CN103862369A - Automatic feeding and discharging mechanism of six-shaft five-linkage tool grinder - Google Patents

Automatic feeding and discharging mechanism of six-shaft five-linkage tool grinder Download PDF

Info

Publication number
CN103862369A
CN103862369A CN201410113653.0A CN201410113653A CN103862369A CN 103862369 A CN103862369 A CN 103862369A CN 201410113653 A CN201410113653 A CN 201410113653A CN 103862369 A CN103862369 A CN 103862369A
Authority
CN
China
Prior art keywords
mechanical arm
axis
automatic
axis mechanical
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410113653.0A
Other languages
Chinese (zh)
Inventor
卢毓辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUNSHAN ASD MACHINERY TECHNOLOGY CO LTD
Original Assignee
KUNSHAN ASD MACHINERY TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUNSHAN ASD MACHINERY TECHNOLOGY CO LTD filed Critical KUNSHAN ASD MACHINERY TECHNOLOGY CO LTD
Priority to CN201410113653.0A priority Critical patent/CN103862369A/en
Publication of CN103862369A publication Critical patent/CN103862369A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/005Feeding or manipulating devices specially adapted to grinding machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q7/00Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
    • B23Q7/04Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting by means of grippers
    • B23Q7/046Handling workpieces or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q7/00Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
    • B23Q7/10Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting by means of magazines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

The invention discloses an automatic feeding and discharging mechanism of a six-shaft five-linkage tool grinder. The mechanism comprises an automatic feeding assembly, a material grabbing assembly, a rectangular coordinate three-shaft robot and a machine base, wherein the automatic feeding assembly is used for automatically conveying material; the material grabbing assembly is used for grabbing the conveyed material; the rectangular coordinate three-shaft robot is used for moving the grabbed material to a machining position; the machine base is used for limiting the installing position of the automatic feeding assembly, the installing position of the material grabbing assembly and the installing position of the rectangular coordinate three-shaft robot. Compared with the prior art, according to the scheme, due to the fact that the automatic feeding assembly, the material grabbing assembly and the rectangular coordinate three-shaft robot used for adjusting stations are arranged, automatic feeding and discharging of the grinder is achieved, a carrier is provided for full-automatic production of the grinder, and the mechanism has the advantages of being simple in structure, convenient to produce and the like.

Description

The automatic loading and unloading mechanism of six-axle five-linkage cutter and tool grinding machine
Technical field
The present invention relates to grinding machine technical field, relate in particular to a kind of automatic loading and unloading mechanism of six-axle five-linkage cutter and tool grinding machine.
Background technology
Grinding machine is to utilize grinding tool surface of the work to be carried out to the lathe of grinding.Most grinding machines is to use the emery wheel of High Rotation Speed to carry out grinding to surface of the work.Six-axle five-linkage cutter and tool grinding machine of the prior art is substantially all to use artificial feeding, discharge, and so mode automaticity is low, can cause that cost of labor improves, efficiency is slow, and the high result of error rate.
Summary of the invention
The object of the present invention is to provide a kind of automatic loading and unloading mechanism of six-axle five-linkage cutter and tool grinding machine, to solve above-mentioned technical problem.
For reaching this object, the present invention by the following technical solutions:
An automatic loading and unloading mechanism for six-axle five-linkage cutter and tool grinding machine, comprising:
Automatic-feeding assembly, for automatic transport material;
Material grabbing assembly, in order to by conveying and come material capture;
Rectangular co-ordinate three-axis robot, in order to be displaced to Working position by crawled material;
Support, limits the installation site of described Automatic-feeding assembly, described material grabbing assembly, described rectangular co-ordinate three-axis robot;
Described Automatic-feeding assembly at least comprises a vibrating disk and a straight line vibrator, and described vibrating disk is connected with described straight-line oscillation device, in order to automatic transport material;
Described material grabbing assembly comprises liftable material grasping mechanism and can make the rotating mechanism of described material grasping mechanism rotation, described material grasping mechanism comprises having the jaw that matches with material shapes and for making the elevating mechanism of described jaw lifting, described rotating mechanism comprises source of rotational drive, and for connecting the rotating shaft of described source of rotational drive and described material grasping mechanism;
Described rectangular co-ordinate three-axis robot comprises can produce respectively in X-axis, Y-axis and Z-direction X-axis mechanical arm, Y-axis mechanical arm and the Z axis mechanical arm of displacement, any two mechanical arms in adjacent position in described X-axis mechanical arm, described Y-axis mechanical arm and described Z axis mechanical arm are in transmission connection mutually, one of them mechanical arm of described X-axis mechanical arm, described Y-axis mechanical arm, described Z axis mechanical arm is fixedly connected with described support, is fixedly connected with described material grabbing assembly with this mechanical arm in the mechanical arm of non-adjacent position.
Preferably, also comprise control system, described control system is connected respectively with described Automatic-feeding assembly, described material grabbing assembly, described rectangular co-ordinate three-axis robot.
Preferably, described straight-line oscillation device is arranged at a side of described vibrating disk, described straight-line oscillation device comprises the first track, on described the first track, there is the first material trough passing through for material, described Automatic-feeding assembly also comprises material-pulling device, described material-pulling device comprises fixed part, movable part and the first power source for driving movable part to move, on described fixed part, offer the second material trough, described the second material trough and described the first material trough connect, material can move to described the second material trough from described the first material trough, the pushing sheet that can insert in the second material trough is set on described movable part.
Preferably, one end of described the first track and described vibrating disk join, the other end and described material-pulling device join, described the second material trough is opened on described fixed part and is perpendicular with described the first material trough, one end enclosed shape of described the second material trough becomes the first station, described the first station is configured to described pushing sheet material is pushed to and waits for the station capturing, the other end of described the second material trough does not seal and forms pusher entrance, described pusher entrance is configured to described pushing sheet and enters the station that promotes material in described the second material trough, the middle part of described the second material trough and described the first material trough intersection form the second station, described the second station is configured to the station of material wait pusher.
Preferably, be provided for detecting the sensor whether the first station, the second station and pusher entrance have material to exist on described material-pulling device, described sensor is connected with described control system.
Preferably, described Automatic-feeding assembly also comprises the material-gathering device of fixed part one side that is arranged at described material-pulling device, on described material-gathering device, offers blanking port.
Preferably, in described material-gathering device, corresponding to the position of described blanking port, one inclined-plane is set.
Preferably, described elevating mechanism adopts cylinder, at the output of described cylinder, described jaw is set, described jaw comprises the two sub-claw portions that are symmetrical set, described sub-claw portion comprises the connecting portion for connecting cylinder output, and for clamping the clamping part of material, clamping part comprises a groove and is symmetricly set in the clamping area of the both sides of groove.
Preferably, described material grabbing assembly is connected by fixed head with described rectangular co-ordinate three-axis robot, described rotating shaft is rotating to be arranged on described fixed head, the top of described elevating mechanism is fixedly attached in described rotating shaft, described source of rotational drive adopts cylinder or oil cylinder, and the output of described cylinder or oil cylinder is fixedly attached in described rotating shaft.
Preferably, described Y-axis mechanical arm is fixedly connected with described support by fixed head, and described Z axis mechanical arm is arranged on described Y-axis mechanical arm, and described X-axis mechanical arm is arranged on described Z axis mechanical arm, and described material grabbing assembly is connected on described X-axis mechanical arm.
Beneficial effect of the present invention:
Contrast prior art, this programme is by arranging Automatic-feeding assembly, material grabbing assembly, for adjusting the rectangular co-ordinate three-axis robot of station, realized the automatic feeding, discharge of grinding machine, produced carrier is provided for the full-automation of grinding machine, have advantages of simple in structure, be convenient to produce.
Brief description of the drawings
According to drawings and embodiments the present invention is described in further detail below.
Fig. 1 is the perspective view of the charging and discharging mechanism of the grinding machine described in embodiments of the invention;
Fig. 2 is the partial structurtes schematic diagram of the Automatic-feeding assembly shown in Fig. 1;
Fig. 3 is the schematic top plan view of the fixed part shown in Fig. 2;
Fig. 4 is the perspective view of the movable part shown in Fig. 2;
Fig. 5 is the perspective view of the material grabbing assembly shown in Fig. 1;
Fig. 6 is the partial structurtes schematic diagram of the jaw shown in Fig. 5;
Fig. 7 is the perspective view of the rectangular co-ordinate three-axis robot shown in Fig. 1;
Fig. 8 is the perspective view of the support shown in Fig. 1;
Fig. 9 is the structural representation of the brace table shown in Fig. 8;
Figure 10 is the elevational schematic view of the support shown in Fig. 8;
Figure 11 is the control principle drawing of the grinding machine charging and discharging mechanism described in embodiments of the invention.
In figure:
100, Automatic-feeding assembly; 101, vibrating disk; 102, straight-line oscillation device; 103, the first track; 104, the first material trough; 105, material-pulling device; 106, fixed part; 107, the second material trough; 108, movable part; 109, pushing sheet; 110, the first power source; 111, the first station; 112, the second station; 113, material-gathering device; 114, blanking port; 115, pusher entrance;
200, material grabbing assembly; 201, jaw; 202, elevating mechanism; 203, the second power source; 204, rotating shaft; 205, connecting portion; 206, clamping part; 207, groove; 208, clamping area; 209, the first fixed head;
300, rectangular co-ordinate three-axis robot; 301, X-axis mechanical arm; 302, Y-axis mechanical arm; 303, Z axis mechanical arm; 304, the second fixed head; 305, L-type plate;
600, support; 601, machine base body; 602, surface element; 603, installing hole; 604, brace table; 605, horizontal reference groove; 606, boss; 607, boss end face; 608, boss side surfaces; 609, second step face; 610 second sides; 611, the 3rd side; 612, oil-recovery tank; 613, fork truck groove;
700, material.
Detailed description of the invention
Further illustrate technical scheme of the present invention below in conjunction with accompanying drawing and by detailed description of the invention.
As shown in Figure 1, the automatic loading and unloading mechanism of six-axle five-linkage cutter and tool grinding machine of the present invention, comprising: Automatic-feeding assembly 100, for automatic transport material; Material grabbing assembly 200, in order to by conveying and come material capture; Rectangular co-ordinate three-axis robot 300, in order to be displaced to Working position by crawled material; Support 600, limits the installation site of described Automatic-feeding assembly 100, described material grabbing assembly 200, described rectangular co-ordinate three-axis robot 300.
Automatic-feeding assembly 100 at least comprises a vibrating disk 101 and a straight line vibrator 102, and vibrating disk 101 is connected with straight-line oscillation device 102, in order to automatic transport material.Scheme more specifically, shown in Figure 2, straight-line oscillation device 102 is arranged at a side of vibrating disk 101, and straight-line oscillation device 102 comprises on the first track 103, the first tracks 103 having the first material trough 104, and material 700 can pass through from the first material trough 104.Incorporated by reference to shown in Fig. 2 to 4, Automatic-feeding assembly 100 also comprises material-pulling device 105, material-pulling device 105 comprises fixed part 106, movable part 108 and the first power source 110 for driving movable part 108 to move, on fixed part 106, offer the second material trough 107, the second material trough 107 and the first material trough 104 connect, and material 700 can move in the second material trough 107 from the first material trough 104.Referring to Fig. 4, pushing sheet 109 is set on movable part 108, pushing sheet 109 can insert in the second material trough 107, and under the effect of the first power source 110, promotes material 700 in the interior motion of the second material trough 107 until reach assigned position (this assigned position refers to wait for that material grabbing assembly 200 captures the position of material 700).
In the present embodiment, join referring to one end and the vibrating disk 101 of Fig. 2 and 3, the first tracks 103, the other end and material-pulling device 105 join.The second material trough 107 is opened on fixed part 106 and is perpendicular with the first material trough 104, one end enclosed shape of the second material trough 107 becomes the first station 111, the other end does not seal and forms pusher entrance 115, the middle part of the second material trough 107 and the first material trough 104 intersections form the second station 112, wherein, the second station 112 is configured to material 700 waits for the station of pusher, pusher entrance 115 is configured to pushing sheet 109 and enters the station of the interior promotion material of the second material trough 107, the first station 111 is configured to pushing sheet 109 material 700 is pushed to and waits for the station capturing.Preferred scheme, sensor (not shown) is set on material-pulling device 105, for detection of the material 700 of the first station 111, the second station 112 and pusher entrance 115, in the time detecting that the first station 111 exists material 700, signal is passed to control system by sensor, control system control the first power source 110 is not worked, and makes pushing sheet 109 not promote to move ahead in the material of the second station 112; In the time detecting that the material 700 of the first station 111 does not exist, signal is passed to control system by sensor, control system control the first power source 110 is worked, make pushing sheet 109 promote to proceed to the first station 111 in the material of the second station 112, so, just, realized the automatic transmission transport of material.Preferred scheme, sensor adopts photoelectric sensor, and the first power source 110 adopts cylinder.The first material trough 104, the second material trough 107 are all consistent with the size of material 700 and pushing sheet 109, so that smooth orderly the carrying out of convey materials and pusher work.Pushing sheet 109 is one-body molded with movable part 108, so can improve the intensity of part, also can be convenient to manufacture.The material 700 of the present embodiment is preferably bar, certainly in other embodiments, can also be the version such as square.
Shown in Figure 2, Automatic-feeding assembly 100 also comprises a side material-gathering device 113 of the fixed part 106 that is arranged at material-pulling device 105, for the material processing 700 is collected.On material-gathering device 113, offer blanking port 114, by material grabbing assembly 200 by the material of crawl in blanking port 114 is positioned over material-gathering device 113.In the present embodiment, blanking port 114 is preferably waist-shaped hole structure.In material-gathering device 113, corresponding to the position of blanking port 114, an inclined-plane (not shown) is set, when material grabbing assembly 200 by the material of crawl in the time that blanking port 114 falls, material 700 can freely be tumbled to the interior farther position of material-gathering device 113 by inclined-plane, so design can make the material auto-sequencing of material-gathering device 113 inside and be unlikely to overstocked, further can raising efficiency.
Shown in Figure 5, material grabbing assembly 200 comprises liftable material grasping mechanism and can make the rotating mechanism of described material grasping mechanism rotation, described material grasping mechanism comprises having the jaw 201 that matches with material shapes and for making the elevating mechanism 202 of described jaw lifting, described rotating mechanism comprises the second power source 203, be used for providing rotational power, and for connecting the rotating shaft 204 of described the second power source 203 and described material grasping mechanism.Make jaw 201 elevating movements by elevating mechanism 202, be positioned at the material of the first station 111 with gripping.Concrete, elevating mechanism 202 makes jaw 201 drop to the relevant position gripping material of the first station 111, and then elevating mechanism 202 makes jaw 201 rise to leave the first station 111, thereby is to capture Job readiness next time.
In the present embodiment, elevating mechanism 202 adopts cylinder, output (being the lower end of cylinder in figure) at cylinder arranges jaw 201, the structure of jaw 201 is specifically referring to Fig. 6, jaw 201 comprises the two sub-claw portions that are symmetrical set, sub-claw portion comprises the connecting portion 205 for connecting cylinder output, and for clamping the clamping part 206 of material, clamping part 206 comprises a groove 207 and is symmetricly set in the clamping area 208 of the both sides of groove 207.In the time that needs capture material, first cylinder makes jaw 201 drop to the first station 111 places, the centre position of material 700 in two sub-claw portions corresponding to groove 207, then cylinder converges two sub-claw portions in opposite directions, until the clamping area 208 of two sub-claw portions stops while leaning, material 700 is by firm grip between two grooves 207, and last, cylinder makes jaw 201 rise overally to leave the first station 111 and completes material crawl work.In the present embodiment, groove 207 preferably adopts triangle trench structure, and so design, can provide the chucking power that material is stronger, avoids dropping of material.Certainly in other embodiment, groove 207 also can adopt other structures such as deep-slotted chip breaker.The jaw 201 of the present embodiment has two, two jaw 201 parallel interval settings.Can complete the material crawl work of the first station 111 simultaneously and to material-gathering device 113 blanking work, further improve grinding machine operating efficiency by two jaws 201 are set.
Upper end at elevating mechanism 202 connects the second power source 203 by rotating shaft 204, second power source 203 of the present embodiment is cylinder, the output of cylinder and elevating mechanism 202 are by rotating shaft 204 pivot joints, in the time that the output of cylinder is protruding, elevating mechanism 202 will outwards rotate along rotating shaft 204 (rotation direction is the counter clockwise direction of arrow points in the drawings), thereby installs carrier is provided for the automation of material.
Material grabbing assembly 200 is connected by the first fixed head 209 with rectangular co-ordinate three-axis robot 300, complete after material crawl work (comprising that the material that unprocessed material captures and processed captures), adjust displacement by rectangular co-ordinate three-axis robot 300 again, finally realize the automatic feeding, discharge work of material.Referring to Fig. 5, rotating shaft 204 is serially connected with on the first fixed head 209, and be also fixed on the first fixed head 209 as the cylinder end of the second power source 203, the first fixed head 209 is connected on rectangular co-ordinate three-axis robot 300, by the first fixed head 209 for material capture and rotation work reliable and stable environment is provided.
Shown in Figure 7, rectangular co-ordinate three-axis robot 300 comprises can produce respectively in X-axis, Y-axis and Z-direction X-axis mechanical arm 301, Y-axis mechanical arm 302 and the Z axis mechanical arm 303 of displacement, any two mechanical arms in adjacent position in X-axis mechanical arm 301, Y-axis mechanical arm 302 and Z axis mechanical arm 303 interconnect, one of them mechanical arm of X-axis mechanical arm 301, Y-axis mechanical arm 302, Z axis mechanical arm 303 is fixedly connected with described support 600, is fixedly connected with described material grabbing assembly 200 with the mechanical arm of this mechanical arm in non-adjacent position.
In the present embodiment, Y-axis mechanical arm 302 is fixedly connected with support 600 by the second fixed head 304, Z axis mechanical arm 303 is arranged on Y-axis mechanical arm 302, X-axis mechanical arm 301 is arranged on Z axis mechanical arm 303, material grabbing assembly 200 is connected on X-axis mechanical arm 301, Y-axis mechanical arm 302 can make Z axis mechanical arm 303, X-axis mechanical arm 301 and material grabbing assembly 200 produce displacement in Y direction, Z axis mechanical arm 303 can make X-axis mechanical arm 301 and material grabbing assembly 200 in Z-direction, produce displacement, X-axis mechanical arm 301 can make material grabbing assembly 200 in X-direction, produce displacement, so can make crawled material produce the axial displacement of XYZ, thereby realize material disassemble and assemble work on installation component.Certainly in other embodiments, also can be that Y-axis mechanical arm 302 is fixedly connected with support 600 by the second fixed head 304, X-axis mechanical arm 301 is arranged on Y-axis mechanical arm 302, Z axis mechanical arm 303 is arranged on X-axis mechanical arm 301, material grabbing assembly 200 is connected on Z axis mechanical arm 303, can realize equally the function of this programme.
Give an example for one as the connected mode to adjacent mechanical arm and manner of execution, in the present embodiment, Z axis mechanical arm 303 is connected on Y-axis mechanical arm 302 by a L-type plate 305, this L-type plate 305 is fixedly connected with the screw of the screw mechanism of Y-axis mechanical arm 302, the screw mandrel of screw mechanism is arranged and is passed through a motor along Y-axis and drives rotation, in the time that motor rotates screw mandrel, screw produces the straight-line displacement in Y-axis, thereby makes Z axis mechanical arm 303 produce the straight-line displacement in Y-axis.The X-axis mechanical arm 301 of the present embodiment and Z axis mechanical arm 303, and the connected mode of material grabbing assembly 200 and X-axis mechanical arm 301 and manner of execution and aforesaid way principle consistent, repeat no more herein.
Shown in Figure 8, support 600 comprises a machine base body 601, and this machine base body 601 has a surface element 602, and surface element 602 is offered multiple installing holes 603; Also be provided with brace table 604 at surface element 602, on brace table 604, offer multiple installing holes 603.The installing hole 603 of the present embodiment preferably adopts bolt hole, adopts bolt fixed installation, is convenient to dismounting.Installing hole 603 on surface element 602 comprises the two parts at interval, and the center between two parts arranges horizontal reference groove 605, and location can be conveniently installed.
Shown in Figure 9, boss 606 is set on brace table 604, boss 606 at least has a boss end face 607 and boss side surfaces 608, end by boss side surfaces 608 extends to form second step face 609 to brace table 604 outer rims, extends to form the second adjacent side 610 and the 3rd side 611 by the end of second step face 609 to the bottom of brace table 604.The 3rd side 611, for the Y-axis mechanical arm 302 of fixing rectangular co-ordinate three-axis robot 300, specifically connects Y-axis mechanical arm 302 and the 3rd side 611 by the second fixed head 304; Second step face 609 for straight-line oscillation device 102, the second sides 610 that Automatic-feeding assembly 100 is installed for the vibrating disk 101 of fixing Automatic-feeding assembly 100 is installed.By the above-mentioned structural design to brace table 604, can effectively utilize installing space, the carrying out of ease of assembly work.
On surface element 602, be also provided with oil-recovery tank 612, can recycle with oil processing, meet the designing requirement of grinding machine base used specially.Shown in Figure 8, the oil-recovery tank 612 of the present embodiment adopts " U " type structure, multiple installing holes 603 and brace table 604 are surrounded on to its inside, so design, the parts of processing action are all limited in to the inner space of oil-recovery tank 612, can so that processing by oily recovery operation, reclaim more fully, thorough.
The bottom of machine base body 601 arranges fork truck groove 613, can be so that the carrying work of complete machine.Concrete, ask for an interview Figure 10, in the present embodiment, the bottom of machine base body 601 arranges four fork truck grooves 613, wherein, longitudinal separation arranges two fork truck grooves 613 that run through the length direction of machine base body 601, the fork truck groove 613 of the width that runs through machine base body 601 of being horizontally arranged at interval two, and four fork truck grooves 613 all arrange the end position near machine base body 601.So, no matter from laterally or longitudinally all carrying out carrying work to complete machine by fork truck groove 613, flexible operation mode, simultaneously because fork truck groove 613 is all arranged on the end position near machine base body 601, in the time using fork truck to extract machine, can ensure the stationarity of transportation.
Support 600 preferably adopts marble material to make.Traditional Five-axis linked tool grinding machine adopts original cast iron base conventionally, but because cast iron cutter and tool grinding machine belongs to extraordinary type, often needs die sinking again to customize base, so just causes the cost of plant bottom case very large.The support 600 of this programme adopts marble material, and marble has physical stable, organizes carefully, and the crystal grain that is impacted comes off, phozy limit, surface, does not affect its plane precision, and stable material quality, can ensure the shape that remains unchanged for a long period of time, linear expansion coefficient is little, and mechanical precision is high, antirust, antimagnetic, insulation.Marble support adopts monoblock natural granite to burnish and fabricate, and with respect to the die sinking processing of cast iron base, the polishing cost of granite is low, and technique is simple, is convenient to manufacture.For the diversity of cutter and tool grinding machine equipment, can mate flexibly the equipment of various axle construction and stroke.In the process of producing due to cutter, the precision and stability of lathe is had relatively high expectations, marble support not only shock resistance, stability is high, and lower than cast iron cost, outward appearance U.S..
Referring to Figure 11, the grinding machine of this programme also comprises control system, and control system is connected with Automatic-feeding assembly 100, material grabbing assembly 200, rectangular co-ordinate three-axis robot 300, by control system control Automatic-feeding assembly 100 automatic transport materials; The material by material grabbing assembly 200, conveying being come again captures; Then control rectangular co-ordinate three-axis robot 300 crawled material is displaced to Working position; So circulation has just realized the automatic feeding, discharge of material.In the present embodiment, control system preferably adopts PLC system, and design is convenient, and cost is low.
Term that this programme adopts " on ", D score, " left side ", " right side " etc. are for convenience of description and with reference to illustrated direction, " first ", " second ", " the 3rd " etc. are just distinguished on describing, and there is no special implication.
What need statement is; above-mentioned detailed description of the invention is only preferred embodiment of the present invention and institute's application technology principle; in technical scope disclosed in this invention, the variation that any those skilled in the art of being familiar with easily expect or replacement, all should be encompassed in protection scope of the present invention.

Claims (10)

1. an automatic loading and unloading mechanism for six-axle five-linkage cutter and tool grinding machine, is characterized in that, comprising:
Automatic-feeding assembly, for automatic transport material;
Material grabbing assembly, in order to by conveying and come material capture;
Rectangular co-ordinate three-axis robot, in order to be displaced to Working position by crawled material;
Support, limits the installation site of described Automatic-feeding assembly, described material grabbing assembly, described rectangular co-ordinate three-axis robot;
Described Automatic-feeding assembly at least comprises a vibrating disk and a straight line vibrator, and described vibrating disk is connected with described straight-line oscillation device, in order to automatic transport material;
Described material grabbing assembly comprises liftable material grasping mechanism and can make the rotating mechanism of described material grasping mechanism rotation, described material grasping mechanism comprises having the jaw that matches with material shapes and for making the elevating mechanism of described jaw lifting, described rotating mechanism comprises source of rotational drive, and for connecting the rotating shaft of described source of rotational drive and described material grasping mechanism;
Described rectangular co-ordinate three-axis robot comprises can produce respectively in X-axis, Y-axis and Z-direction X-axis mechanical arm, Y-axis mechanical arm and the Z axis mechanical arm of displacement, any two mechanical arms in adjacent position in described X-axis mechanical arm, described Y-axis mechanical arm and described Z axis mechanical arm are in transmission connection mutually, one of them mechanical arm of described X-axis mechanical arm, described Y-axis mechanical arm, described Z axis mechanical arm is fixedly connected with described support, is fixedly connected with described material grabbing assembly with this mechanical arm in the mechanical arm of non-adjacent position.
2. the automatic loading and unloading mechanism of six-axle five-linkage cutter and tool grinding machine according to claim 1, it is characterized in that, also comprise control system, described control system is connected respectively with described Automatic-feeding assembly, described material grabbing assembly, described rectangular co-ordinate three-axis robot.
3. the automatic loading and unloading mechanism of six-axle five-linkage cutter and tool grinding machine according to claim 2, it is characterized in that, described straight-line oscillation device is arranged at a side of described vibrating disk, described straight-line oscillation device comprises the first track, on described the first track, there is the first material trough passing through for material, described Automatic-feeding assembly also comprises material-pulling device, described material-pulling device comprises fixed part, movable part and the first power source for driving movable part to move, on described fixed part, offer the second material trough, described the second material trough and described the first material trough connect, material can move to described the second material trough from described the first material trough, the pushing sheet that can insert in the second material trough is set on described movable part.
4. the automatic loading and unloading mechanism of six-axle five-linkage cutter and tool grinding machine according to claim 3, it is characterized in that, one end of described the first track and described vibrating disk join, the other end and described material-pulling device join, described the second material trough is opened on described fixed part and is perpendicular with described the first material trough, one end enclosed shape of described the second material trough becomes the first station, described the first station is configured to described pushing sheet material is pushed to and waits for the station capturing, the other end of described the second material trough does not seal and forms pusher entrance, described pusher entrance is configured to described pushing sheet and enters the station that promotes material in described the second material trough, the middle part of described the second material trough and described the first material trough intersection form the second station, described the second station is configured to the station of material wait pusher.
5. the automatic loading and unloading mechanism of six-axle five-linkage cutter and tool grinding machine according to claim 4, it is characterized in that, on described material-pulling device, be provided for detecting the sensor whether the first station, the second station and pusher entrance have material to exist, described sensor is connected with described control system.
6. the automatic loading and unloading mechanism of six-axle five-linkage cutter and tool grinding machine according to claim 5, is characterized in that, described Automatic-feeding assembly also comprises the material-gathering device of fixed part one side that is arranged at described material-pulling device, on described material-gathering device, offers blanking port.
7. the automatic loading and unloading mechanism of six-axle five-linkage cutter and tool grinding machine according to claim 6, is characterized in that, in described material-gathering device, corresponding to the position of described blanking port, one inclined-plane is set.
8. according to the automatic loading and unloading mechanism of the six-axle five-linkage cutter and tool grinding machine described in claim 1 to 7 any one, it is characterized in that, described elevating mechanism adopts cylinder, at the output of described cylinder, described jaw is set, described jaw comprises the two sub-claw portions that are symmetrical set, described sub-claw portion comprises the connecting portion for connecting cylinder output, and for clamping the clamping part of material, clamping part comprises a groove and is symmetricly set in the clamping area of the both sides of groove.
9. the automatic loading and unloading mechanism of six-axle five-linkage cutter and tool grinding machine according to claim 8, it is characterized in that, described material grabbing assembly is connected by fixed head with described rectangular co-ordinate three-axis robot, described rotating shaft is rotating to be arranged on described fixed head, the top of described elevating mechanism is fixedly attached in described rotating shaft, described source of rotational drive adopts cylinder or oil cylinder, and the output of described cylinder or oil cylinder is fixedly attached in described rotating shaft.
10. according to the automatic loading and unloading mechanism of the six-axle five-linkage cutter and tool grinding machine described in claim 1 to 7 any one, it is characterized in that, described Y-axis mechanical arm is fixedly connected with described support by fixed head, described Z axis mechanical arm is arranged on described Y-axis mechanical arm, described X-axis mechanical arm is arranged on described Z axis mechanical arm, and described material grabbing assembly is connected on described X-axis mechanical arm.
CN201410113653.0A 2014-03-25 2014-03-25 Automatic feeding and discharging mechanism of six-shaft five-linkage tool grinder Pending CN103862369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410113653.0A CN103862369A (en) 2014-03-25 2014-03-25 Automatic feeding and discharging mechanism of six-shaft five-linkage tool grinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410113653.0A CN103862369A (en) 2014-03-25 2014-03-25 Automatic feeding and discharging mechanism of six-shaft five-linkage tool grinder

Publications (1)

Publication Number Publication Date
CN103862369A true CN103862369A (en) 2014-06-18

Family

ID=50901704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410113653.0A Pending CN103862369A (en) 2014-03-25 2014-03-25 Automatic feeding and discharging mechanism of six-shaft five-linkage tool grinder

Country Status (1)

Country Link
CN (1) CN103862369A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104875198A (en) * 2015-05-14 2015-09-02 上海宜功焊接科技有限公司 Rectangular coordinate type six-axis robot
CN105479663A (en) * 2016-01-07 2016-04-13 上海宝钢工业有限公司 Manufacturing device with iron core steel pipe thread bushing
CN105751062A (en) * 2016-01-14 2016-07-13 南通大学 Manipulator type automatic feeding device for spherical roller grinder
CN106476040A (en) * 2015-08-31 2017-03-08 卡特彼勒公司 Robot system component and its mobile platform
CN106863119A (en) * 2016-12-30 2017-06-20 安徽力成机械装备有限公司 Cage retainer automatic processing apparatus
CN108655913A (en) * 2018-05-14 2018-10-16 安徽裕佳铝塑科技有限公司 A kind of efficient grinding device of aluminum lipstick tube
CN110142666A (en) * 2019-06-03 2019-08-20 安徽宁国晨光精工股份有限公司 A kind of numerically control grinder vibrating disk feeding device and its application method
CN114002989A (en) * 2021-12-30 2022-02-01 南京坚固高中压阀门制造有限公司 Intelligent valve pipe fitting piece feeding remote control system and method based on Internet of things

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201529937U (en) * 2009-11-03 2010-07-21 应连君 Full-automatic cutting-grinding feeder
CN201702776U (en) * 2010-02-09 2011-01-12 东莞朗诚模具有限公司 Manipulator for full-automatic sheet discharging machine
CN202894938U (en) * 2012-12-03 2013-04-24 奥特凯姆(中国)汽车部件有限公司 Grinding machine with automatic feeding device
CN103192366A (en) * 2013-03-28 2013-07-10 重庆绿色智能技术研究院 Manipulator capable of rotating continuously
CN203171619U (en) * 2013-01-25 2013-09-04 深圳深蓝精机有限公司 Efficient grabbing mechanism and grinding device
CN203765449U (en) * 2014-03-25 2014-08-13 昆山艾思迪机械科技有限公司 Automatic feeding and discharging mechanism of six-axis five-linkage tool grinder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201529937U (en) * 2009-11-03 2010-07-21 应连君 Full-automatic cutting-grinding feeder
CN201702776U (en) * 2010-02-09 2011-01-12 东莞朗诚模具有限公司 Manipulator for full-automatic sheet discharging machine
CN202894938U (en) * 2012-12-03 2013-04-24 奥特凯姆(中国)汽车部件有限公司 Grinding machine with automatic feeding device
CN203171619U (en) * 2013-01-25 2013-09-04 深圳深蓝精机有限公司 Efficient grabbing mechanism and grinding device
CN103192366A (en) * 2013-03-28 2013-07-10 重庆绿色智能技术研究院 Manipulator capable of rotating continuously
CN203765449U (en) * 2014-03-25 2014-08-13 昆山艾思迪机械科技有限公司 Automatic feeding and discharging mechanism of six-axis five-linkage tool grinder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104875198A (en) * 2015-05-14 2015-09-02 上海宜功焊接科技有限公司 Rectangular coordinate type six-axis robot
CN106476040A (en) * 2015-08-31 2017-03-08 卡特彼勒公司 Robot system component and its mobile platform
CN106476040B (en) * 2015-08-31 2021-07-13 卡特彼勒公司 Robot system component and moving platform thereof
CN105479663A (en) * 2016-01-07 2016-04-13 上海宝钢工业有限公司 Manufacturing device with iron core steel pipe thread bushing
CN105751062A (en) * 2016-01-14 2016-07-13 南通大学 Manipulator type automatic feeding device for spherical roller grinder
CN106863119A (en) * 2016-12-30 2017-06-20 安徽力成机械装备有限公司 Cage retainer automatic processing apparatus
CN108655913A (en) * 2018-05-14 2018-10-16 安徽裕佳铝塑科技有限公司 A kind of efficient grinding device of aluminum lipstick tube
CN110142666A (en) * 2019-06-03 2019-08-20 安徽宁国晨光精工股份有限公司 A kind of numerically control grinder vibrating disk feeding device and its application method
CN110142666B (en) * 2019-06-03 2023-07-07 桑尼泰克精密工业股份有限公司 Vibration disc feeding device of numerically controlled grinder and using method of vibration disc feeding device
CN114002989A (en) * 2021-12-30 2022-02-01 南京坚固高中压阀门制造有限公司 Intelligent valve pipe fitting piece feeding remote control system and method based on Internet of things
CN114002989B (en) * 2021-12-30 2022-03-22 南京坚固高中压阀门制造有限公司 Intelligent valve pipe fitting piece feeding remote control system and method based on Internet of things

Similar Documents

Publication Publication Date Title
CN103862369A (en) Automatic feeding and discharging mechanism of six-shaft five-linkage tool grinder
CN203765449U (en) Automatic feeding and discharging mechanism of six-axis five-linkage tool grinder
CN104665135B (en) Gadget process equipment
CN205600397U (en) Automatic truss of digit control machine tool
CN204893416U (en) Full -automatic panel beating flow direction of packaging line with steel sheet alignment function
CN105415122A (en) Automatic polishing production line for engine cylinder bodies
CN207155444U (en) A kind of glass edge-grinding machine
CN205111421U (en) Arm robot
CN104942707A (en) Six-axis five-linkage tool grinding machine with automatic feeding and discharging functions
CN102490119B (en) Auxiliary up-and-down feeding mechanism of surface-grinding machine
CN105666232A (en) Suspension type mechanical arm and numerical control machine tool
CN206264671U (en) A kind of plate product CNC carving machine automatic loading and unloading manipulators
CN203765451U (en) Six-axis five-linkage tool grinder with automatic feeding and discharging function
CN205272069U (en) Novel carry mechanical arm
CN104416407B (en) Gadget charging equipment
CN103846793A (en) Grinding wheel spindle assembly and grinding machine comprising same
CN207155539U (en) A kind of automatic loading and unloading device of glass edge-grinding machine
CN103394957A (en) Manipulator structure
CN204934699U (en) Bearing block bottom surface Milling Machining system
KR101727194B1 (en) Auto pallet changer and horizontal machining center having the APC
CN106272504A (en) A kind of Novel industrial robot handgrip
CN104044008A (en) Workpiece transferring device
CN203542202U (en) Ornamental piece feeding device
CN203292800U (en) Valve rod assembling device of automatic ball valve assembling machine
CN203765453U (en) Six-axis five-linkage tool grinding machine and base thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140618