CN103861576A - 一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料及制备方法和应用 - Google Patents

一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料及制备方法和应用 Download PDF

Info

Publication number
CN103861576A
CN103861576A CN201410080366.4A CN201410080366A CN103861576A CN 103861576 A CN103861576 A CN 103861576A CN 201410080366 A CN201410080366 A CN 201410080366A CN 103861576 A CN103861576 A CN 103861576A
Authority
CN
China
Prior art keywords
nano
tio
reaction
hetero
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410080366.4A
Other languages
English (en)
Inventor
胡文丽
于涛
黄娟茹
石婷
谭欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201410080366.4A priority Critical patent/CN103861576A/zh
Publication of CN103861576A publication Critical patent/CN103861576A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料及制备方法和应用,首先利用阳极氧化法制备纳米管阵列薄膜,并通过控制水热反应的时间,制备出高比例取向生长的锐钛矿二氧化钛的高能晶面,同时制备TiO2/SrTiO3异质结纳米管阵列薄膜材料,通过能带构造对纳米TiO2进行结构改性,构建出具有窄禁带宽度的新型复合半导体材料,有效抑制光生电子空穴复合,提高了光催化材料的量子产率,增大光电转化效率,从而极大的改善了纳米TiO2的光电催化性能,在光催化领域具有应用前景。

Description

一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料及制备方法和应用
技术领域
本发明涉及光催化技术领域,更加具体地说,涉及新型纳米光催化半导体复合材料及其制备方法和应用,尤其涉及一种暴露锐钛矿TiO2(004)高能面的TiO2/SrTiO3异质结纳米管阵列光催化材料及其制备方法和应用。
背景技术
纳米TiO2由于其化学性质稳定、安全无毒、高氧化还原能力、成本低等优点受到了广泛的重视。近年来以TiO2纳米颗粒或薄膜或与其他半导体复合等形式材料被广泛应用在染料敏化太阳能电池、光催化、光敏器件和传感器等领域。纳米TiO2晶体类型、表面形态、微粒尺寸、孔的大小以等因素对其性能都有很大影响。TiO2通常以{101}面的形式存在,而非高活性的{001}面,光生电子空穴对复合率高,从而导致量子效率低而抑制了光催化活性。此外,TiO2的禁带宽度较大(3.2eV),仅能利用太阳光中的紫外光(仅占3-5%),极大地限制了TiO2的实际应用。因此,通过贵金属沉积、离子掺杂、染料敏化及半导体复合等方法对TiO2光催化剂进行改性,不仅可以使光生载流子在不同能级半导体之间转移,而且还能有效分离载流子,延长载流子寿命,增加量子效率,提高光催化活性。TiO2纳米管结构特殊、排列整齐、高度有序,与其他形态的纳米TiO2材料相比,具有更大的比表面积和更强的吸附能力,易于实现光生电荷的有效传输,减少电荷与空穴的复合,增大光电转化效率。目前,TiO2纳米管的制备方法有模板法、溶胶凝胶法、水热合成法、阳极氧化法等,其中,阳极氧化法较其他方法拥有操作简单、成本低廉、高比表面积、较高的长径、可控性好、不易脱落等优点。SrTiO3为典型的立方钙钛矿结构,空间群为Pm3m。因其耐光腐蚀与化学腐蚀,性能较稳定,所以被广泛应用于电光器件、光催化剂、微型电容器和铁电存储器等方面。
发明内容
本发明的技术目的在于克服现有技术的不足,克服现有纳米TiO2粉体材料易凝聚、易中毒失活和难分离回收,特别是TiO2光催化纳米材料太阳光响应范围窄等缺陷,即提高其在可见光谱范围内的量子产率、有效抑制光生电子空穴的复合率的同时拓宽其对太阳光谱的利用范围,且制备所需能耗低和成本低,操作简单。
本发明的技术目的通过下述技术方案予以实现:
一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料及制备方法,所述光催化材料由锐钛矿型二氧化钛和SrTiO3组成,所述锐钛矿型二氧化钛暴露并取向生长(004)高能晶面,按照下述步骤进行制备:
步骤1,利用阳极氧化法制备TiO2纳米管材料
在步骤1的阳极氧化制备过程中,选用Ti片和Pt电极,由乙二醇(ethyleneglycol,EG)、NH4F和三蒸水组成的反应电解质溶液,其中三蒸水体积为乙二醇体积的3%,NH4F的质量为乙二醇质量的0.5%,以稳压稳流电源提供直流电源60V,并加以磁力搅拌进行阳极氧化。
在进行阳极氧化时,可选择一次性氧化2-3h,也可选择二次氧化,即首先阳极氧化30min后,取出样品用去离子水溶液超声去除氧化膜,并在电热恒温鼓风机中于120℃下干燥,备用;二次氧化反应时间为2h,,反应结束后用无水乙醇和去离子水清洗Ti片,并在电热恒温鼓风机中于120℃下干燥,保存,即制备好TiO2纳米管材料。
使用的Ti片在进行使用时,首先进行预处理:将Ti箔(纯度99.7%,厚度为0.5mm)裁剪成1×4cm的尺寸,然后先用洗洁精清洗裁剪后的Ti片,再用蒸馏水充分的清洗Ti片的表面;接着将该Ti片先后放入异丙醇、无水乙醇及三蒸水中各超声清洗15min,最后将Ti片取出并放入鼓风干燥箱中于120℃下干燥,备用。
步骤2,以步骤1制备的TiO2纳米管材料为反应物,在Sr(OH)2水溶液中反应后,使其在空气气氛中自然冷却至室温20—25℃;所述Sr(OH)2水溶液的浓度为0.025mol/L,反应温度为180—220℃,反应时间为20min—5h,优选200—220℃反应1—2h;在取出反应后的样品后,分别用稀盐酸,无水乙醇,蒸馏水清洗,并在电热恒温鼓风机中于120℃下干燥,保存;
步骤3,将步骤2制备的样品在空气氛围下从室温20—25℃升至450℃,升温速率为2℃/min,并在该温度下恒温1.5—2h,焙烧完成自然冷却至室温20—25℃取出,即得本发明的TiO2/SrTiO3异质结纳米管阵列薄膜材料。
如本发明上述的TiO2/SrTiO3异质结纳米管阵列薄膜材料在催化降解亚甲基蓝和罗丹明B中的应用。
与现有技术相比,本发明中采用简单、易操作、成本低廉的阳极氧化法,在低含量F-的条件下,制备排列整齐、高度有序的纳米管阵列薄膜,减少了F-的污染,且纳米管材料与基底结合紧密,具有大的比表面积和更强的吸附能力,易于实现光生电荷的有效传输;通过控制水热反应的时间,制备出高比例取向生长的锐钛矿TiO2(004)高能晶面,提高光催化材料的降解性能;同时,制备出不同SrTiO3含量覆盖的TiO2/SrTiO3异质结纳米管阵列薄膜材料,通过能带构造对纳米TiO2进行结构改性,构建出具有窄禁带宽度的新型复合半导体材料。有效抑制光生电子空穴复合,提高了光催化材料的量子产率,增大光电转化效率,从而极大的改善了纳米TiO2的光电催化性能。TiO2/SrTiO3异质结材料表征性能如附图所示。
SrTiO3导带电位与TiO2导带电位接近,所形成的异质结中间层能阶较低;由于SrTiO3导带电位较TiO2负200mV,当光生电子从SrTiO3导带上跃迁进入中间层内后就会很快跃迁到TiO2导带上;半导体异质结中间层较为狭窄,电子掉落其中后与其它杂质相接触几率较低,则不会因杂质碰撞使传输能力受限,因此可有效提升其迁移速率,抑制空穴与电子的复合,明显改善了纳米TiO2的光电催化性能。使其在染料敏化太阳能电池、光催化降解污染物、光解水制氢气、超亲水性和自清洁等领域得到广泛的应用。
图1-图4为扫描电子显微镜照片(SEM,仪器型号:场发射扫描电子显微镜SEM,S-4800,日本日立公司),经过水热反应后,TiO2纳米管表面原位生长了很多SrTiO3颗粒。图5-图6为X射线衍射仪(X射线衍射仪XRD,D8-Focus,德国布鲁克AXS有限公司)光催化材料的晶相结构和成分分析,TiO2纳米管阵列分别在2θ=25.2°,37.4°,47.8°,53.3°,54.7°,62.2°处有六个明显的衍射峰,分别对应锐钛矿相TiO2(JCPDSN0.65-5714){101}的(101),(004),(200),(105),(211)和(204)衍射面,其他的峰来自于基底Ti,表明制备的TiO2纳米管阵列是纯锐钛矿相TiO2,该纳米管阵列在200℃水热处理后,还在2θ=32.2°,39.75°,46.43°和57.69°出现个出现了4个新衍射峰,这4个新衍射峰归属于SrTiO3的(110),(111),(200)和(211)衍射面。通过此方法,TiO2/SrTiO3异质结材料随着水热时间变化,TiO2(004)晶面取向生长。
光电性能主要通过光电催化实验进行研究。光电催化反应系统主要包含光电反应器、恒电位仪和氙灯源。光电反应器是一个由两个同心圆柱形槽所组成,外槽为常规玻璃;内槽为石英,反应器有效容积50ml。光电化学测试和反应采用三电极系统,其中Ti片/GC为工作电极(WE);Pt丝为对电极(CE);饱和甘汞电极为参比电极(SCE);0.1mol·L-1NaCl为支持电解质;氙灯作为光源。以初始浓度为10mg/L的亚甲基蓝水溶液和4mg/L的罗丹明B水溶液为降解目标物,进行光电催化氧化降解实验研究异质结纳米管阵列薄膜材料的光电催化活性实验研究。
如图7和8所示为异质结纳米管阵列薄膜材料的光电催化亚甲基蓝水溶液降解率对比分析,(C0-C)/C0表示光催化材料对亚甲基蓝的降解效率,C0和C分别为亚甲基蓝的初始浓度和时时浓度。光电催化反应时间为20min时,水热反应时间小于1h的异质结纳米管阵列薄膜材料中,水热反应30min后的异质结纳米管阵列薄膜材料降解率最高,即可达99.7%。纯TiO2在反应进行20min时,对亚甲基蓝水溶液的降解率为63.8%;水热反应时间大于1h的异质结纳米管阵列薄膜材料中,经水热反应2h后的样品降解率最高,可达99.0%。
如图9和10所示为异质结纳米管阵列薄膜材料的光电催化罗丹明B水溶液降解率对比分析,(C0-C)/C0表示光催化材料对罗丹明B的降解效率,C0和C分别为罗丹明B的初始浓度和时时浓度。光电催化反应时间为200s时,水热反应时间小于1h的异质结纳米管阵列薄膜材料中,水热反应30min后的异质结纳米管阵列薄膜材料降解率最高,即可达99.5%。纯TiO2在反应进行200s时,对亚甲基蓝水溶液的降解率为58.2%;水热反应时间大于1h的异质结纳米管阵列薄膜材料中,经水热反应2h后的样品降解率最高,可达99.5%。可见利用本方法制备出的具有高能晶面的TiO2/SrTiO3异质结材料可以有效提高光催化活性。
本发明的技术方案在低含量F-条件下,利用阳极氧化法制备TiO2纳米管,并以其为反应物,与Sr(OH)2溶液进行水热反应,制备出TiO2的(004)晶面定向生长的TiO2/SrTiO3异质结纳米管光催化材料,通过表征测试和光电活性实验,证明了其在模拟太阳光激发下具有良好的光电催化性能。利用SrTiO3带隙(Eg=3.2eV)与TiO2相同,而导带和价带能级不同的特点,将二者复合,就可以在其界面形成势垒和能谷,改变光生载流子的迁移过程,促进光生电子空穴的有效分离,达到提高光催化效率的目的。本发明方法简便,过程易于控制,且制备出的TiO2/SrTiO3异质结纳米管阵列薄膜光催化材料具有光催化稳定性、热稳定性以及在高光电催化氧化活性。较传统方法制备的光催化材料相比光催化活性明显提高。
附图说明
图1为TiO2纳米管阵列薄膜光催化材料SEM截面图。
图2为TiO2纳米管阵列薄膜光催化材料SEM俯视图。
图3为水热5h后的TiO2/SrTiO3异质结纳米管阵列薄膜光催化材料SEM截面图。
图4为水热5h后的TiO2/SrTiO3异质结纳米管阵列薄膜光催化材料SEM俯视图。
图5为制备纯TiO2、不同水热10min-50min的TiO2/SrTiO3异质结材料XRD图,其中△表示TiO2晶相,〇表示SrTiO3晶相。
图6为制备纯TiO2、不同水热1h-5h的TiO2/SrTiO3异质结材料XRD图,其中△表示TiO2晶相,〇表示SrTiO3晶相。
图7为TiO2、水热10min-50minTiO2/SrTiO3异质结光催化材料对亚甲基蓝水溶液的光电催化降解效率对比图。
图8为TiO2、水热1h-3hTiO2/SrTiO3异质结光催化材料对亚甲基蓝水溶液的光电催化降解效率对比图。
图9为TiO2、水热10min-50minTiO2/SrTiO3异质结光催化材料对罗丹明B水溶液的光电催化降解效率对比图。
图10为TiO2、水热1h-5hTiO2/SrTiO3异质结光催化材料对罗丹明B水溶液的光电催化降解效率对比图。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案,其中所述的室温为20—25℃,采用二次氧化化进行阳极氧化制备二氧化钛纳米管材料。
实施例1-制备TiO2纳米管材料
(1)将Ti箔(纯度99.7%,厚度为0.5mm)裁剪成1×4cm的尺寸,然后先用洗洁精清洗裁剪后的Ti片,再用蒸馏水充分的清洗Ti片的表面;接着将该Ti片先后放入异丙醇、无水乙醇及三蒸水中各超声清洗15min,最后将Ti片取出并放入鼓风干燥箱中于120℃下干燥,备用。
(2)将(1)中预处理的Ti片和Pt放入由乙二醇(ethyleneglycol,EG)、NH4F和三蒸水组成的反应体系中,反应体系为乙二醇(320ml)+0.5wt%NH4F(1.7848g)+3vol.%H2O(9.6mL)的电解质溶液,以稳压稳流电源提供直流电源60V,并加以磁力搅拌,阳极氧化30min后,取出样品用去离子水溶液超声去除氧化膜,并在电热恒温鼓风机中于120℃下干燥,备用。
(3)以(2)中Ti片为基底,在与(2)反应体系和反应条件相同下,二次氧化反应时间为2h,反应结束后用无水乙醇和去离子水清洗Ti片,并在电热恒温鼓风机中于120℃下干燥。将制备好的材料置于马弗炉中,在空气氛围下从室温升至450℃,升温速率为2℃/min,并在该温度下恒温2h,焙烧完成冷却至室温取出,即制备好TiO2纳米管材料。
实施例2
(1)将Ti箔(纯度99.7%,厚度为0.5mm)裁剪成1×4cm的尺寸,然后先用洗洁精清洗裁剪后的Ti片,再用蒸馏水充分的清洗Ti片的表面;接着将该Ti片先后放入异丙醇、无水乙醇及三蒸水中各超声清洗15min,最后将Ti片取出并放入鼓风干燥箱中于120℃下干燥,备用。
(2)将(1)中预处理的Ti片和Pt放入由乙二醇(ethyleneglycol,EG)、NH4F和三蒸水组成的反应体系中,反应体系为乙二醇(320ml)+0.5wt%NH4F(1.7848g)+3vol.%H2O(9.6mL)的电解质溶液,以稳压稳流电源提供直流电源60V,并加以磁力搅拌,阳极氧化30min后,取出样品用去离子水溶液超声去除氧化膜,并在电热恒温鼓风机中于120℃下干燥,备用。
(3)以(2)中Ti片为基底,在与(2)反应体系和反应条件相同下,二次氧化反应时间为2h,,反应结束后用无水乙醇和去离子水清洗Ti片,并在电热恒温鼓风机中于120℃下干燥,保存,即制备好TiO2纳米管材料。
(4)以(3)中制备好的TiO2纳米管材料为反应物,以蒸馏水为溶剂配置浓度为0.025M的Sr(OH)2溶液,将溶液转移到内衬聚四氟乙烯的反应釜中,置于200℃的烘箱中水热反应10min,取出反应釜,使其自然冷却至室温,取出样品分别用稀盐酸,无水乙醇,蒸馏水清洗,并在电热恒温鼓风机中于120℃下干燥,保存。
(5)将(4)中制备好的样品置于马弗炉中,在空气氛围下从室温升至450℃,升温速率为2℃/min,并在该温度下恒温2h,焙烧完成冷却至室温取出,即得水热10min的TiO2/SrTiO3异质结纳米管阵列薄膜样品。
实施例3
(1)将Ti箔(纯度99.7%,厚度为0.5mm)裁剪成1×4cm的尺寸,然后先用洗洁精清洗裁剪后的Ti片,再用蒸馏水充分的清洗Ti片的表面;接着将该Ti片先后放入异丙醇、无水乙醇及三蒸水中各超声清洗15min,最后将Ti片取出并放入鼓风干燥箱中于120℃下干燥,备用。
(2)将(1)中预处理的Ti片和Pt放入由乙二醇(ethyleneglycol,EG)、NH4F和三蒸水组成的反应体系中,反应体系为乙二醇(320ml)+0.5wt%NH4F(1.7848g)+3vol.%H2O(9.6mL)的电解质溶液,以稳压稳流电源提供直流电源60V,并加以磁力搅拌,阳极氧化30min后,取出样品用去离子水溶液超声去除氧化膜,并在电热恒温鼓风机中于120℃下干燥,备用。
(3)以(2)中Ti片为基底,在与(2)反应体系和反应条件相同下,二次氧化反应时间为2h,,反应结束后用无水乙醇和去离子水清洗Ti片,并在电热恒温鼓风机中于120℃下干燥,保存,即制备好TiO2纳米管材料。
(4)以(3)中制备好的TiO2纳米管材料为反应物,以蒸馏水为溶剂配置浓度为0.025M的Sr(OH)2溶液,将溶液转移到内衬聚四氟乙烯的反应釜中,置于200℃的烘箱中水热反应30min,取出反应釜,使其自然冷却至室温,取出样品分别用稀盐酸,无水乙醇,蒸馏水清洗,并在电热恒温鼓风机中于120℃下干燥,保存。
(5)将(4)中制备好的样品置于马弗炉中,在空气氛围下从室温升至450℃,升温速率为2℃/min,并在该温度下恒温2h,焙烧完成冷却至室温取出,即得水热30min的TiO2/SrTiO3异质结纳米管阵列薄膜样品。
实施例4
(1)将Ti箔(纯度99.7%,厚度为0.5mm)裁剪成1×4cm的尺寸,然后先用洗洁精清洗裁剪后的Ti片,再用蒸馏水充分的清洗Ti片的表面;接着将该Ti片先后放入异丙醇、无水乙醇及三蒸水中各超声清洗15min,最后将Ti片取出并放入鼓风干燥箱中于120℃下干燥,备用。
(2)将(1)中预处理的Ti片和Pt放入由乙二醇(ethyleneglycol,EG)、NH4F和三蒸水组成的反应体系中,反应体系为乙二醇(320ml)+0.5wt%NH4F(1.7848g)+3vol.%H2O(9.6mL)的电解质溶液,以稳压稳流电源提供直流电源60V,并加以磁力搅拌,阳极氧化30min后,取出样品用去离子水溶液超声去除氧化膜,并在电热恒温鼓风机中于120℃下干燥,备用。
(3)以(2)中Ti片为基底,在与(2)反应体系和反应条件相同下,二次氧化反应时间为2h,,反应结束后用无水乙醇和去离子水清洗Ti片,并在电热恒温鼓风机中于120℃下干燥,保存,即制备好TiO2纳米管材料。
(4)以(3)中制备好的TiO2纳米管材料为反应物,以蒸馏水为溶剂配置浓度为0.025M的Sr(OH)2溶液,将溶液转移到内衬聚四氟乙烯的反应釜中,置于200℃的烘箱中水热反应40min,取出反应釜,使其自然冷却至室温,取出样品分别用稀盐酸,无水乙醇,蒸馏水清洗,并在电热恒温鼓风机中于120℃下干燥,保存。
(5)将(4)中制备好的样品置于马弗炉中,在空气氛围下从室温升至450℃,升温速率为2℃/min,并在该温度下恒温2h,焙烧完成冷却至室温取出,即得水热40min的TiO2/SrTiO3异质结纳米管阵列薄膜样品。
实施例5
(1)将Ti箔(纯度99.7%,厚度为0.5mm)裁剪成1×4cm的尺寸,然后先用洗洁精清洗裁剪后的Ti片,再用蒸馏水充分的清洗Ti片的表面;接着将该Ti片先后放入异丙醇、无水乙醇及三蒸水中各超声清洗15min,最后将Ti片取出并放入鼓风干燥箱中于120℃下干燥,备用。
(2)将(1)中预处理的Ti片和Pt放入由乙二醇(ethyleneglycol,EG)、NH4F和三蒸水组成的反应体系中,反应体系为乙二醇(320ml)+0.5wt%NH4F(1.7848g)+3vol.%H2O(9.6mL)的电解质溶液,以稳压稳流电源提供直流电源60V,并加以磁力搅拌,阳极氧化30min后,取出样品用去离子水溶液超声去除氧化膜,并在电热恒温鼓风机中于120℃下干燥,备用。
(3)以(2)中Ti片为基底,在与(2)反应体系和反应条件相同下,二次氧化反应时间为2h,,反应结束后用无水乙醇和去离子水清洗Ti片,并在电热恒温鼓风机中于120℃下干燥,保存,即制备好TiO2纳米管材料。
(4)以(3)中制备好的TiO2纳米管材料为反应物,以蒸馏水为溶剂配置浓度为0.025M的Sr(OH)2溶液,将溶液转移到内衬聚四氟乙烯的反应釜中,置于200℃的烘箱中水热反应50min,取出反应釜,使其自然冷却至室温,取出样品分别用稀盐酸,无水乙醇,蒸馏水清洗,并在电热恒温鼓风机中于120℃下干燥,保存。
(5)将(4)中制备好的样品置于马弗炉中,在空气氛围下从室温升至450℃,升温速率为2℃/min,并在该温度下恒温2h,焙烧完成冷却至室温取出,即得水热50min的TiO2/SrTiO3异质结纳米管阵列薄膜样品。
实施例6
(1)将Ti箔(纯度99.7%,厚度为0.5mm)裁剪成1×4cm的尺寸,然后先用洗洁精清洗裁剪后的Ti片,再用蒸馏水充分的清洗Ti片的表面;接着将该Ti片先后放入异丙醇、无水乙醇及三蒸水中各超声清洗15min,最后将Ti片取出并放入鼓风干燥箱中于120℃下干燥,备用。
(2)将(1)中预处理的Ti片和Pt放入由乙二醇(ethyleneglycol,EG)、NH4F和三蒸水组成的反应体系中,反应体系为乙二醇(320ml)+0.5wt%NH4F(1.7848g)+3vol.%H2O(9.6mL)的电解质溶液,以稳压稳流电源提供直流电源60V,并加以磁力搅拌,阳极氧化30min后,取出样品用去离子水溶液超声去除氧化膜,并在电热恒温鼓风机中于120℃下干燥,备用。
(3)以(2)中Ti片为基底,在与(2)反应体系和反应条件相同下,二次氧化反应时间为2h,,反应结束后用无水乙醇和去离子水清洗Ti片,并在电热恒温鼓风机中于120℃下干燥,保存,即制备好TiO2纳米管材料。
(4)以(3)中制备好的TiO2纳米管材料为反应物,以蒸馏水为溶剂配置浓度为0.025M的Sr(OH)2溶液,将溶液转移到内衬聚四氟乙烯的反应釜中,置于200℃的烘箱中水热反应1h,取出反应釜,使其自然冷却至室温,取出样品分别用稀盐酸,无水乙醇,蒸馏水清洗,并在电热恒温鼓风机中于120℃下干燥,保存。
(5)将(4)中制备好的样品置于马弗炉中,在空气氛围下从室温升至450℃,升温速率为2℃/min,并在该温度下恒温2h,焙烧完成冷却至室温取出,即得水热1h的TiO2/SrTiO3异质结纳米管阵列薄膜样品。
实施例7
(1)将Ti箔(纯度99.7%,厚度为0.5mm)裁剪成1×4cm的尺寸,然后先用洗洁精清洗裁剪后的Ti片,再用蒸馏水充分的清洗Ti片的表面;接着将该Ti片先后放入异丙醇、无水乙醇及三蒸水中各超声清洗15min,最后将Ti片取出并放入鼓风干燥箱中于120℃下干燥,备用。
(2)将(1)中预处理的Ti片和Pt放入由乙二醇(ethyleneglycol,EG)、NH4F和三蒸水组成的反应体系中,反应体系为乙二醇(320ml)+0.5wt%NH4F(1.7848g)+3vol.%H2O(9.6mL)的电解质溶液,以稳压稳流电源提供直流电源60V,并加以磁力搅拌,阳极氧化30min后,取出样品用去离子水溶液超声去除氧化膜,并在电热恒温鼓风机中于120℃下干燥,备用。
(3)以(2)中Ti片为基底,在与(2)反应体系和反应条件相同下,二次氧化反应时间为2h,,反应结束后用无水乙醇和去离子水清洗Ti片,并在电热恒温鼓风机中于120℃下干燥,保存,即制备好TiO2纳米管材料。
(4)以(3)中制备好的TiO2纳米管材料为反应物,以蒸馏水为溶剂配置浓度为0.025M的Sr(OH)2溶液,将溶液转移到内衬聚四氟乙烯的反应釜中,置于200℃的烘箱中水热反应2h,取出反应釜,使其自然冷却至室温,取出样品分别用稀盐酸,无水乙醇,蒸馏水清洗,并在电热恒温鼓风机中于120℃下干燥,保存。
(5)将(4)中制备好的样品置于马弗炉中,在空气氛围下从室温升至450℃,升温速率为2℃/min,并在该温度下恒温2h,焙烧完成冷却至室温取出,即得水热2h的TiO2/SrTiO3异质结纳米管阵列薄膜样品。
实施例8
(1)将Ti箔(纯度99.7%,厚度为0.5mm)裁剪成1×4cm的尺寸,然后先用洗洁精清洗裁剪后的Ti片,再用蒸馏水充分的清洗Ti片的表面;接着将该Ti片先后放入异丙醇、无水乙醇及三蒸水中各超声清洗15min,最后将Ti片取出并放入鼓风干燥箱中于120℃下干燥,备用。
(2)将(1)中预处理的Ti片和Pt放入由乙二醇(ethyleneglycol,EG)、NH4F和三蒸水组成的反应体系中,反应体系为乙二醇(320ml)+0.5wt%NH4F(1.7848g)+3vol.%H2O(9.6mL)的电解质溶液,以稳压稳流电源提供直流电源60V,并加以磁力搅拌,阳极氧化30min后,取出样品用去离子水溶液超声去除氧化膜,并在电热恒温鼓风机中于120℃下干燥,备用。
(3)以(2)中Ti片为基底,在与(2)反应体系和反应条件相同下,二次氧化反应时间为2h,,反应结束后用无水乙醇和去离子水清洗Ti片,并在电热恒温鼓风机中于120℃下干燥,保存,即制备好TiO2纳米管材料。
(4)以(3)中制备好的TiO2纳米管材料为反应物,以蒸馏水为溶剂配置浓度为0.025M的Sr(OH)2溶液,将溶液转移到内衬聚四氟乙烯的反应釜中,置于200℃的烘箱中水热反应3h,取出反应釜,使其自然冷却至室温,取出样品分别用稀盐酸,无水乙醇,蒸馏水清洗,并在电热恒温鼓风机中于120℃下干燥,保存。
(5)将(4)中制备好的样品置于马弗炉中,在空气氛围下从室温升至450℃,升温速率为2℃/min,并在该温度下恒温2h,焙烧完成冷却至室温取出,即得水热3h的TiO2/SrTiO3异质结纳米管阵列薄膜样品。
实施例9
(1)将Ti箔(纯度99.7%,厚度为0.5mm)裁剪成1×4cm的尺寸,然后先用洗洁精清洗裁剪后的Ti片,再用蒸馏水充分的清洗Ti片的表面;接着将该Ti片先后放入异丙醇、无水乙醇及三蒸水中各超声清洗15min,最后将Ti片取出并放入鼓风干燥箱中于120℃下干燥,备用。
(2)将(1)中预处理的Ti片和Pt放入由乙二醇(ethyleneglycol,EG)、NH4F和三蒸水组成的反应体系中,反应体系为乙二醇(320ml)+0.5wt%NH4F(1.7848g)+3vol.%H2O(9.6mL)的电解质溶液,以稳压稳流电源提供直流电源60V,并加以磁力搅拌,阳极氧化30min后,取出样品用去离子水溶液超声去除氧化膜,并在电热恒温鼓风机中于120℃下干燥,备用。
(3)以(2)中Ti片为基底,在与(2)反应体系和反应条件相同下,二次氧化反应时间为2h,,反应结束后用无水乙醇和去离子水清洗Ti片,并在电热恒温鼓风机中于120℃下干燥,保存,即制备好TiO2纳米管材料。
(4)以(3)中制备好的TiO2纳米管材料为反应物,以蒸馏水为溶剂配置浓度为0.025M的Sr(OH)2溶液,将溶液转移到内衬聚四氟乙烯的反应釜中,置于200℃的烘箱中水热反应5h,取出反应釜,使其自然冷却至室温,取出样品分别用稀盐酸,无水乙醇,蒸馏水清洗,并在电热恒温鼓风机中于120℃下干燥,保存。
(5)将(4)中制备好的样品置于马弗炉中,在空气氛围下从室温升至450℃,升温速率为2℃/min,并在该温度下恒温2h,焙烧完成冷却至室温取出,即得水热5h的TiO2/SrTiO3异质结纳米管阵列薄膜样品。
依照发明的技术方案,变更步骤2中的工艺参数:反应温度为180—220℃,反应时间为20min—5h,优选200—220℃反应1—2h;变更步骤3中的工艺参数:在空气氛围下从室温20—25℃升至450℃,升温速率为2℃/min,并在该温度下恒温1.5—2h,焙烧完成自然冷却至室温20—25℃取出。依据上述参数进行变更后,制备的TiO2/SrTiO3异质结纳米管阵列薄膜材料,同上述实施例制备的材料性质基本一致,即实现TiO2/SrTiO3异质结材料和TiO2(004)晶面取向生长,同时表现出较高的光催化性能。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (9)

1.一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料,其特征在于,所述光催化材料由锐钛矿型二氧化钛和SrTiO3组成,所述锐钛矿型二氧化钛暴露并取向生长(004)高能晶面,按照下述步骤进行制备: 
步骤1,利用阳极氧化法制备TiO2纳米管材料; 
步骤2,以步骤1制备的TiO2纳米管材料为反应物,在Sr(OH)2水溶液中反应后,使其在空气气氛中自然冷却至室温20—25℃; 
步骤3,将步骤2制备的样品在空气氛围下从室温20—25℃升至450℃,升温速率为2℃/min,并在该温度下恒温1.5—2h,焙烧完成自然冷却至室温20—25℃取出。 
2.根据权利要求1所述的一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料,其特征在于,在所述步骤2中,所述Sr(OH)2水溶液的浓度为0.025mol/L,反应温度为180—220℃,反应时间为20min—5h。 
3.根据权利要求1所述的一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料,其特征在于,在所述步骤2中,优选200—220℃反应1—2h。 
4.根据权利要求1所述的一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料,其特征在于,在步骤1的阳极氧化制备过程中,选用Ti片和Pt电极,由乙二醇、NH4F和三蒸水组成的反应电解质溶液,其中三蒸水体积为乙二醇体积的3%,NH4F的质量为乙二醇质量的0.5%,以稳压稳流电源提供直流电源60V,并加以磁力搅拌进行阳极氧化。 
5.一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料的制备方法,其特征在于,按照下述步骤进行制备: 
步骤1,利用阳极氧化法制备TiO2纳米管材料; 
步骤2,以步骤1制备的TiO2纳米管材料为反应物,在Sr(OH)2水溶液中反应后,使其在空气气氛中自然冷却至室温20—25℃; 
步骤3,将步骤2制备的样品在空气氛围下从室温20—25℃升至450℃,升温速率为2℃/min,并在该温度下恒温1.5—2h,焙烧完成自然冷却至室温20—25℃取出,即制备所述光催化材料,所述光催化材料由锐钛矿型二氧化钛和SrTiO3组成,所述锐钛矿型二氧化钛暴露并取向生长(004)高能晶面。 
6.根据权利要求5所述的一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料的制备方法,其特征在于,在所述步骤2中,所述Sr(OH)2水溶液的浓度为0.025mol/L,反应温度为180—220℃,反应时间为20min—5h。 
7.根据权利要求5所述的一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料的制备方法,其特征在于,在所述步骤2中,优选200—220℃反应1—2h。 
8.根据权利要求5所述的一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料的制备方法,其特征在于,在步骤1的阳极氧化制备过程中,选用Ti片和Pt电极,由乙二醇、NH4F和三蒸水组成的反应电解质溶液,其中三蒸水体积为乙二醇体积的3%,NH4F的质量为乙二醇质量的0.5%,以稳压稳流电源提供直流电源60V,并加以磁力搅拌进行阳极氧化。 
9.如权利要求1—4之一所述的暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料在催化降解亚甲基蓝和罗丹明B中的应用。 
CN201410080366.4A 2014-03-06 2014-03-06 一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料及制备方法和应用 Pending CN103861576A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410080366.4A CN103861576A (zh) 2014-03-06 2014-03-06 一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410080366.4A CN103861576A (zh) 2014-03-06 2014-03-06 一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料及制备方法和应用

Publications (1)

Publication Number Publication Date
CN103861576A true CN103861576A (zh) 2014-06-18

Family

ID=50900944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410080366.4A Pending CN103861576A (zh) 2014-03-06 2014-03-06 一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料及制备方法和应用

Country Status (1)

Country Link
CN (1) CN103861576A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105056980A (zh) * 2015-09-01 2015-11-18 中国计量学院 一种Ag3PO4/TiO2纳米管阵列复合光催化剂及其制备方法
CN106431005A (zh) * 2016-09-08 2017-02-22 青岛科技大学 一种钛酸锶‑二氧化钛复合纳米管阵列薄膜及其制备方法与应用
CN107267013A (zh) * 2017-06-28 2017-10-20 常州市顺旭商贸有限公司 一种环保型道路标线涂料
CN107617435A (zh) * 2017-10-31 2018-01-23 上海师范大学 一种SrTiO3负载的氧化钛纳米管异质结光催化剂及其制备方法和应用
CN108212136A (zh) * 2018-01-30 2018-06-29 河北工业大学 一种花状形貌定向生长SrTiO3的制备方法
CN110629271A (zh) * 2019-09-29 2019-12-31 深圳大学 异质结薄膜及其制备方法
CN114632513A (zh) * 2022-03-23 2022-06-17 海南大学 单原子Au负载钛酸锶/二氧化钛复合光催化剂的制备方法及其应用
CN115007128A (zh) * 2022-06-28 2022-09-06 山东大学 一种SrTiO3/TiO2异质外延光催化剂及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102407109A (zh) * 2011-10-12 2012-04-11 西北有色金属研究院 具有可见光活性暴露晶面的TiO2光催化剂的制备方法
CN102674451A (zh) * 2012-05-22 2012-09-19 哈尔滨工业大学 一种{001}面暴露二氧化钛纳米晶的制备方法
CN103320856A (zh) * 2013-06-19 2013-09-25 电子科技大学 一种无氟单晶TiO2纳米薄膜的制备方法
CN103474517A (zh) * 2013-10-12 2013-12-25 厦门大学 SrTiO3纳米复合膜光阳极的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102407109A (zh) * 2011-10-12 2012-04-11 西北有色金属研究院 具有可见光活性暴露晶面的TiO2光催化剂的制备方法
CN102674451A (zh) * 2012-05-22 2012-09-19 哈尔滨工业大学 一种{001}面暴露二氧化钛纳米晶的制备方法
CN103320856A (zh) * 2013-06-19 2013-09-25 电子科技大学 一种无氟单晶TiO2纳米薄膜的制备方法
CN103474517A (zh) * 2013-10-12 2013-12-25 厦门大学 SrTiO3纳米复合膜光阳极的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JUN ZHANG等: "Tailored TiO2-SrTiO3 Heterostructure Nanotube Arrays for Improved Photoelectrochemical Performance", 《ACS NANO》 *
TIEPING CAO等: "A Facile in Situ Hydrothermal Method to SrTiO3/TiO2 Nanofiber Heterostructures with High Photocatalytic Activity", 《LANGMUIR》 *
XUMING ZHANG等: "Synthesis and Photocatalytic Activity of Highly Ordered TiO2 and SrTiO3 /TiO2 Nanotube Arrays on Ti Substrates", 《J. AM. CERAM. SOC.》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105056980A (zh) * 2015-09-01 2015-11-18 中国计量学院 一种Ag3PO4/TiO2纳米管阵列复合光催化剂及其制备方法
CN106431005A (zh) * 2016-09-08 2017-02-22 青岛科技大学 一种钛酸锶‑二氧化钛复合纳米管阵列薄膜及其制备方法与应用
CN106431005B (zh) * 2016-09-08 2019-03-15 青岛科技大学 一种钛酸锶-二氧化钛复合纳米管阵列薄膜及其制备方法与应用
CN107267013A (zh) * 2017-06-28 2017-10-20 常州市顺旭商贸有限公司 一种环保型道路标线涂料
CN107617435A (zh) * 2017-10-31 2018-01-23 上海师范大学 一种SrTiO3负载的氧化钛纳米管异质结光催化剂及其制备方法和应用
CN108212136B (zh) * 2018-01-30 2020-08-04 河北工业大学 一种花状形貌定向生长SrTiO3的制备方法
CN108212136A (zh) * 2018-01-30 2018-06-29 河北工业大学 一种花状形貌定向生长SrTiO3的制备方法
CN110629271A (zh) * 2019-09-29 2019-12-31 深圳大学 异质结薄膜及其制备方法
CN110629271B (zh) * 2019-09-29 2021-02-23 深圳大学 异质结薄膜及其制备方法
CN114632513A (zh) * 2022-03-23 2022-06-17 海南大学 单原子Au负载钛酸锶/二氧化钛复合光催化剂的制备方法及其应用
CN114632513B (zh) * 2022-03-23 2024-02-02 海南大学 单原子Au负载钛酸锶/二氧化钛复合光催化剂的制备方法及其应用
CN115007128A (zh) * 2022-06-28 2022-09-06 山东大学 一种SrTiO3/TiO2异质外延光催化剂及其制备方法与应用
CN115007128B (zh) * 2022-06-28 2023-11-10 山东大学 一种SrTiO3/TiO2异质外延光催化剂及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN103861576A (zh) 一种暴露锐钛矿二氧化钛高能面的异质结纳米管阵列薄膜光催化材料及制备方法和应用
Li et al. BaTiO3/TiO2 heterostructure nanotube arrays for improved photoelectrochemical and photocatalytic activity
CN101653728B (zh) 铁酸锌/二氧化钛纳米复合可见光光催化剂的制备方法及其应用
CN102517601B (zh) 一种表面组装有石墨烯的Cu2O/TiO2纳米管阵列电极的制备方法
CN102658130B (zh) 钌-钯双金属负载二氧化钛纳米管光催化剂的制备方法及其应用
CN109402656B (zh) 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法
CN103638922B (zh) 介孔三氧化钨/还原氧化石墨烯复合光催化剂的制备方法
CN102352524A (zh) 一种金属氧化物修饰TiO2纳米管阵列电极及其制备方法
CN106917128B (zh) 一种锡-钼共掺杂二氧化钛纳米管阵列电极及制备方法
CN101884915B (zh) 介孔金属氧化物/大孔二氧化钛纳米管阵列复合光催化剂及其制备方法
CN103225097A (zh) Cu2O/TNTs异质结构纳米复合材料制备及光还原CO2方法
CN104307538B (zh) 一种高效复合光催化材料的制备及应用方法
CN102962051A (zh) 一种高稳定可见光催化活性的β-Bi2O3/TiO2-NTs复合光催化剂的制备方法
CN105986292A (zh) 一种钴、镍双层氢氧化物修饰的二氧化钛纳米管阵列的制备方法及光电化学水解制氢应用
CN112958116B (zh) 一种Bi2O2.33-CdS复合光催化剂及其制备工艺
CN103132120A (zh) 一种制备可高效降解有机污染物的光电催化电极材料的方法
CN106637285B (zh) Cu2O量子点修饰二氧化钛纳米管光电极及其制备与应用
CN102703952A (zh) 利用离子液体在钛基上制备碳硼氮掺杂双管二氧化钛纳米管阵列的方法及其应用
CN104383950A (zh) 一种Bi2O3-BiOI异质结可见光响应型光催化剂及其制备方法
CN108560035A (zh) 一种低成本制备ZnO&TiO2异质结薄膜的方法
CN101956194A (zh) 一种TiO2薄膜修饰的钛基β-PbO2光电极的制备方法
CN107930665B (zh) 一种二维MoS2调控的光催化剂及其制备方法和应用
CN107326394B (zh) 一种制备具有核壳结构氮化碳修饰二氧化钛光阳极的方法
CN105568309A (zh) 一种光电化学电池的光电极的制备方法
Chawla et al. Surface modification of semiconductor photoanode for photoelectrochemical water splitting

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140618