CN103893991A - 一种中药热循环提取浓缩方法 - Google Patents

一种中药热循环提取浓缩方法 Download PDF

Info

Publication number
CN103893991A
CN103893991A CN201410162646.XA CN201410162646A CN103893991A CN 103893991 A CN103893991 A CN 103893991A CN 201410162646 A CN201410162646 A CN 201410162646A CN 103893991 A CN103893991 A CN 103893991A
Authority
CN
China
Prior art keywords
heat
extract
gas
chinese medicine
film evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410162646.XA
Other languages
English (en)
Other versions
CN103893991B (zh
Inventor
罗观堤
辛少如
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Shixin Medcine Co Ltd
Original Assignee
Guangdong Shixin Medcine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Shixin Medcine Co Ltd filed Critical Guangdong Shixin Medcine Co Ltd
Priority to CN201410162646.XA priority Critical patent/CN103893991B/zh
Publication of CN103893991A publication Critical patent/CN103893991A/zh
Application granted granted Critical
Publication of CN103893991B publication Critical patent/CN103893991B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及一种中药热循环提取浓缩方法,该方法是用一套设备将提取与浓缩组成的密闭系统,通过微机控制,达到热量循环与溶剂循环,而且温度、压力及流速可控(可以低温提取),从而实现最大限度地节省能耗和溶剂消耗,提高和稳定了提取液品质。该系统主要由中药提取罐、过滤器、提取液换热器、升膜蒸发器、气液分离器、蒸汽压缩机、循环泵、浓液罐、PLC全自动控制系统、操作平台、电器仪表控制柜及阀门组成。在提取罐、升膜蒸发器和气液分离器中形成全封闭的负压提取浓缩系统,实现了药材循环提取浓缩过程中热量自动转换和冷凝水再利用,提高了自动化程度、安全性能、环保性能,且操作方便、能耗低、人力成本低。

Description

一种中药热循环提取浓缩方法
技术领域
 本发明涉及一种中药热循环提取浓缩方法。与传统中药提取浓缩方法相比,本发明是用一套设备将提取与浓缩组成的密闭系统,通过微机控制,达到热量循环与溶剂循环,而且温度、压力及流速可控(可以低温提取),从而实现最大限度地节省能耗和溶剂消耗,提高和稳定了提取液品质。
背景技术
中药浸泡提取、浓缩是中药制剂的重要环节,其工艺的优劣直接影响到药品质量与治疗效果。中药材的浸提过程由浸润渗透、解吸溶解、扩散和溶剂置换三个阶段组成,根据扩散传质理论,细胞内外有效成分的浓度差越大,有效成分向细胞外扩散的速度越快,有效成份溶出率越高。中药提取要达到快速、完全的溶出目的,除了单位时间内使药材组织中溶质与溶出液中的溶质保持较高浓度差外,还需要合适的溶剂、提取方法、提取温度、操作压力、提取时间等。中药提取液的浓缩过程是在沸腾的状态下将挥发性不同的物质进行分离的过程,蒸发是浓缩的重要手段,蒸发法可分为常压浓缩、减压浓缩、薄膜浓缩、多效浓缩等方法。
传统提取工艺的煎煮法、水蒸汽蒸馏法等的提取温度一般在溶剂的沸点处(80℃~100℃),且需要溶剂量大,存在热敏性有效成分容易受破坏和挥发性成份容易逸散、提取时间长、待浓缩液量大的缺点;浸渍法、渗漉法等虽可在低温提取,但需要溶剂量大,也存在提取时间长、待浓缩液量大的缺点。传统的浓缩技术存在着浓缩温度高,浓缩时间长,有效成分及挥发性成分有损失,操作步骤繁琐,设备易结垢,废液排放等问题。如传统的蒸发浓缩设备反应釜和单效蒸发器,缺点是能耗高(每蒸发一吨水需要1至1.5吨蒸汽)、时间长、自动化程度低,人工操作随意性较大,提取液品质不稳定。近年发展的多效蒸发器和喷射泵,虽比传统设备节能,但其热能随冷却水有较大的丢失,节能效果不够十分理想。除上述缺点外,传统提取、浓缩工艺尚存在控制条件(如温度)不均一、操作繁琐、人工强度大、能耗大的缺点。TCEC系统采用目前国际最节能、国内刚发展的MVR蒸发器,克服了传统浓缩存在的缺点,具有自动化程度高、加热温差小、操作简单、节省能耗等优点。
鉴于大多数中草药均具有热敏性,不宜在高温下提取浓缩,且提取浓缩过程时间长、能耗大、提取率低等缺点,寻求节能低温回流的提取浓缩技术成为中药提取的重要任务。目前,市场上出现的节能中药低温提取浓缩设备由中药提取罐、热回流冷凝器、油水分离器、蒸发器、加热器、真空泵及真空罐等组成,加热器及蒸发器所产生的二次蒸汽通过冷凝为液体后进入到提取罐中,热能部分再次利用,部分被冷却液带走,而且设备的蒸汽未能全部冷凝成溶剂,未冷凝的蒸汽被真空泵抽出排除,造成能量及溶剂的流失。
发明内容
针对现有技术存在的不足,本发明专利提供了一种高效节能、可低温提取浓缩的自动化中药提取浓缩方法。理论上,该技术可实现热能、溶剂全回收零排放,实际上因运行过程设备表面热扩散,会丢失少量的热能。
本发明,综合了煎煮提取、渗漉提取、逆流提取与回流抽提四种提取原理,将中药的提取、浓缩两道工序同步进行,一次完成中药提取、浓缩新工艺,并改变传统提取罐内带压与常压的高温煎煮工艺,利用真空负压,降低沸点,进行低温提取低温浓缩,使提取罐内的工作温度控制在 20℃~ 90 ℃,浓缩温度控制在 60℃~85℃,特别适合中药材尤其是含热敏有效成分的中药材的提取浓缩。
本发明,其过程包括:在提取罐中进行中药药物成份的提取,所述提取罐是一个蒸汽夹层加热罐,加热罐夹层设有新蒸汽导入接口和蒸汽冷凝水出口,提取罐下端设有提取液排出管道,提取罐上端设有溶剂加入补充管道和循环溶剂导入管道,由提取罐排出的中药提取液经过滤器过滤后,由提取液输送泵输送进入提取液换热器吸热之后再送到升膜蒸发器,提取液从升膜蒸发器的下端导入,在升膜蒸发器中进行热交换之后,使中药提取液吸热升温变为带有药物有效成份的气液混合体,由升膜蒸发器上端导出来的气液混合体进入气液分离器,气液混合体在气液分离器中分离为上部的气体和下部的含有药物成分的水液,在气液分离器的上部和升膜蒸发器的放热通道的入口之间,设有蒸汽压缩机,由于气体重量轻被抽进蒸汽压缩机,蒸汽压缩机通过作功将机械能转化为热能,气液分离器中的气体经过蒸汽压缩机压缩之后使所述气体的压力增大、温度升高,被压力增大和温度升高的气体在升膜蒸发器中放热后冷凝为循环溶剂,循环溶剂经循环溶剂输送泵输送进入提取液换热器继续放热之后再送到提取罐循环,而含有药物成分的水液存在于气液分离器的底部,存在于气液分离器的底部的含有药物成分的水液再由水液循环输送泵输送循环进入升膜蒸发器中进行吸热并再次进入气液分离器分离,直到气液分离器中的输出的药液经在线密度计检测达到设定的比重后经浓缩液输送泵输送到浓液罐。
本发明,在所述提取液换热器与升膜蒸发器之间,设有热微调换热器,由提取罐排出的中药提取液依次经过滤器、提取液输送泵、提取液换热器的吸热通道和热微调换热器的吸热通道之后再送到升膜蒸发器,热微调换热器的放热通道入口连接新蒸汽,其放热通道出口通过第二切换开关切换之后与所述循环溶剂通道汇合连接,热微调换热器是在浓缩的初始阶段或在系统温度较低时启动投入使用。
本发明,在升膜蒸发器中设置热交换的放热通道,放热通道入口连接新蒸汽,其放热通道出口通过第二切换开关切换之后与所述循环溶剂通道汇合连接,在浓缩的初始阶段或在系统温度较低时,导入新蒸汽为升膜蒸发器加热升温。
本发明,在所述升膜蒸发器的热交换放热通道的出口与第二切换开关之间,设有冷微调换热器,冷微调换热器的吸冷通道的入口与升膜蒸发器的热交换放热通道的出口连接,冷微调换热器的吸冷通道的出口与第二切换开关连接,冷微调换热器的放冷通道的入口连接循环冷却水的进水,冷微调换热器的放冷通道的出口连接循环冷却水的回水。
本发明,在过滤器的出口与提取液输送泵的入口之间,设有第一切换开关,第一切换开关设有清洗液导入管道;在过滤器的出口与第一切换开关之间,设有清洗排放管道,当生产结束后或者是换品种时,启动自动清洗装置,清洗液由第一切换开关转至提取液输送泵,按照提取浓缩时的路线将所有的设备和管路进行循环冲洗,废液最后经过提取罐及过滤器,在过滤器的出口排出。
本发明,所述溶剂为水或含有30%~60%乙醇的水溶液。
本发明,在提取罐的输入输出口、提取液输送泵的输入输出口、水液循环输送泵的输入输出口、循环溶剂输送泵的输入输出口、浓缩液输送泵的输入输出口以及升膜蒸发器的提取液的输入口设有自动阀或和调节阀。
本发明,在所述提取液输送泵的输入端和输出端之间设有自动阀;在所述循环溶剂输送泵的输入端和输出端之间设有自动阀。
本发明,由于中药提取罐下端通过过滤器、提取液输送泵和提取液换热器与升膜蒸发器下端连通,提取罐上端通过提取液换热器与升膜蒸发器下端连通,升膜蒸发器上端与气液分离器连通,气液分离器上端蒸汽出口通过蒸汽压缩机与升膜蒸发器连通,分离器下端浓液出口与浓液罐相连,形成全封闭的负压提取浓缩系统。
本发明,其工作原理及特点是:1.真空负压环境下,中药材细胞加快膨胀,迫使细胞膜迅速破裂,使细胞内的有效成分不断分离与溶出,且负压下药液的沸腾蒸发温度可控制在60℃~ 90 ℃,既可提高提取速度又可避免热敏有效成份受到破坏;2.气液分离器分离的气体进入蒸汽压缩机进行压缩使温度升高(称为加热蒸汽),再进入升膜蒸发器的加热室作为热源,使料液维持沸腾状态,而加热蒸汽放热后则冷凝成水,这部分的冷凝水(即液态溶剂)在循环溶剂输送泵的作用下,经过提取液换热器继续对进入蒸发器前的初料液(提取液)进行预热,充分利用了潜热,既提高热效率又节省能耗;3. 在提取液换热器中经放热后的冷凝水无需经过冷凝器即可直接作为新溶剂(即循环溶剂),不断流入到提取罐里的药材上,这部分溶剂的药物浓度为零,使罐内始终保持最高的浓度差,起到了动态提取渗漉的作用,然后提取液连续进入升膜蒸发器和气液分离器中进行浓缩,既节省能耗又提高了有效成份的提取率。
本发明,实现了热能和溶剂的循环再利用,最大限度地节省能源损耗,与现有技术相比,实现了药材循环提取浓缩过程中热量自动转换和溶剂循环再利用,且提取罐可以一次性满负荷投料,投料量不受原则上的比例限制,从而提高工作效率,操作方便、节能环保。
附图说明
图1为本发明实施例中药热循环提取浓缩系统流程示意图。
图中,1、提取罐;  2、过滤器;  3、提取液换热器;  4、冷微调换热器;  5、热微调换热器;  6、升膜蒸发器;  7、气液分离器;  8、蒸汽压缩机;  9、第一切换开关;   10、第二切换开关;  20、比重监测装置;   P1、提取液输送泵;  P2、水液循环输送泵;  P3、循环溶剂输送泵;  P4、浓缩液输送泵;A1-A29为自动阀,B1-B4为比例调节阀。
具体实施方式
参照图1,一种中药热循环提取浓缩系统,主要由提取罐1、过滤器2、提取液换热器3、冷微调换热器4、热微调换热器5、升膜蒸发器6、气液分离器7和蒸汽压缩机8组成,提取罐1是一个带蒸汽夹层加热的提取罐,提取罐夹层设有新蒸汽导入接口15和蒸汽冷凝水出口16,提取罐下端设有提取液排出管道,提取罐上端设有溶剂加入补充管道和循环溶剂导入管道,在溶剂加入补充14入口处设有自动阀A24,在循环溶剂的入口处设有自动阀A25,在提取罐排出管通过自动阀A8与过滤器2连接,过滤器2的出口依次通过自动阀A2、第一切换开关9、自动阀A4与提取液输送泵P1的入口连接,提取液输送泵P1的出口依次通过自动阀A7、比例调节阀B3和自动阀A8与提取液换热器3的吸热通道的入口连接,提取液换热器3的吸热通道的出口依次通过热微调换热器5的吸热通道、自动阀A23和自动阀A19与升膜蒸发器6的下端66连接,升膜蒸发器6的上端67通过管道与气液分离器7连接,在气液分离器的上部和升膜蒸发器6的放热通道的入口63之间,设有蒸汽压缩机8,升膜蒸发器6的放热通道的出口64通过第二切换开关10与循环溶剂输送泵P3的入口连接,循环溶剂输送泵P3的出口与提取液换热器3的放热通道的入口连接,提取液换热器3的放热通道的出口与循环溶剂导入管道连接,在循环溶剂输送泵P3的入口和出口分别设有自动阀A12和自动阀A10,在循环溶剂输送泵P3的入口和出口之间,设有自动阀A11;在提取液输送泵P1入口和出口之间,设有自动阀A6;气液分离器7的下部水液输出管道通过比例/比重监测装置20之后分别与水液循环输送泵P2和浓缩液输送泵P4的入口连接,在水液循环输送泵P2和浓缩液输送泵P4的入口分别设有自动阀A14和自动阀A15;水液循环输送泵P2的出口通过自动阀A13和自动阀A19连接到升膜蒸发器6的下端66,浓缩液输送泵P4的出口通过自动阀A16和自动阀A17、比例调节阀B2和自动阀28连接到浓缩罐19;热微调换热器5的放热通道入口连接新蒸汽11,其放热通道出口通过第二切换开关10切换之后与所述循环溶剂通道汇合连接,热微调换热器5是在浓缩的初始阶段或在系统温度较低时启动投入使用;在升膜蒸发器6中设置热交换的放热通道,放热通道入口61连接新蒸汽11,其放热通道出口62连接冷微调换热器4的吸冷通道的入口,冷微调换热器4的吸冷通道的出口通过第二切换开关10切换之后与所述循环溶剂通道汇合连接,冷微调换热器4的吸冷通道的出口或通过第二切换开关10切换之后连接到升膜蒸发器的65端,冷微调换热器4的放冷管道的入口和出口分别连接循环冷却水进水12和循环冷却水出水13;设置清洗液导入18管道,清洗液导入18管道通过自动阀A3与第一切换开关9连接,清洗液排放17管道通通过自动阀A1连接在过滤器2的出口处。
本是实施例,还包括PLC全自动控制系统、操作平台、电器仪表控制柜和其它自动阀门和比例调节阀,利用现有技术的PLC全自动控制系统及其操作平台对各个自动阀门和比例调节阀的“开”或“关”控制,从而实现提取罐、过滤器、提取液换热器、冷微调换热器、热微调换热器、升膜蒸发器、气液分离器、蒸汽压缩机、切换开关及各种输送泵功能,完成中药热循环提取浓缩过程。整个过程安装PLC自控及传感器,本套提取浓缩系统的运作是通过PLC软件来控制的,所有的输出和输入信号,还有系统的操作都是由配套的计算机完成,自动化程度高,该系统还配置自动清洗系统、报警系统、自动保护系统等。
工作流程及原理:以设定升膜蒸发器蒸发温度85℃为例:打开提取罐1的罐盖并投入规定量的干药材,阀门A24打开注入规定量的纯水后关闭,并浸泡半小时,然后往夹层通入125℃的纯蒸汽使罐内溶液温度升至80℃并保温提取1.5小时,此时启动整套运行系统,在压缩机的作用下,提取罐1、升膜蒸发器6及气液分离器7的环境为真空负压,提取液经过过滤器2、第一切换开关9、提取液输送泵P1、提取液换热器3、热微调换热器5进入升膜蒸发器6(阀门A8、A2、A4、A7、A9、B3、A23、A19打开),初始阶段的升膜蒸发器6内温度尚未达到85℃,此时阀门A26、比例调节阀B1打开,通入一定量的蒸汽,升膜蒸发器内温度升至85℃后阀门A26、B1自动关闭,药液沸腾蒸发,蒸汽进入气液分离器,此时随之溶剂不断填充升膜蒸发器6和气液分离器7,提取罐1通过补充水管道补充纯水至规定量,气液分离器蒸汽部分(温度约85℃)被抽入蒸汽压缩机8进行压缩,此时机械能转化为热能,压缩后的蒸汽温度升至92℃,升温后的蒸汽进入升膜蒸发器加热药液,使升膜蒸发器内药液始终保持沸腾状态,蒸汽本身则冷凝成水并通过第二切换开关10、循环溶剂输送泵P3、提取液换热器3进入提取罐1(阀门A12、A10、A25打开),如此循环,溶剂不断进入提取罐作为新溶剂,起到动态渗漉的作用,其中阀门A6、A11是用于调节泵流量与系统流速一致而进行自身循环的阀门,在泵流量相对过大时打开。另一方面,分离器的液体部分(含药有效成分)通过水液循环输送泵P2进入升膜蒸发器中继续蒸发浓缩(此时阀门A14、A13打开,阀门A15、A16、A17、A18、B2关闭),循环浓缩液经分离器下端设置的比例/比重监测装置20监测,浓缩液的比重达到1.1-1.2(各种中药提取浓缩的浓缩液比重有所不同,一般为1.1-1.4)时,浓缩液通过浓缩液输送泵P4进入浓缩液罐19(此时阀门A15、A16、A17、B2、A28打开,阀门A14、A13 、A18关闭),此时提取罐中再次补充水使系统的溶剂保持平衡。生产过程当升膜蒸发器内温度相对过高时,蒸汽通过冷微调换热器与冷却水进行热交换后由切换开关2控制进入升膜蒸发器(阀门A21、A22打开),当提取液的温度相对过低时,打开阀门A27、B4,使蒸汽进入热微调换热器加热提取液,达到规定温度后阀门关闭,热微调换热器产生的少量冷凝水通过第二切换开关10、循环溶剂输送泵P3、提取液换热器3进入提取罐1,此时的阀门A20打开。当整个提取浓缩过程结束时,阀门A14、A13、A28关闭,打开阀门A18、 A17、B2、A5,升膜蒸发器、分离器及管道废液通过切换开关和清洗排放通道排放,提取罐废液通过清洗排放通道排放,滤渣另行处理。
说明:(1)本提取方法结合浸渍法、渗漉法的原理对中药材进行提取,适合低温提取的药材,无需沸腾,提取的温度可根据药材性质设定,提取温度甚至可低至20℃;(2)关于提取罐,提取罐至少1个,中药提取罐的多少是根据生产需要设计的,可设计1至20个;设置多个提取罐时,将其配套过滤器后并联连接,由提取罐排出的中药提取液可先后或多个同时进入浓缩系统;(3)所述溶剂可以是水,也可以是含有30%~60%乙醇的水溶液。系统在初始状态下,首先用鲜蒸汽给提取罐、升膜蒸发器、热微调换热器加热,达到设定温度后自动停止加热,提取罐的冷凝水直接排放,蒸发器和热微调换热器的冷凝水很少,则直接进入溶剂循环系统,对溶剂的浓度影响很小。
节能降耗描述:以提取浓缩气滞胃痛浸膏为例,设定蒸发温度为85℃,操作程序为:按照气滞胃痛浸膏提取处方向5T提取罐中一次性投入柴胡等等药材总量为950kg,加水3700kg(温度约25℃),往夹层中通入125℃的生蒸汽以加热罐内溶剂,使罐内温度升至80℃,浸泡1.5h后,启动进料泵,提取液(约80℃)经过蒸馏水换热器及蒸汽换热器温度升至85℃后进入蒸发器,药液在85℃沸腾蒸发,二次蒸汽(温度在85℃左右)通过蒸汽压缩机,温度升高至92℃左右,然后进入蒸发器加热药液,蒸汽本身冷凝成水(85℃左右),冷凝水经过蒸馏水换热器预热提取液后不断排入中药提取罐,此时作为新溶剂的冷凝水温度约为80℃,形成热能和溶剂的循环,生产过程只在提取的初始阶段使用少量蒸汽将提取罐温度升至80℃,整个过程无需再用蒸汽加热。整个生产过程,水消耗:整个密闭系统生产时的溶剂是循环利用的,加水提取需4吨左右,工业用水价格按3元/吨计算,则4×3=12元;蒸汽消耗:提取初始过程使4 T的水从25℃加热到80℃需要125℃的蒸汽220kg,蒸发过程每蒸发1吨水约用15kg蒸汽,提取浓缩过程需要按照工艺规程要求需要蒸发10吨水,蒸汽价按200元/吨计,则(0.220+0.015×10)×200=74元;电消耗:提取初始阶段很少用电,几乎可以忽略不计,蒸发、循环提取过程每蒸发1吨水约需30度电(压缩机组及泵组运行耗电),整个浓缩过程需要蒸发10吨水,工业用电价格按1元/度计算,则30×10×1=300元。按照该新型技术,每完成一次气滞胃痛浸膏(原药材950kg)的综合费用为12+74+300=386元,即能耗成本为406.3元/吨干药材。
传统的气滞胃痛浸膏提取浓缩工艺为:以5T罐为例,药材555kg加入4445L水提取2次,每次1.5h,共需要水8890L(约8.9吨),将两次提取的药液进入二效浓缩器,真空减压下进行蒸发浓缩,需要7h将8.9吨溶剂蒸发至浓缩完成,整个提取浓缩过程需要6小时。水消耗:8.9吨,水价按3元/吨计,则8.9×3=26.7元;蒸汽消耗:提取过程使4.45 T的水从25℃加热到85℃需要125℃的蒸汽245kg,提取两次则需要490kg,假设浓缩时的提取液温度为80℃,蒸发温度为85℃,负压下每蒸发1吨水需要125℃的蒸汽0.852吨,生产过程需要蒸发约8.9吨的水,则需要蒸汽7.583吨,蒸汽价按200元/吨计,则(0.490+7.583)×200=1614.6元;电消耗:浓缩过程每小时用电约18度(真空泵、冷却循环泵和冷却塔电机耗电),每小时用电18度,每小时蒸发3吨,每蒸发1吨水耗电6度,工业用电价格按1元/度计算,则6×8.9×1=53.4元。按照传统工艺,每完成一次气滞胃痛浸膏(原药材555kg)的综合费用为26.7+1614.6+53.4=1694.7元,即能耗成本为3053.5元/吨干药材。
新型技术充分体现了其高效节能的优点,从环保方面看,更是大大减少了CO2、SO2及氮氧化物的排放,按工业锅炉每生产1吨蒸汽需要燃煤106.7kg,每燃烧1吨煤就产生CO2620kg、SO2 8.5kg、氮氧化物7.4kg计算,新技术与传统工艺相比,节能、环保情况见表。
下表为提取浓缩1吨干药材所需的能耗、成本、环保程度对照表:
项目 热循环提取浓缩工艺 传统提取浓缩工艺 节能率(%)
蒸汽(吨) 0.39 14.54 97.3
溶剂(水,吨) 4.00 16.00 75.0
电(kw/h) 315.8 96.22 -228.2
综合费用(元) 406.3 3053.5 86.7
耗煤(kg) 0.042 1.547 97.3
CO2排放量(kg) 0.110 4.053 97.3
时间(h) 5.5 11 50
操作人数(人) 1 2 50
表中:
Figure 201410162646X100002DEST_PATH_IMAGE002
本发明专利充分体现了其高效、节能、环保、操作方便、自动化程度高等特点,是新型的热循环提取浓缩系统。

Claims (9)

1.一种中药热循环提取浓缩方法,其过程包括:在提取罐(1)中进行中药药物成份的提取,所述提取罐是一个蒸汽夹层加热罐,加热罐夹层设有新蒸汽导入接口(15)和蒸汽冷凝水出口(16),提取罐下端设有提取液排出管道,提取罐上端设有溶剂加入补充管道和循环溶剂导入管道,由提取罐排出的中药提取液经过滤器(2)过滤后,由提取液输送泵(P1)输送进入提取液换热器(3)吸热之后再送到升膜蒸发器(6),提取液从升膜蒸发器(6)的下端导入,在升膜蒸发器中进行热交换之后,使中药提取液吸热升温变为带有药物有效成份的气液混合体,由升膜蒸发器上端导出来的气液混合体进入气液分离器(7),气液混合体在气液分离器(7)中分离为上部的气体和下部的含有药物成分的水液,在气液分离器的上部和升膜蒸发器的放热通道的入口之间,设有蒸汽压缩机(8),由于气体重量轻被抽进蒸汽压缩机(8),蒸汽压缩机(8)通过作功将机械能转化为热能,气液分离器(7)中的气体经过蒸汽压缩机(8)压缩之后使所述气体的压力增大、温度升高,被压力增大和温度升高的气体在升膜蒸发器(6)中放热后冷凝为循环溶剂,循环溶剂经循环溶剂输送泵(P3)输送进入提取液换热器(3)继续放热之后再送到提取罐(1)循环,而含有药物成分的水液存在于气液分离器(7)的底部,存在于气液分离器(7)的底部的含有药物成分的水液再由水液循环输送泵(P2)输送循环进入升膜蒸发器(6)中进行吸热并再次进入气液分离器(7)分离,直到气液分离器(7)中的输出的药液经在线密度计(20)检测达到设定的比重后经浓缩液输送泵(P4)输送到浓液罐(19)。
2.根据权利要求1所述的中药热循环提取浓缩方法,其特征在于:在所述提取液换热器(3)与升膜蒸发器(6)之间,设有热微调换热器(5),由提取罐(1)排出的中药提取液依次经过滤器(2)、提取液输送泵(P1)、提取液换热器(3)的吸热通道和热微调换热器(5)的吸热通道之后再送到升膜蒸发器(6),热微调换热器(5)的放热通道入口连接新蒸汽(11),其放热通道出口通过第二切换开关(10)切换之后与所述循环溶剂通道汇合连接,热微调换热器(5)是在浓缩的初始阶段或在系统温度较低时启动投入使用。
3.根据权利要求1或2所述的中药热循环提取浓缩方法,其特征在于:在升膜蒸发器(6)中设置热交换的放热通道,放热通道入口(61)连接新蒸汽(11),其放热通道出口(62)通过第二切换开关(10)切换之后与所述循环溶剂通道汇合连接,在浓缩的初始阶段或在系统温度较低时,导入新蒸汽(11)为升膜蒸发器(6)加热升温。
4.根据权利要求3所述的中药热循环提取浓缩方法,其特征在于:在所述升膜蒸发器(6)的热交换放热通道的出口(62)与第二切换开关(10)之间,设有冷微调换热器(4),冷微调换热器(4)的吸冷通道的入口与升膜蒸发器(6)的热交换放热通道的出口(62)连接,冷微调换热器(4)的吸冷通道的出口与第二切换开关(10)连接,冷微调换热器(4)的放冷通道的入口连接循环冷却水的进水,冷微调换热器(4)的放冷通道的出口连接循环冷却水的回水。
5.根据权利要求4任一所述的中药热循环提取浓缩方法,其特征在于:在过滤器(2)的出口与提取液输送泵(P1)的入口之间,设有第一切换开关(9),第一切换开关(9)设有清洗液(18)导入管道;在过滤器(2)的出口与第一切换开关(9)之间,设有清洗排放(17)管道,当生产结束后或者是换品种时,启动自动清洗装置,清洗液(18)由第一切换开关(9)转至提取液输送泵(P1),按照提取浓缩时的路线将所有的设备和管路进行循环冲洗,废液最后经过提取罐(1)及过滤器(2),在过滤器(2)的出口排出。
6.根据权利要求1所述的中药热循环提取浓缩方法,其特征在于:所述溶剂为水或含有30%~60%乙醇的水溶液。
7.根据权利要求1所述的中药热循环提取浓缩方法,其特征在于:在提取罐(1)的输入输出口、提取液输送泵(P2)的输入输出口、水液循环输送泵(P2)的输入输出口、循环溶剂输送泵(P3)的输入输出口、浓缩液输送泵(P4)的输入输出口以及升膜蒸发器(6)的提取液的输入口设有自动阀或和调节阀。
8.根据权利要求1所述的中药热循环提取浓缩方法,其特征在于:在所述提取液输送泵(P1)的输入端和输出端之间设有自动阀A6;在所述循环溶剂输送泵(P3)的输入端和输出端之间设有自动阀A11。
9.根据权利要求1所述的中药热循环提取浓缩方法,其特征在于:在气液分离器(7)的下端水液输出口设有比例/比重监测装置(20)。
CN201410162646.XA 2014-04-22 2014-04-22 一种中药热循环提取浓缩方法 Active CN103893991B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410162646.XA CN103893991B (zh) 2014-04-22 2014-04-22 一种中药热循环提取浓缩方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410162646.XA CN103893991B (zh) 2014-04-22 2014-04-22 一种中药热循环提取浓缩方法

Publications (2)

Publication Number Publication Date
CN103893991A true CN103893991A (zh) 2014-07-02
CN103893991B CN103893991B (zh) 2015-11-04

Family

ID=50985754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410162646.XA Active CN103893991B (zh) 2014-04-22 2014-04-22 一种中药热循环提取浓缩方法

Country Status (1)

Country Link
CN (1) CN103893991B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104974549A (zh) * 2014-08-10 2015-10-14 王选明 用于提取天然植物色素的设备
CN105062122A (zh) * 2014-08-10 2015-11-18 王选明 从植物花朵中快速提取天然色素的设备
CN105126383A (zh) * 2015-08-19 2015-12-09 广东罗浮山国药股份有限公司 中药高效节能自动化集成提取浓缩工艺及工艺装备
CN105153736A (zh) * 2014-08-10 2015-12-16 王选明 提取植物色素的节能设备
CN105170044A (zh) * 2014-08-10 2015-12-23 胡刘满 节能型提取植物黄酮的设备
CN105435486A (zh) * 2015-12-11 2016-03-30 苏州泽达兴邦医药科技有限公司 一种热回流提取过程的提取溶剂浓度稳定性控制方法
CN105477900A (zh) * 2015-12-11 2016-04-13 苏州泽达兴邦医药科技有限公司 一种中药热回流提取浓缩过程质量稳定性控制方法
CN105903259A (zh) * 2016-05-26 2016-08-31 江苏康缘药业股份有限公司 一种金银花提取过程的出液控制方法
CN106178584A (zh) * 2014-08-10 2016-12-07 王选明 一种用于提取映山红色素的节能设备
CN106266078A (zh) * 2016-08-30 2017-01-04 江苏康缘药业股份有限公司 一种栀子热处理工艺的控制方法及装置
CN106967032A (zh) * 2014-08-10 2017-07-21 葛云龙 对植物茎叶中黄酮的快速提取的设备及其工作方法
CN108744582A (zh) * 2018-06-15 2018-11-06 河北鑫民和医药科技开发有限责任公司 一种中药提取装置及方法
CN108939606A (zh) * 2018-09-18 2018-12-07 迪茗(上海)智能科技有限公司 一种提取浓缩系统及方法
CN109010551A (zh) * 2018-09-25 2018-12-18 广东世信药业有限公司 一种用于气滞胃痛的胶囊
CN109529403A (zh) * 2019-01-03 2019-03-29 沈奇光 节能型一机两用中药提取、浓缩设备
CN109745719A (zh) * 2019-03-07 2019-05-14 河南羚锐制药股份有限公司 一种余热热力泵浓缩设备
CN109908625A (zh) * 2019-04-15 2019-06-21 湖南时进机械科技有限公司 一种循环式连续萃取浓缩装置及方法
CN110841004A (zh) * 2019-11-30 2020-02-28 贵州天诚农业科技发展有限公司 一种从叠鞘石斛中热回流低温提取叠鞘石斛提取物的工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201978531U (zh) * 2010-11-30 2011-09-21 衡阳市金一帆制药设备实业有限公司 节能的多功能中药提取浓缩机
CN102363085A (zh) * 2011-11-11 2012-02-29 惠州市众惠能源科技有限公司 中药的水提取药液的提取浓缩方法及其专用装置
FR2970659A1 (fr) * 2011-01-25 2012-07-27 Celsius Procede et dispositif d'extraction de molecules
CN203196373U (zh) * 2013-04-23 2013-09-18 四川省裕通生物技术有限公司 多功能中药提取系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201978531U (zh) * 2010-11-30 2011-09-21 衡阳市金一帆制药设备实业有限公司 节能的多功能中药提取浓缩机
FR2970659A1 (fr) * 2011-01-25 2012-07-27 Celsius Procede et dispositif d'extraction de molecules
CN102363085A (zh) * 2011-11-11 2012-02-29 惠州市众惠能源科技有限公司 中药的水提取药液的提取浓缩方法及其专用装置
CN203196373U (zh) * 2013-04-23 2013-09-18 四川省裕通生物技术有限公司 多功能中药提取系统

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106178584A (zh) * 2014-08-10 2016-12-07 王选明 一种用于提取映山红色素的节能设备
CN106967032A (zh) * 2014-08-10 2017-07-21 葛云龙 对植物茎叶中黄酮的快速提取的设备及其工作方法
CN106178585B (zh) * 2014-08-10 2019-01-15 台州知通科技有限公司 一种用于从植物花朵中快速提取天然色素的设备
CN105153736A (zh) * 2014-08-10 2015-12-16 王选明 提取植物色素的节能设备
CN106178585A (zh) * 2014-08-10 2016-12-07 王选明 一种用于从植物花朵中快速提取天然色素的设备
CN106178584B (zh) * 2014-08-10 2019-01-25 台州知通科技有限公司 一种用于提取映山红色素的节能设备
CN106967032B (zh) * 2014-08-10 2019-12-20 丁雪强 对植物茎叶中黄酮的快速提取的设备及其工作方法
CN104974549B (zh) * 2014-08-10 2016-12-07 李挺晖 用于提取天然植物色素的设备
CN106243160B (zh) * 2014-08-10 2018-10-19 山东国和堂制药有限公司 一种用于植物黄酮提取的节能型设备
CN105170044A (zh) * 2014-08-10 2015-12-23 胡刘满 节能型提取植物黄酮的设备
CN104974549A (zh) * 2014-08-10 2015-10-14 王选明 用于提取天然植物色素的设备
CN106243160A (zh) * 2014-08-10 2016-12-21 胡刘满 一种用于植物黄酮提取的节能型设备
CN106967032B8 (zh) * 2014-08-10 2020-01-14 广东香龙香料有限公司 对植物茎叶中黄酮的快速提取的设备及其工作方法
CN105062122A (zh) * 2014-08-10 2015-11-18 王选明 从植物花朵中快速提取天然色素的设备
CN105126383A (zh) * 2015-08-19 2015-12-09 广东罗浮山国药股份有限公司 中药高效节能自动化集成提取浓缩工艺及工艺装备
CN105477900A (zh) * 2015-12-11 2016-04-13 苏州泽达兴邦医药科技有限公司 一种中药热回流提取浓缩过程质量稳定性控制方法
CN105435486A (zh) * 2015-12-11 2016-03-30 苏州泽达兴邦医药科技有限公司 一种热回流提取过程的提取溶剂浓度稳定性控制方法
CN105903259A (zh) * 2016-05-26 2016-08-31 江苏康缘药业股份有限公司 一种金银花提取过程的出液控制方法
CN106266078B (zh) * 2016-08-30 2019-08-16 江苏康缘药业股份有限公司 一种栀子热处理工艺的控制方法及装置
CN106266078A (zh) * 2016-08-30 2017-01-04 江苏康缘药业股份有限公司 一种栀子热处理工艺的控制方法及装置
CN108744582A (zh) * 2018-06-15 2018-11-06 河北鑫民和医药科技开发有限责任公司 一种中药提取装置及方法
CN108744582B (zh) * 2018-06-15 2023-12-19 河北鑫民和医药科技开发有限责任公司 一种中药提取装置及方法
CN108939606A (zh) * 2018-09-18 2018-12-07 迪茗(上海)智能科技有限公司 一种提取浓缩系统及方法
CN109010551A (zh) * 2018-09-25 2018-12-18 广东世信药业有限公司 一种用于气滞胃痛的胶囊
CN109010551B (zh) * 2018-09-25 2021-04-06 广东世信药业有限公司 一种用于气滞胃痛的胶囊
CN109529403A (zh) * 2019-01-03 2019-03-29 沈奇光 节能型一机两用中药提取、浓缩设备
CN109745719A (zh) * 2019-03-07 2019-05-14 河南羚锐制药股份有限公司 一种余热热力泵浓缩设备
CN109908625A (zh) * 2019-04-15 2019-06-21 湖南时进机械科技有限公司 一种循环式连续萃取浓缩装置及方法
CN110841004A (zh) * 2019-11-30 2020-02-28 贵州天诚农业科技发展有限公司 一种从叠鞘石斛中热回流低温提取叠鞘石斛提取物的工艺

Also Published As

Publication number Publication date
CN103893991B (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
CN103893991B (zh) 一种中药热循环提取浓缩方法
CN203763899U (zh) 一种中药热循环提取浓缩系统
CN103768808B (zh) 部分蒸汽再压缩蒸发浓缩系统及方法
CN101757802B (zh) 节能型中药低温减压提取浓缩装置
CN102363085B (zh) 中药的水提取药液的提取浓缩方法及其专用装置
CN206980170U (zh) 一种中药乙醇提取快速浓缩一体设备
CN1233436C (zh) 中药提取浓缩工艺及其设备
CN104922921B (zh) 一种自循环mvr热泵蒸发系统
CN109248467A (zh) 一种从丹参中萃取总丹参酮的工艺
CN204841160U (zh) 一种料液浓缩装置
CN113018899A (zh) 一种高效节能中药热回流低温提取浓缩装置
CN205127429U (zh) 用于中药提取液浓缩的升膜式外循环真空双效浓缩器
CN209204719U (zh) 一种连续式中药提取浓缩系统
CN205974481U (zh) 一种循环利用酒汽热能的酒液加热蒸发系统
CN104667570A (zh) 一种中药提取设备
CN103598980B (zh) 一种中药提取浓缩装置
CN204319832U (zh) 一种低温提取浓缩一体设备
CN205627127U (zh) 一种mvr三效蒸发器
CN204411770U (zh) 一种中药提取设备
CN205412284U (zh) 一种四效蒸发浓缩设备
CN106924992A (zh) 一种中药醇提提取快速浓缩一体设备
CN210645158U (zh) 提取浓缩系统
CN201710997U (zh) 节能型植物有效成份提取浓缩装置
CN105903218A (zh) 一种栀子提取液连续浓缩设备及其控制方法
CN202315398U (zh) 中药的水提取药液的提取浓缩专用装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant