CN103918054A - Hipims层 - Google Patents

Hipims层 Download PDF

Info

Publication number
CN103918054A
CN103918054A CN201280054937.6A CN201280054937A CN103918054A CN 103918054 A CN103918054 A CN 103918054A CN 201280054937 A CN201280054937 A CN 201280054937A CN 103918054 A CN103918054 A CN 103918054A
Authority
CN
China
Prior art keywords
layer
hipims
pulse length
power
coating systems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280054937.6A
Other languages
English (en)
Other versions
CN103918054B (zh
Inventor
S.克拉斯尼策尔
M.莱希塔勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Surface Solutions AG Pfaeffikon
Original Assignee
Oerlikon Trading AG Truebbach
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Trading AG Truebbach filed Critical Oerlikon Trading AG Truebbach
Publication of CN103918054A publication Critical patent/CN103918054A/zh
Application granted granted Critical
Publication of CN103918054B publication Critical patent/CN103918054B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/3467Pulsed operation, e.g. HIPIMS
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及在至少一个基材上通过喷雾由气相沉积PVD层体系的方法,其中该层体系包括至少一个第一层,其特征在于,至少在该方法的一个步骤中使用功率密度为至少250W/cm2的HIPIMS方法,其中使用至少5ms时间的脉冲长度,在此期间在基材上存在基材偏压。

Description

HIPIMS层
本发明涉及硬质材料层,其借助由气相的物理涂覆(PVD=物理气相沉积),即磁控管辅助喷雾(MS=磁控管溅射)沉积到工件上。
磁控管溅射的两个主要的方法变型是传统的DC-MS和HIPIMS方法。
在HIPIMS方法中,对提供喷雾材料的靶施加非常高的放电电流密度,从而在等离子体中产生高的电子密度,并且使雾化的颗粒高度离子化。其中使用250-2000W/cm2的功率密度,并因此对提供该功率的发电机提出特别的要求。特别地,不可以长时间地对靶施加这样的功率,因为这样产生过热并由此造成损害。因此,所述功率必须是脉冲式的。在功率脉冲期间内,产生非常高的所需放电密度,所述靶加热,并在脉冲间歇期间可以再次冷却所述靶。必须相继地如此调节脉冲时间和脉冲间歇,从而使施加在钯上的平均功率没有超过极限值。对于HIPIMS,因此需要能够脉冲式地提供非常高的功率的发电机。
在大多数情况下,对于HIPIMS需要使用基于电容器放电原理的特殊发电机,这产生了在脉冲期间变化的放电电流。以这种方式无法实现涉及电流-电压关系的可控方法。根据另一方案,首先预离子化等离子体,以便然后可以在高的功率脉冲的范围内延长脉冲时间。其中放电电流通过调节施加的电压来控制。这样可以确切保持脉冲最大4ms。
如果使用低的功率密度进行喷雾,例如5-25W/cm2的功率密度,则情况完全不同。在这种情况下,靶可以长时间地加载功率。可以使用简单的发电机,因为不必提供高的功率,也不必脉冲式地提供功率。在这种情况下可以考虑传统的DC-MS。
如果比较HIPIMS层和DC-MS层,则会发现更大的结构区别。例如TiAlN涂层,在DC-MS情况下其基本上是在柱状结构中生长(参见图1)。与此相反,在HIPIMS方法中,不用在层中嵌入工作气体离子而基本上可以通过蒸发金属的离子化而实现精细的层结构;然后在基材上施加负偏压的情况下,离子化的金属原子自己可以被加速到该基材上。有利地,对于HIPIMS层,由于在喷雾材料中的高的离子含量,负的基材偏压可以使层更好地致密化。
尽管精细的HIPIMS层比起粗柱状的DC-MS层更硬和更致密,但其具有在层粘附性和机械性能方面的缺点。相比于DC-MS层,精细的HIPIMS层展现了改善的耐磨行为,这产生了更长的使用寿命。但缺点在于,没法预测何时耗尽(即层的使用寿命的结束),而是可能由于机械性能而非常突然地出现耗尽,例如以剥落的形式。使用者因此很难预测何时需要更换涂覆的工具。
因此,本发明的目的在于,公开具有对于HIPIMS技术典型硬度的层,在使用中例如通过随着时间而降低的加工效率让使用者知道所述层的耗尽,从而可以及时地更换相应的工具。
如上所述,目前已知可以实现最大4ms的脉冲时间的HIPIMS发电机。基于一种提供高功率的脉冲的新方法,如今可以容易地实现25ms或更高的脉冲时间。
在本方法中,使用包括第一分负极和第二分负极的PVD喷雾负极,其中对于分负极规定了最大的平均功率加载,和其中规定了功率脉冲间隔的时间,所述方法包括下列步骤:
a) 提供具有规定的优选至少在开启之后和在功率构造间隔过程之后恒定的功率输出的发电机;
b) 开启所述发电机;
c) 将第一分负极连接到所述发电机,从而使该第一分负极加载发电机的功率;
d) 在规定的相应于第一分负极的第一功率脉冲间隔过程之后将发电机与第一分负极分开;
e) 将第二分负极连接到所述发电机,从而使该第二分负极加载发电机的功率;
f) 在规定的相应于第二分负极的第二功率脉冲间隔过程之后将发电机与第二分负极分开;
其中所述第一功率脉冲间隔在时间上在所述第二功率脉冲间隔之前开始,和所述第一功率脉冲间隔在时间上在所述第二功率脉冲间隔之前结束,并且其中实施步骤d)和e)而使第一功率脉冲间隔和第二功率脉冲间隔在时间上重叠,和所有的功率脉冲间隔共同形成了第一组,从而从第一功率脉冲间隔的开始至第二功率脉冲间隔的结束连续无中断地保持发电机的功率输出,并且不产生第二功率构造间隔。
在使用本方法时,令人惊奇地发现,使用5ms或更长的脉冲时间涂覆有HIPIMS层的工具在涂覆工具的使用寿命快结束时展现出与使用较短的脉冲时间涂覆有HIPIMS层的工具相比明显不同的行为。令人感兴趣地,如在图3中明显可见的,使用长的脉冲施加的层的断裂边缘的SEM图展现出更粗糙的形态。其中这种层形态上的区别完全可以通过脉冲长度的变化实现,而不用改变其它影响参数。
相比于使用短的脉冲施加的层,使用5ms或更长的脉冲时间沉积的本发明的层具有提高的E-模量以及更高的硬度。
例如,借助HIPIMS方法一方面使用250μs的脉冲长度和另一方面使用25000μs的脉冲长度来沉积TiAlN层。使用250μs脉冲长度沉积的层具有约425Gpa的E-模量和2900HV的硬度,而使用25000μs脉冲长度沉积的层具有475Gpa的E-模量和大于3100HV的硬度。
因为使用上述的提供功率脉冲的方法可以非常容易地设定和改变脉冲长度,所以可以在涂覆期间构造层体系,其中交替具有较精细和较粗糙的形态的HIPIMS层。这可以容易地通过沉积时交替地选择短的和长的脉冲时间而实现。因为对于两种沉积类型在近似相同的层应力下测量,这样的变换层体系如所期望地在减少磨损方面具有非常好的性能。其中所述变换层体系可以展现出不连贯的过渡,从而在精细颗粒层和粗糙颗粒层之间形成常规的界面。然而,通过连续地而不是不连贯地改变脉冲时间,可以实现一个或多个逐渐的过渡。
需要指出,在本身的涂覆过程中当然也可以变化功率脉冲的高度。特别地,可以有时选择低的脉冲高度,从而产生具有对于DC-MS典型的柱状生长的层区域。这样可以实现由HIPIMS层和DC-MS组成的变换层体系,基于不同的层应力这可以有利于层体系的稳定性。

Claims (5)

1. 在至少一个基材上通过喷雾由气相沉积PVD层体系的方法,其中该层体系包括至少一个第一层,其特征在于,至少在该方法的一个步骤中使用功率密度为至少250W/cm2的HIPIMS方法,其中使用至少5ms时间的脉冲长度,在此期间在基材上存在基材偏压,从而使在该步骤中产生的层相比于类似的层的形态具有在扫描电子显微镜下可见的更粗糙的形态,其中所述类似的层是在250μs的脉冲长度和其它相同的条件下沉积而成。
2. 根据权利要求1的方法,其特征在于,所述功率密度不超过2000W/cm2。
3. 根据上述权利要求之一的方法,其特征在于,除了至少一个第一层,在数值上较低的偏压下施加至少一个第二层。
4. 根据上述权利要求之一的方法,其特征在于,在所述方法的过程中变化所述脉冲长度,由此产生具有不同形态的HIPIMS层的层体系。
5. 根据权利要求4的方法,其特征在于,变化所述脉冲长度,从而使不同形态的层之间的过渡至少一次是逐渐的过渡。
CN201280054937.6A 2011-11-09 2012-10-26 Hipims层 Active CN103918054B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011117994A DE102011117994A1 (de) 2011-11-09 2011-11-09 HIPIMS-Schichten
DE102011117994.5 2011-11-09
PCT/EP2012/004498 WO2013068080A1 (de) 2011-11-09 2012-10-26 Hipims-schichten

Publications (2)

Publication Number Publication Date
CN103918054A true CN103918054A (zh) 2014-07-09
CN103918054B CN103918054B (zh) 2017-02-15

Family

ID=47263219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280054937.6A Active CN103918054B (zh) 2011-11-09 2012-10-26 Hipims层

Country Status (16)

Country Link
US (1) US9416441B2 (zh)
EP (1) EP2777061B1 (zh)
JP (1) JP6236613B2 (zh)
KR (1) KR101929085B1 (zh)
CN (1) CN103918054B (zh)
AR (1) AR088700A1 (zh)
BR (1) BR112014011141B1 (zh)
CA (1) CA2854976C (zh)
DE (1) DE102011117994A1 (zh)
MX (1) MX364356B (zh)
MY (1) MY168656A (zh)
RU (1) RU2633672C2 (zh)
SG (1) SG11201402191VA (zh)
TR (1) TR201902881T4 (zh)
TW (1) TWI582258B (zh)
WO (1) WO2013068080A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201510649VA (en) * 2013-06-26 2016-01-28 Oerlikon Trading Ag Decorative hipims hard material layers
WO2016042072A1 (en) * 2014-09-17 2016-03-24 Oerlikon Surface Solutions Ag, Trübbach Method for producing a double-layer coated cutting tool with improved wear resistance
EP3018233A1 (de) * 2014-11-05 2016-05-11 Walter Ag Schneidwerkzeug mit mehrlagiger PVD-Beschichtung
EP3056587B1 (de) 2015-02-13 2020-11-18 Walter AG VHM-Schaftfräser mit TiAlN-ZrN-Beschichtung
JP7292695B2 (ja) * 2016-08-17 2023-06-19 地方独立行政法人東京都立産業技術研究センター 機能性薄膜、その製造方法、積層構造体及びその製造方法
US11473189B2 (en) 2019-02-11 2022-10-18 Applied Materials, Inc. Method for particle removal from wafers through plasma modification in pulsed PVD
DE102022003082A1 (de) 2022-08-23 2024-02-29 Oerlikon Surface Solutions Ag, Pfäffikon Beschichtungsverfahren zur Abscheidung eines Schichtsystems auf einem Substrat, sowie ein Substrat mit einem Schichtsystem

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090068450A1 (en) * 2005-07-15 2009-03-12 Wolf-Dieter Muenz Method and Apparatus for Multi-Cathode PVD Coating and Substrate with PVD Coating
DE202010001497U1 (de) * 2010-01-29 2010-04-22 Hauzer Techno-Coating B.V. Beschichtungsvorrichtung mit einer HIPIMS-Leistungsquelle
US20110168547A1 (en) * 2008-06-13 2011-07-14 Fraunhofer-Gesellschaft Zur Forderung Der Andgewandten Forschung E.V. Method for producing a transparent and conductive metal oxide layer by highly ionized pulsed magnetron sputtering

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1580298A1 (fr) * 2004-03-22 2005-09-28 Materia Nova A.S.B.L Dépôt par pulverisation cathodique magnétron en régime impulsionnel avec préionisation
US9605338B2 (en) * 2006-10-11 2017-03-28 Oerlikon Surface Solutions Ag, Pfaffikon Method for depositing electrically insulating layers
RU2339735C1 (ru) * 2007-02-12 2008-11-27 Закрытое акционерное общество "Нано-Плазменные Технологии" (ЗАО "НАНПЛАТЕК") Способ нанесения пленочного покрытия
US7966909B2 (en) * 2007-07-25 2011-06-28 The Gillette Company Process of forming a razor blade
SE532505C2 (sv) * 2007-12-12 2010-02-09 Plasmatrix Materials Ab Förfarande för plasmaaktiverad kemisk ångdeponering och plasmasönderdelningsenhet
EP2272080B1 (de) * 2008-04-28 2012-08-01 CemeCon AG Vorrichtung und verfahren zum vorbehandeln und beschichten von körpern
US20100055826A1 (en) * 2008-08-26 2010-03-04 General Electric Company Methods of Fabrication of Solar Cells Using High Power Pulsed Magnetron Sputtering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090068450A1 (en) * 2005-07-15 2009-03-12 Wolf-Dieter Muenz Method and Apparatus for Multi-Cathode PVD Coating and Substrate with PVD Coating
US20110168547A1 (en) * 2008-06-13 2011-07-14 Fraunhofer-Gesellschaft Zur Forderung Der Andgewandten Forschung E.V. Method for producing a transparent and conductive metal oxide layer by highly ionized pulsed magnetron sputtering
DE202010001497U1 (de) * 2010-01-29 2010-04-22 Hauzer Techno-Coating B.V. Beschichtungsvorrichtung mit einer HIPIMS-Leistungsquelle

Also Published As

Publication number Publication date
WO2013068080A1 (de) 2013-05-16
MX2014005722A (es) 2015-03-09
TWI582258B (zh) 2017-05-11
EP2777061A1 (de) 2014-09-17
JP2015501876A (ja) 2015-01-19
CA2854976C (en) 2019-07-30
KR20140099898A (ko) 2014-08-13
EP2777061B1 (de) 2018-12-12
KR101929085B1 (ko) 2018-12-13
US20140305792A1 (en) 2014-10-16
BR112014011141A2 (pt) 2017-05-16
TW201329271A (zh) 2013-07-16
RU2633672C2 (ru) 2017-10-16
SG11201402191VA (en) 2014-08-28
BR112014011141B1 (pt) 2021-08-10
MX364356B (es) 2019-04-08
AR088700A1 (es) 2014-06-25
TR201902881T4 (tr) 2019-03-21
CN103918054B (zh) 2017-02-15
RU2014123354A (ru) 2015-12-20
CA2854976A1 (en) 2013-05-16
JP6236613B2 (ja) 2017-11-29
DE102011117994A1 (de) 2013-05-16
MY168656A (en) 2018-11-28
US9416441B2 (en) 2016-08-16

Similar Documents

Publication Publication Date Title
CN103918054A (zh) Hipims层
Lin et al. Diamond like carbon films deposited by HiPIMS using oscillatory voltage pulses
JP6228731B2 (ja) ワークピース上に水素フリーのta−C層を堆積させる装置および方法ならびにワークピース
JP6854241B2 (ja) 多層pvdコーティングを有する切削工具
Ferreira et al. Effect of peak target power on the properties of Cr thin films sputtered by HiPIMS in deep oscillation magnetron sputtering (DOMS) mode
Wang et al. Influence of substrate negative bias on structure and properties of TiN coatings prepared by hybrid HIPIMS method
CA2916769C (en) Tib2 layers and manufacture thereof
CN110205597B (zh) 多段式双极性脉冲高功率脉冲磁控溅射方法
CN108677144A (zh) 一种制备铝氮共掺类金刚石复合薄膜的方法
CN105112883A (zh) 偏压调控栅网等离子体浸没离子沉积dlc方法
Tang et al. Mechanical properties of TiN deposited in synchronous bias mode through high-power impulse magnetron sputtering
Serra et al. HiPIMS pulse shape influence on the deposition of diamond-like carbon films
CN110923650B (zh) 一种dlc涂层及其制备方法
JP2014525984A (ja) 陰極アーク堆積
CN114875367B (zh) 脉冲阴极弧/工件偏压脉冲协同控制的沉积厚的四面体非晶碳膜的方法
US20070009670A9 (en) Sputter method or device for the production of natural voltage optimized coatings
Vetter et al. Domino platform: PVD coaters for arc evaporation and high current pulsed magnetron sputtering
CN114855136A (zh) 利用可变磁控靶磁场调控薄膜结构和成分的镀膜系统及镀膜方法
US20100209625A1 (en) Voltage variable type thinfilm deposition method and apparatus thereof
KR20140110186A (ko) 압축잔류응력이 감소된 입방정질화붕소 박막의 제조 방법 및 이에 의해 제조된 입방정질화붕소 박막
JP7292695B2 (ja) 機能性薄膜、その製造方法、積層構造体及びその製造方法
CN113151797A (zh) 一种基于硬质合金表面镀ta-C膜的新型离子清洗工艺
Zhang et al. Effect of pulsed bias on the properties of ZrN/TiZrN films deposited by a cathodic vacuum arc
Chingsungnoen et al. Synthesis of Novel DLC Films
Gjevori et al. THIN FILM DEPOSITION USING PVD

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Swiss Te Lui Bach

Patentee after: OERLIKON TRADING AG, TRuBBACH

Address before: Swiss Te Lui Bach

Patentee before: OERLIKON TRADING AG, TRuBBACH

Address after: Swiss Te Lui Bach

Patentee after: OERLIKON SURFACE SOLUTIONS AG, PFAFFIKON

Address before: Swiss Te Lui Bach

Patentee before: OERLIKON TRADING AG, TRuBBACH

CP01 Change in the name or title of a patent holder
CP02 Change in the address of a patent holder

Address after: Swiss hole

Patentee after: OERLIKON SURFACE SOLUTIONS AG, PFAFFIKON

Address before: Swiss Te Lui Bach

Patentee before: OERLIKON SURFACE SOLUTIONS AG, PFAFFIKON

CP02 Change in the address of a patent holder