGGTCGCGGATCCGGCTTACCGCCGACCTCGCCGACGCCGTCCGCGAGGCCGACCTGGTGATCGAGGCGATCCCCGAGGTACTGAAGATCAAGATCGACACCTACACCCAGCTGGGCAAGCTGGCCCCGCCGTCGACGATCTTCGCCACCAACTCCTCCACCCTGCTGCCCAGCGATATGAAGGACGCGACCGGCCGCCCCGACCGGTTCCTGGCCCTGCACTTCGCCAATCGCGTGTGGACGTTCAATACCGCCGAGGTGATGGGCACCGCCGACACCGATCCCGAGGTCTTCCGCACGGTCGTGCGGTTCGCCGAGGACATCGGCATGGTGCCGATCGAACTGCACAAGGAGAAGGCGGGCTACGTCCTGAACTCGCTGCTGGTGCCGTTCCTCAACGCGGCGGGCGAACTGGTCGCCGACGGCTACGCCGAACCCGAGACCGTCGACAAGACCTGGAAGATCGCCACCGGAGCACCCATGGGGCCGTTCCAGATCTTCGACATCATCGGGCTCACCACCCCGTACAACATCTCCGTGCACGGTGACGCGGCCGCCCAGCGTTTCGCCGCGTTCCTGAAGGAGAACTACATCGACAAGGGCAAACTCGGCATCGCCACCGGCGAAGGGTTCTATAAGTACCCGGGCAAGTGA)。
其氨基酸序列为(SEQ ID NO.12:MTATITKVTVLGTGVIGSQIAFQTAYSGFDVVAYDIDDAALDKAKTRFDGLVQTYREEVAGAADGKAEDARSRIRLTADLADAVREADLVIEAIPEVLKIKIDTYTQLGKLAPPSTIFATNSSTLLPSDMKDATGRPDRFLALHFANRVWTFNTAEVMGTADTDPEVFRTVVRFAEDIGMVPIELHKEKAGYVLNSLLVPFLNAAGELVADGYAEPETVDKTWKIATGAPMGPFQIFDIIGLTTPYNISVHGDAAAQRFAAFLKENYIDKGKLGIATGEGFYKYPGK)。
双羰基还原酶基因全合成后,连接到pUC57载体上,用NdeⅠ和XhoⅠ分别将目的基因和pET-22b(+)(pET-22b(+)也可以为pET-3a(+),pET-3d(+),pET-11a(+),pET-12a(+),pET-14b(+),pET-15b(+),pET-16b(+),pET-17b(+),pET-19b(+),pET-20b(+),pET-21a(+),pET-23a(+),pET-23b(+),pET-24a(+),pET-25b(+),pET-26b(+),pET-27b(+),pET-28a(+),pET-29a(+),pET-30a(+),pET-31b(+),pET-32a(+),pET-35b(+),pET-38b(+),pET-39b(+),pET-40b(+),pET-41a(+),pET-41b(+),pET-42a(+),pET-43a(+),pET-43b(+),pET-44a(+),pET-49b(+),pQE2,pQE9,pQE30,pQE31,pQE32,pQE40,pQE70,pQE80,pRSET-A,pRSET-B,pRSET-C,pGEX-5X-1,pGEX-6p-1,pGEX-6p-2,pBV220,pBV221,pBV222,pTrc99A,pTwin1,pEZZ18,pKK232-18,pUC-18,pUC-19)质粒同时进行酶切,T4DNA连接酶进行连接反应,将连接产物转化到大肠杆菌DH5α菌株的感受态中,涂布于含有50μg/ml含氨苄青霉素的固体LB培养基中,37℃培养过夜。挑取上述培养基上的单菌落接种于含有50μg/ml含氨苄青霉素的LB液体培养基中,37℃振荡培养过夜,经过质粒提取,PCR鉴定和双酶切鉴定后,将正确的克隆载体pET22b(+)-DKR转化到大肠杆菌BL21(DE3)中,涂布于含有50μg/ml含氨苄青霉素的LB培养基中,37℃培养过夜。挑取上述培养基中上的单菌落接种于5ml含50μg/ml含氨苄青霉素的LB液体培养基中,经过菌落PCR鉴定正确的表达载体进行诱导表达,将上述菌液转接于5ml含50μg/ml含氨苄青霉素的LB液体培养基中,37℃振荡培养至OD600=0.6时,加入IPTG至终浓度分别为0.02mM,0.05mM,0.1mM,0.2mM,0.4mM,0.6mM,0.8mM和1.0mM,在18℃下进行诱导表达,并设立不加IPTG诱导剂的阴性对照。诱导16h后,取出菌液,8000rpm/min离心10min收集菌体。菌体用超声破碎仪破碎细胞,4℃,12000rpm/min离心20min获得上清液和沉淀,上清液用垂直电泳仪进行SDS-PAGE检测。结果发现在终浓度为0.02mM IPTG浓度时诱导表达双羰基还原酶的量最多。为提高双羰基还原酶的表达量,将含有重组质粒的大肠杆菌BL21(DE3)在IPTG终浓度为0.02mM,分别于37℃诱导8h,30℃诱导8h以及25℃诱导16h条件下表达,并同时设立不加IPTG诱导剂的阴性对照。诱导表达结束后,分别将三个温度的诱导菌体于8000rpm/min离心10min收集菌体。菌体用超声破碎仪破碎细胞,4℃,12000rpm/min离心20min获得上清液和沉淀,上清液用垂直电泳仪进行SDS-PAGE检测。结果发现在37℃诱导8h时表达双羰基还原酶的量最多。
选用已经在市场上商业化的原料或者容易制备的酮类化合物为初始原料,其中R1选自芳香基、烷基、环烷基、烷基取代的芳香基、卤素取代的芳香基、芳烷杂环基、环状杂烷基或环状杂烷化烷基;R2选自烷基、环烷基、卤烷基或卤环烷基。所述的双羟基产物由以下化学通式表达:其中R1选自芳香基、烷基、环烷基、烷基取代的芳香基、卤素取代的芳香基、芳烷杂环基、环状杂烷基或环状杂烷化烷基;R2选自烷基、环烷基、卤烷基或卤环烷基。
向10ml反应瓶中,加入0.01g主原料0.04ml聚乙二醇PEG-400,原料溶解后,加入0.86ml磷酸盐缓冲液(100mM,pH=6.0),底物均匀分散于缓冲液中;加入1mgNAD+,4.12mg甲酸铵,2mg辅酶甲酸脱氢酶和4mg双羰基还原酶,体系pH=6.0,并于30±3℃保温15-24h;用1ml乙酸乙酯停止反应,用0.25g硅藻土过滤,1ml乙酸乙酯萃取两次,静置分液,有机相经干燥,过滤,浓缩得到粗品,产品收率90%,ee值94.8%,de值84.5%。
所得产品的核磁数据如下:400Hz,CDCl3:δ7.29(m,5H),4.54(s,2H),4.22(m,1H),4.07(m,1H),3.45~3.40(m,4H),2.41(d,2H),1.65(t,2H),1.43(S,9H)。
所得产品质谱数据如下:MW=310±1。
实施例4:
与实施例1中序列同源性大于90%的双羰基还原酶(SEQ ID NO.13)。
为了便于双羰基还原酶基因的表达以及鉴定,在寡聚核苷酸引物的5’和3’末端设计了兼容的限制性酶切位点。其引物对如下:上游引物SEQ ID NO.14:5’-GGAATTCCATATGACTGCAACCATTACGAAAGTAACTG-3’;下游引物SEQ ID NO.15:5’-CCGCTCGAGCTTACCCGGGTACTTGTAGA AGCCC-3’。扩增得基因序列(SEQ ID NO.13:ATGACCGCGACCATCACCAAGGTCACCGTGCTCGGCACGGGCGCTCTCGGTTCGCAGATCGCTTTCCAGACCGCCTACAGCGGCTTCGATGTGGTCGCCTACGACATCGACGATGCGGCGCTGGACAAGGCGAAGACTCGGTTCGACGGCTTGGTGCAGACCTATCGGGAAGAAGTGGCCGGTGCCGCCGACGGTAAGGCCGAGGACGCGCGGTCGCGGATCCGGCTTACCGCCGACCTCGCCGACGCCGTCCGCGAGGCCGACCTGGTGATCGAGGCGATCCCCGAGGTACTGAAGATCAAGATCGACACCTACACCCAGCTGGGCAAGCTGGCCCCGCCGTCGACGATCTTCGCCACCAACTCCTCCACCCTGCTGCCCAGCGATATGAAGGACGCGACCGGCCGCCCCGACCGGTTCCTGGCCCTGCACTTCGCCAATCGCGTGTGGACGTTCAATACCGCCGAGGTGATGGGCACCGCCGACACCGATCCCGAGGTCTTCCGCACGGTCGTGCGGTTCGCCGAGGACATCGGCATGGTGCCGATCGAACTGCACAAGGAGAAGGCGGGCTACGTCCTGAACTCGCTGCTGGTGCCGTTCCTCAACGCGGCGGGCGAACTGGTCGCCGACGGCTACGCCGAACCCGAGACCGTCGACAAGACCTGGAAGATCGCCACCGGAGCACCCATGGGGCCGTTCCAGATCTTCGACATCATCGGGCTCACCACCCCGTACAACATCTCCGTGCACGGTGACGCGGCCGCCCAGCGTTTCGCCGCGTTCCTGAAGGAGAACTACATCGACAAGGGCAAACTCGGCATCGCCACCGGCGAAGGGTTCTATAAGTACCCGGGCAAGTGA)。
其氨基酸序列为(SEQ ID NO.16:MTATITKVTVLGTGALGSQIAFQTAYSGFDVVAYDIDDAALDKAKTRFDGLVQTYREEVAGAADGKAEDARSRIRLTADLADAVREADLVIEAIPEVLKIKIDTYTQLGKLAPPSTIFATNSSTLLPSDMKDATGRPDRFLALHFANRVWTFNTAEVMGTADTDPEVFRTVVRFAEDIGMVPIELHKEKAGYVLNSLLVPFLNAAGELVADGYAEPETVDKTWKIATGAPMGPFQIFDIIGLTTPYNISVHGDAAAQRFAAFLKENYIDKGKLGIATGEGFYKYPGK)。
双羰基还原酶基因全合成后,连接到pUC57载体上,用NdeⅠ和XhoⅠ分别将目的基因和pET-22b(+)(pET-22b(+)也可以为pET-3a(+),pET-3d(+),pET-11a(+),pET-12a(+),pET-14b(+),pET-15b(+),pET-16b(+),pET-17b(+),pET-19b(+),pET-20b(+),pET-21a(+),pET-23a(+),pET-23b(+),pET-24a(+),pET-25b(+),pET-26b(+),pET-27b(+),pET-28a(+),pET-29a(+),pET-30a(+),pET-31b(+),pET-32a(+),pET-35b(+),pET-38b(+),pET-39b(+),pET-40b(+),pET-41a(+),pET-41b(+),pET-42a(+),pET-43a(+),pET-43b(+),pET-44a(+),pET-49b(+),pQE2,pQE9,pQE30,pQE31,pQE32,pQE40,pQE70,pQE80,pRSET-A,pRSET-B,pRSET-C,pGEX-5X-1,pGEX-6p-1,pGEX-6p-2,pBV220,pBV221,pBV222,pTrc99A,pTwin1,pEZZ18,pKK232-18,pUC-18,pUC-19)质粒同时进行酶切,T4DNA连接酶进行连接反应,将连接产物转化到大肠杆菌DH5α菌株的感受态中,涂布于含有50μg/ml含氨苄青霉素的固体LB培养基中,37℃培养过夜。挑取上述培养基上的单菌落接种于含有50μg/ml含氨苄青霉素的LB液体培养基中,37℃振荡培养过夜,经过质粒提取,PCR鉴定和双酶切鉴定后,将正确的克隆载体pET22b(+)-DKR转化到大肠杆菌BL21(DE3)中,涂布于含有50μg/ml含氨苄青霉素的LB培养基中,37℃培养过夜。挑取上述培养基中上的单菌落接种于5ml含50μg/ml含氨苄青霉素的LB液体培养基中,经过菌落PCR鉴定正确的表达载体进行诱导表达,将上述菌液转接于5ml含50μg/ml含氨苄青霉素的LB液体培养基中,37℃振荡培养至OD600=0.6时,加入IPTG至终浓度分别为0.02mM,0.05mM,0.1mM,0.2mM,0.4mM,0.6mM,0.8mM和1.0mM,在18℃下进行诱导表达,并设立不加IPTG诱导剂的阴性对照。诱导16h后,取出菌液,8000rpm/min离心10min收集菌体。菌体用超声破碎仪破碎细胞,4℃,12000rpm/min离心20min获得上清液和沉淀,上清液用垂直电泳仪进行SDS-PAGE检测。结果发现在终浓度为0.02mM IPTG浓度时诱导表达双羰基还原酶的量最多。为提高双羰基还原酶的表达量,将含有重组质粒的大肠杆菌BL21(DE3)在IPTG终浓度为0.02mM,分别于37℃诱导8h,30℃诱导8h以及25℃诱导16h条件下表达,并同时设立不加IPTG诱导剂的阴性对照。诱导表达结束后,分别将三个温度的诱导菌体于8000rpm/min离心10min收集菌体。菌体用超声破碎仪破碎细胞,4℃,12000rpm/min离心20min获得上清液和沉淀,上清液用垂直电泳仪进行SDS-PAGE检测。结果发现在37℃诱导8h时表达双羰基还原酶的量最多。
选用已经在市场上商业化的原料或者容易制备的酮类化合物为初始原料,其中R1选自芳香基、烷基、环烷基、烷基取代的芳香基、卤素取代的芳香基、芳烷杂环基、环状杂烷基或环状杂烷化烷基;R2选自烷基、环烷基、卤烷基或卤环烷基。所述的双羟基产物由以下化学通式表达:其中R1选自芳香基、烷基、环烷基、烷基取代的芳香基、卤素取代的芳香基、芳烷杂环基、环状杂烷基或环状杂烷化烷基;R2选自烷基、环烷基、卤烷基或卤环烷基。
向10ml反应瓶中,加入0.01g主原料0.04ml聚乙二醇PEG-400,原料溶解后,加入0.86ml磷酸盐缓冲液(100mM,pH=6.0),底物均匀分散于缓冲液中;加入1mgNAD+,4.12mg甲酸铵,2mg辅酶甲酸脱氢酶和4mg双羰基还原酶,体系pH=6.0,并于30±3℃保温15-24h;用1ml乙酸乙酯停止反应,用0.25g硅藻土过滤,1ml乙酸乙酯萃取两次,静置分液,有机相经干燥,过滤,浓缩得到粗品,产品收率90%,ee值94.8%,de值84.5%。
所得产品的核磁数据如下:400Hz,CDCl3:δ7.29(m,5H),4.54(s,2H),4.22(m,1H),4.07(m,1H),3.45~3.40(m,4H),2.41(d,2H),1.65(t,2H),1.43(S,9H)。
所得产品质谱数据如下:MW=310±1。
实施例5:
与实施例1中序列同源性大于90%的双羰基还原酶(SEQ ID NO.17)。
为了便于双羰基还原酶基因的表达以及鉴定,在寡聚核苷酸引物的5’和3’末端设计了兼容的限制性酶切位点。其引物对如下:上游引物SEQ ID NO.18:5’-GGAATTCCATATGACTGCAACCATTACGAAAGTAACTG-3’;下游引物SEQ ID NO.19:5’-CCGCTCGAGCTTACCCGGGTACTTGTAGA AGCCC-3’。扩增得基因序列(SEQ ID NO.17:ATGACCGCGACCATCACCAAGGTCACCGTGCTCGGCACGGGCGTGCTCGGTTCGCAGATCGCTTTCCAGACCGCCTACAGCGGCTTCGATGTGGTCGCCTACGACATCGACGATGCGGCGCTGGACAAGGCGAAGACTCGGTTCGACGGCTTGGTGCAGACCTATCGGGAAGAAGTGGCCGGTGCCGCCGACGGTAAGGCCGAGGACGCGCGGTCGCGGATCCGGCTTACCGCCGACCTCGCCGACGCCGTCCGCGAGGCCGACCTGGTGATCGAGGCGATCCCCGAGGTACTGAAGATCAAGATCGACACCTACACCCAGCTGGGCAAGCTGGCCCCGCCGTCGACGATCTTCGCCACCAACTCCACCACCCTGCTGCCCAGCGATATGAAGGACGCGACCGGCCGCCCCGACCGGTTCCTGGCCCTGCACTTCGCCAATCGCGTGTGGACGTTCAATACCGCCGAGGTGATGGGCACCGCCGACACCGATCCCGAGGTCTTCCGCACGGTCGTGCGGTTCGCCGAGGACATCGGCATGGTGCCGATCGAACTGCACAAGGAGAAGGCGGGCTACGTCCTGAACTCGCTGCTGGTGCCGTTCCTCAACGCGGCGGGCGAACTGGTCGCCGACGGCTACGCCGAACCCGAGACCGTCGACAAGACCTGGAAGATCGCCACCGGAGCACCCATGGGGCCGTTCCAGATCTTCGACATCATCGGGCTCACCACCCCGTACAACATCTCCGTGCACGGTGACGCGGCCGCCCAGCGTTTCGCCGCGTTCCTGAAGGAGAACTACATCGACAAGGGCAAACTCGGCATCGCCACCGGCGAAGGGTTCTATAAGTACCCGGGCAAGTGA)。
其氨基酸序列为(SEQ ID NO.20:MTATITKVTVLGTGVLGSQIAFQTAYSGFDVVAYDIDDAALDKAKTRFDGLVQTYREEVAGAADGKAEDARSRIRLTADLADAVREADLVIEAIPEVLKIKIDTYTQLGKLAPPSTIFATNSTTLLPSDMKDATGRPDRFLALHFANRVWTFNTAEVMGTADTDPEVFRTVVRFAEDIGMVPIELHKEKAGYVLNSLLVPFLNAAGELVADGYAEPETVDKTWKIATGAPMGPFQIFDIIGLTTPYNISVHGDAAAQRFAAFLKENYIDKGKLGIATGEGFYKYPGK)。
双羰基还原酶基因全合成后,连接到pUC57载体上,用NdeⅠ和XhoⅠ分别将目的基因和pET-22b(+)(pET-22b(+)也可以为pET-3a(+),pET-3d(+),pET-11a(+),pET-12a(+),pET-14b(+),pET-15b(+),pET-16b(+),pET-17b(+),pET-19b(+),pET-20b(+),pET-21a(+),pET-23a(+),pET-23b(+),pET-24a(+),pET-25b(+),pET-26b(+),pET-27b(+),pET-28a(+),pET-29a(+),pET-30a(+),pET-31b(+),pET-32a(+),pET-35b(+),pET-38b(+),pET-39b(+),pET-40b(+),pET-41a(+),pET-41b(+),pET-42a(+),pET-43a(+),pET-43b(+),pET-44a(+),pET-49b(+),pQE2,pQE9,pQE30,pQE31,pQE32,pQE40,pQE70,pQE80,pRSET-A,pRSET-B,pRSET-C,pGEX-5X-1,pGEX-6p-1,pGEX-6p-2,pBV220,pBV221,pBV222,pTrc99A,pTwin1,pEZZ18,pKK232-18,pUC-18,pUC-19)质粒同时进行酶切,T4DNA连接酶进行连接反应,将连接产物转化到大肠杆菌DH5α菌株的感受态中,涂布于含有50μg/ml含氨苄青霉素的固体LB培养基中,37℃培养过夜。挑取上述培养基上的单菌落接种于含有50μg/ml含氨苄青霉素的LB液体培养基中,37℃振荡培养过夜,经过质粒提取,PCR鉴定和双酶切鉴定后,将正确的克隆载体pET22b(+)-DKR转化到大肠杆菌BL21(DE3)中,涂布于含有50μg/ml含氨苄青霉素的LB培养基中,37℃培养过夜。挑取上述培养基中上的单菌落接种于5ml含50μg/ml含氨苄青霉素的LB液体培养基中,经过菌落PCR鉴定正确的表达载体进行诱导表达,将上述菌液转接于5ml含50μg/ml含氨苄青霉素的LB液体培养基中,37℃振荡培养至OD600=0.6时,加入IPTG至终浓度分别为0.02mM,0.05mM,0.1mM,0.2mM,0.4mM,0.6mM,0.8mM和1.0mM,在18℃下进行诱导表达,并设立不加IPTG诱导剂的阴性对照。诱导16h后,取出菌液,8000rpm/min离心10min收集菌体。菌体用超声破碎仪破碎细胞,4℃,12000rpm/min离心20min获得上清液和沉淀,上清液用垂直电泳仪进行SDS-PAGE检测。结果发现在终浓度为0.02mM IPTG浓度时诱导表达双羰基还原酶的量最多。为提高双羰基还原酶的表达量,将含有重组质粒的大肠杆菌BL21(DE3)在IPTG终浓度为0.02mM,分别于37℃诱导8h,30℃诱导8h以及25℃诱导16h条件下表达,并同时设立不加IPTG诱导剂的阴性对照。诱导表达结束后,分别将三个温度的诱导菌体于8000rpm/min离心10min收集菌体。菌体用超声破碎仪破碎细胞,4℃,12000rpm/min离心20min获得上清液和沉淀,上清液用垂直电泳仪进行SDS-PAGE检测。结果发现在37℃诱导8h时表达双羰基还原酶的量最多。
选用已经在市场上商业化的原料或者容易制备的酮类化合物为初始原料,其中R1选自芳香基、烷基、环烷基、烷基取代的芳香基、卤素取代的芳香基、芳烷杂环基、环状杂烷基或环状杂烷化烷基;R2选自烷基、环烷基、卤烷基或卤环烷基。所述的双羟基产物由以下化学通式表达:其中R1选自芳香基、烷基、环烷基、烷基取代的芳香基、卤素取代的芳香基、芳烷杂环基、环状杂烷基或环状杂烷化烷基;R2选自烷基、环烷基、卤烷基或卤环烷基。
向10ml反应瓶中,加入0.01g主原料0.04ml聚乙二醇PEG-400,原料溶解后,加入0.86ml磷酸盐缓冲液(100mM,pH=6.0),底物均匀分散于缓冲液中;加入1mgNAD+,4.12mg甲酸铵,2mg辅酶甲酸脱氢酶和4mg双羰基还原酶,体系pH=6.0,并于30±3℃保温15-24h;用1ml乙酸乙酯停止反应,用0.25g硅藻土过滤,1ml乙酸乙酯萃取两次,静置分液,有机相经干燥,过滤,浓缩得到粗品,产品收率90%,ee值94.8%,de值84.5%。
所得产品的核磁数据如下:400Hz,CDCl3:δ7.29(m,5H),4.54(s,2H),4.22(m,1H),4.07(m,1H),3.45~3.40(m,4H),2.41(d,2H),1.65(t,2H),1.43(S,9H)。
所得产品质谱数据如下:MW=310±1。
实施例6:
与实施例1中序列同源性大于90%的双羰基还原酶(SEQ ID NO.21)。
为了便于双羰基还原酶基因的表达以及鉴定,在寡聚核苷酸引物的5’和3’末端设计了兼容的限制性酶切位点。其引物对如下:上游引物SEQ ID NO.22:5’-GGAATTCCATATGACTGCAACCATTACGAAAGTAACTG-3’;下游引物SEQ ID NO.23:5’-CCGCTCGAGCTTACCCGGGTACTTGTAGA AGCCC-3’。扩增得基因序列(SEQ ID NO.21:ATGACCGCGACCATCACCAAGGTCACCGTGCTCGGCACGGGCGTGCTCGGTTCGCAGATCGCTTTCCAGACCGCCTACAGCGGCTTCGATGTGGTCGCCTACGACATCGACGATGCGGCGCTGGACAAGGCGAAGACTCGGTTCGACGGCTTGGTGCAGACCTATCGGGAAGAAGTGGCCGGTGCCGCCGACGGTAAGGCCGAGGACGCGCGGTCGCGGATCCGGCTTACCGCCGACCTCGCCGACGCCGTCCGCGAGGCCGACCTGGTGATCGAGGCGATCCCCGAGGTACTGAAGATCAAGATCGACACCTACACCCAGCTGGGCAAGCTGGCCCCGCCGTCGACGATCTTCGCCACCAACTCCTCCACCCTGCTGCCCAGCGATATGAAGGACGCGACCGGCCGCCCCGACCGGTTCCTGGCCCTGCACTTCGCCAATCGCGTGTGGACGTTCAATACCGCCGAGGTGATGGGCACCGCCGACACCGATCCCGAGGTCTTCCGCACGGTCGTGCGGTTCGCCGAGGACATCGGCATGGTGCCGATCGAACTGCACAAGGAGAAGGCGGGCTACGTCCTGAACTCGCTGCTGGTGCCGTTCCTCAACGCGGCGGGCGAACTGGTCGCCGACGGCTACGCCGAACCCGAGACCGTCGACAAGACCTGGAAGATCGCCACCGGAGCACCCATGGGGCCGTTCCAGATCTTCGACATCATCGGGCTCACCACCCCGTACGATATCTCCGTGCACGGTGACGCGGCCGCCCAGCGTTTCGCCGCGTTCCTGAAGGAGAACTACATCGACAAGGGCAAACTCGGCATCGCCACCGGCGAAGGGTTCTATAAGTACCCGGGCAAGTGA)。
其氨基酸序列为(SEQ ID NO.24:MTATITKVTVLGTGVLGSQIAFQTAYSGFDVVAYDIDDAALDKAKTRFDGLVQTYREEVAGAADGKAEDARSRIRLTADLADAVREADLVIEAIPEVLKIKIDTYTQLGKLAPPSTIFATNSSTLLPSDMKDATGRPDRFLALHFANRVWTFNTAEVMGTADTDPEVFRTVVRFAEDIGMVPIELHKEKAGYVLNSLLVPFLNAAGELVADGYAEPETVDKTWKIATGAPMGPFQIFDIIGLTTPYDISVHGDAAAQRFAAFLKENYIDKGKLGIATGEGFYKYPGK)。
双羰基还原酶基因全合成后,连接到pUC57载体上,用NdeⅠ和XhoⅠ分别将目的基因和pET-22b(+)(pET-22b(+)也可以为pET-3a(+),pET-3d(+),pET-11a(+),pET-12a(+),pET-14b(+),pET-15b(+),pET-16b(+),pET-17b(+),pET-19b(+),pET-20b(+),pET-21a(+),pET-23a(+),pET-23b(+),pET-24a(+),pET-25b(+),pET-26b(+),pET-27b(+),pET-28a(+),pET-29a(+),pET-30a(+),pET-31b(+),pET-32a(+),pET-35b(+),pET-38b(+),pET-39b(+),pET-40b(+),pET-41a(+),pET-41b(+),pET-42a(+),pET-43a(+),pET-43b(+),pET-44a(+),pET-49b(+),pQE2,pQE9,pQE30,pQE31,pQE32,pQE40,pQE70,pQE80,pRSET-A,pRSET-B,pRSET-C,pGEX-5X-1,pGEX-6p-1,pGEX-6p-2,pBV220,pBV221,pBV222,pTrc99A,pTwin1,pEZZ18,pKK232-18,pUC-18,pUC-19)质粒同时进行酶切,T4DNA连接酶进行连接反应,将连接产物转化到大肠杆菌DH5α菌株的感受态中,涂布于含有50μg/ml含氨苄青霉素的固体LB培养基中,37℃培养过夜。挑取上述培养基上的单菌落接种于含有50μg/ml含氨苄青霉素的LB液体培养基中,37℃振荡培养过夜,经过质粒提取,PCR鉴定和双酶切鉴定后,将正确的克隆载体pET22b(+)-DKR转化到大肠杆菌BL21(DE3)中,涂布于含有50μg/ml含氨苄青霉素的LB培养基中,37℃培养过夜。挑取上述培养基中上的单菌落接种于5ml含50μg/ml含氨苄青霉素的LB液体培养基中,经过菌落PCR鉴定正确的表达载体进行诱导表达,将上述菌液转接于5ml含50μg/ml含氨苄青霉素的LB液体培养基中,37℃振荡培养至OD600=0.6时,加入IPTG至终浓度分别为0.02mM,0.05mM,0.1mM,0.2mM,0.4mM,0.6mM,0.8mM和1.0mM,在18℃下进行诱导表达,并设立不加IPTG诱导剂的阴性对照。诱导16h后,取出菌液,8000rpm/min离心10min收集菌体。菌体用超声破碎仪破碎细胞,4℃,12000rpm/min离心20min获得上清液和沉淀,上清液用垂直电泳仪进行SDS-PAGE检测。结果发现在终浓度为0.02mM IPTG浓度时诱导表达双羰基还原酶的量最多。为提高双羰基还原酶的表达量,将含有重组质粒的大肠杆菌BL21(DE3)在IPTG终浓度为0.02mM,分别于37℃诱导8h,30℃诱导8h以及25℃诱导16h条件下表达,并同时设立不加IPTG诱导剂的阴性对照。诱导表达结束后,分别将三个温度的诱导菌体于8000rpm/min离心10min收集菌体。菌体用超声破碎仪破碎细胞,4℃,12000rpm/min离心20min获得上清液和沉淀,上清液用垂直电泳仪进行SDS-PAGE检测。结果发现在37℃诱导8h时表达双羰基还原酶的量最多。
选用已经在市场上商业化的原料或者容易制备的酮类化合物为初始原料,其中R1选自芳香基、烷基、环烷基、烷基取代的芳香基、卤素取代的芳香基、芳烷杂环基、环状杂烷基或环状杂烷化烷基;R2选自烷基、环烷基、卤烷基或卤环烷基。所述的双羟基产物由以下化学通式表达:其中R1选自芳香基、烷基、环烷基、烷基取代的芳香基、卤素取代的芳香基、芳烷杂环基、环状杂烷基或环状杂烷化烷基;R2选自烷基、环烷基、卤烷基或卤环烷基。
向10ml反应瓶中,加入0.01g主原料0.04ml聚乙二醇PEG-400,原料溶解后,加入0.86ml磷酸盐缓冲液(100mM,pH=6.0),底物均匀分散于缓冲液中;加入1mgNAD+,4.12mg甲酸铵,2mg辅酶甲酸脱氢酶和4mg双羰基还原酶,体系pH=6.0,并于30±3℃保温15-24h;用1ml乙酸乙酯停止反应,用0.25g硅藻土过滤,1ml乙酸乙酯萃取两次,静置分液,有机相经干燥,过滤,浓缩得到粗品,产品收率90%,ee值94.8%,de值84.5%。
所得产品的核磁数据如下:400Hz,CDCl3:δ7.29(m,5H),4.54(s,2H),4.22(m,1H),4.07(m,1H),3.45~3.40(m,4H),2.41(d,2H),1.65(t,2H),1.43(S,9H)。
所得产品质谱数据如下:MW=310±1。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:采用本发明的双羰基还原酶(Diketoreductase,DKR)为生物催化剂,可以一步还原二酮底物,制备得到单一光学纯度的3R,5S-二羟基化合物,将其应用到合成他汀类药物中间体,简化了合成步骤,降低了生产污染和生产成本,适合于大规模工业化生产。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种双羰基还原酶,其特征在于,具有下列之一的氨基酸序列:
1)SEQ NO.1的氨基酸序列;
2)将SEQ NO.1的氨基酸序列经过一个或几个氨基酸的取代、和/或缺失、和/或添加且具有将立体选择性地还原为功能的由SEQNO.1衍生的氨基酸序列,且所述SEQ NO.1衍生的氨基酸序列与所述SEQ NO.1具有80%以上的同源性,其中,R1选自芳香基、烷基、环烷基、烷基取代的芳香基、卤素取代的芳香基、芳烷杂环基、环状杂烷基或环状杂烷化烷基,R2选自烷基、环烷基、卤烷基或卤环烷基。
2.权利要求1所述的双羰基还原酶的编码基因。
3.根据权利要求2所述的编码基因,其特征在于,具有下述之一的脱氧核苷酸序列:
1)SEQ NO.2的脱氧核苷酸序列;
2)与SEQ NO.2的脱氧核苷酸序列具有80%同源性且编码的蛋白质具有将立体选择性还原为功能的脱氧核苷酸序列。
4.含有权利要求1所述的双羰基还原酶的编码基因的重组表达载体。
5.含有权利要求1所述的双羰基还原酶的编码基因的转基因细胞系。
6.含有权利要求1所述的双羰基还原酶的编码基因的转基因重组菌。
7.如权利要求1所述的双羰基还原酶在将立体选择性还原为中的应用。
8.根据权利要求7所述的应用,其特征在于,所述双羰基还原酶在制备3R,5S-二羟基-6-苄氧基-己酸叔丁酯中的应用。
9.根据权利要求8所述的应用,其特征在于,所述
CN201410188169.4A 2014-05-06 2014-05-06 双羰基还原酶、其编码基因及应用 Pending CN103937760A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410188169.4A CN103937760A (zh) 2014-05-06 2014-05-06 双羰基还原酶、其编码基因及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410188169.4A CN103937760A (zh) 2014-05-06 2014-05-06 双羰基还原酶、其编码基因及应用

Publications (1)

Publication Number Publication Date
CN103937760A true CN103937760A (zh) 2014-07-23

Family

ID=51185634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410188169.4A Pending CN103937760A (zh) 2014-05-06 2014-05-06 双羰基还原酶、其编码基因及应用

Country Status (1)

Country Link
CN (1) CN103937760A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104560907A (zh) * 2014-12-19 2015-04-29 凯莱英医药集团(天津)股份有限公司 双羰基还原酶突变体及其应用
WO2015168868A1 (zh) * 2014-05-06 2015-11-12 凯莱英医药集团(天津)股份有限公司 双羰基还原酶、其编码基因及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429514A (zh) * 2007-11-08 2009-05-13 陈依军 一种双羰基还原酶、其基因及其应用
CN101665811A (zh) * 2009-09-04 2010-03-10 陈依军 一种制备s-2-羟基-4-苯基丁酸乙酯的方法
CN101880694A (zh) * 2009-12-01 2010-11-10 陈依军 一种非水相制备手性3r,5s-双羟基化合物的方法
CN102277338A (zh) * 2011-08-02 2011-12-14 中国药科大学 双羰基还原酶突变体及其应用
CN102517241A (zh) * 2011-12-19 2012-06-27 中国药科大学 一种含有d型氨基酸的双羰基还原酶的突变体的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429514A (zh) * 2007-11-08 2009-05-13 陈依军 一种双羰基还原酶、其基因及其应用
CN101665811A (zh) * 2009-09-04 2010-03-10 陈依军 一种制备s-2-羟基-4-苯基丁酸乙酯的方法
CN101880694A (zh) * 2009-12-01 2010-11-10 陈依军 一种非水相制备手性3r,5s-双羟基化合物的方法
CN102277338A (zh) * 2011-08-02 2011-12-14 中国药科大学 双羰基还原酶突变体及其应用
CN102517241A (zh) * 2011-12-19 2012-06-27 中国药科大学 一种含有d型氨基酸的双羰基还原酶的突变体的制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANTHONY ZOROPOGUI等: "Genome sequence of the human- and animal-pathogenic strain Nocardia cyriacigeorgica GUH-2", 《J BACTERIOL.》 *
ANTHONY ZOROPOGUI等: "The Nocardia cyriacigeorgica GUH-2 genome shows ongoing adaptation of an environmental Actinobacteria to a pathogen’s lifestyle", 《BMC GENOMICS》 *
XURI WU等: "Cloning, expression, and characterization of a novel diketoreductase from Acinetobacter baylyi", 《ACTA BIOCHIM BIOPHYS SIN》 *
无: "B1P3E1", 《UNIPROTKB》 *
无: "CCF64357", 《GENBANK》 *
无: "U2QZA2", 《UNIPROTKB》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015168868A1 (zh) * 2014-05-06 2015-11-12 凯莱英医药集团(天津)股份有限公司 双羰基还原酶、其编码基因及应用
CN104560907A (zh) * 2014-12-19 2015-04-29 凯莱英医药集团(天津)股份有限公司 双羰基还原酶突变体及其应用
CN104560907B (zh) * 2014-12-19 2017-12-22 凯莱英医药集团(天津)股份有限公司 双羰基还原酶突变体及其应用

Similar Documents

Publication Publication Date Title
EP2893026B1 (en) Process for preparing sebacic acid
Hosseini‐Abari et al. Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein
CN105683378A (zh) 用于精细化学品的改进生产的重组微生物
CN103937761A (zh) 双羰基还原酶、其编码基因及应用
CN103937759A (zh) 双羰基还原酶、其编码基因及应用
CN103966176A (zh) 双羰基还原酶突变体及其应用
CN103937760A (zh) 双羰基还原酶、其编码基因及应用
CN104498466B (zh) 腈水合酶及其应用
AU2010318256A1 (en) Whole cell biocatalyst
KR101835160B1 (ko) 안정된 아크릴아마이드 수용액
CN101955952A (zh) 一种细菌漆酶基因及其表达与应用
CN104630125B (zh) 工程菌及其在制备(3r, 5s)‑6‑氯‑3,5‑二羟基己酸叔丁酯中的应用
WO2016095223A1 (zh) 双羰基还原酶突变体及其应用
CN106434733A (zh) 一种适用于谷氨酸棒杆菌的表达载体及其应用
CN1411506A (zh) 来自玫瑰色红球菌ncimb11216的腈水解酶
CN102796719B (zh) 一种(+)γ-内酰胺酶及其编码基因与应用
CN103992992A (zh) 硫磺矿硫化叶菌中(+)γ-内酰胺酶的编码基因及应用
EP2821483B1 (en) Method for preserving enzyme
WO2015168868A1 (zh) 双羰基还原酶、其编码基因及应用
Vidya et al. Therapeutic enzymes: L-asparaginases
KR100463966B1 (ko) 시아노카르복실산 에스테르로부터 디카르복실산모노에스테르의 제조
CN104726471A (zh) 一种来自淀粉酶产色链霉菌的l-谷氨酸氧化酶基因及其制备方法和应用
WO2015168866A1 (zh) 双羰基还原酶、其编码基因及应用
WO2015168867A1 (zh) 双羰基还原酶、其编码基因及应用
CN101457217A (zh) 具有α-苯乙醇拆分活性的嗜热脂肪酶、编码基因及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Hong Hao

Inventor after: James.Gaga

Inventor after: Chen Chaoyong

Inventor after: Zhou Yan

Inventor after: Gao Feng

Inventor after: Lv Tong

Inventor after: Guo Lina

Inventor before: Hong Hao

Inventor before: James.Gaga

Inventor before: Chen Chaoyong

Inventor before: Zhou Yan

Inventor before: Gao Feng

Inventor before: Lv Tong

Inventor before: Guo Lina

RJ01 Rejection of invention patent application after publication

Application publication date: 20140723

RJ01 Rejection of invention patent application after publication