CN103812449A - 混频器 - Google Patents

混频器 Download PDF

Info

Publication number
CN103812449A
CN103812449A CN201210458616.4A CN201210458616A CN103812449A CN 103812449 A CN103812449 A CN 103812449A CN 201210458616 A CN201210458616 A CN 201210458616A CN 103812449 A CN103812449 A CN 103812449A
Authority
CN
China
Prior art keywords
nmos pipe
pipe
pmos
frequency
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210458616.4A
Other languages
English (en)
Inventor
朱红卫
唐敏
刘国军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201210458616.4A priority Critical patent/CN103812449A/zh
Publication of CN103812449A publication Critical patent/CN103812449A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明公开了一种混频器,包括射频差分输入电路,开关电路和连续型共模反馈电路,射频差分输入电路将差分射频电压信号转化为两路差分射频电流信号后从开关电路的电流源输入节点处输入到开关电路中,形成一种折叠式结构,能使电路在工作电源和地之间只需要堆叠3个晶体管,所以能够降低工作电源电压,实现了低电源电压的工作条件,适用于先进工艺条件下对电源电压的工作越来越低的要求。开关电路的输出信号和连续型共模反馈电路相连,连续型共模反馈电路提供共模反馈电压信号作为开关电路的电流源的控制电压,能对开关电路的输出中共模信号进行连续抑制,使开关电路的输出工作点稳定。

Description

混频器
技术领域
本发明涉及一种半导体集成电路,特别是涉及一种混频器。
背景技术
无线收发机射频(RF)前端在本质上主要完成频率变换的功能,接收机射频前端将接收到的射频信号转换成基带信号,而发射机射频前端将要发射的基带信号转换成射频信号,频率转换功能由混频器完成。混频器是射频前端电路中的重要模块,它一种非线性电路,依靠电路本身的非线性来完成频率转换功能。混频器把一个接收到的RF信号变换成一个较低的频率,称为中频(IF)。可见乘法产生了在输入信号的频率和处与频率差处的输出信号,它们的幅值正比于RF和本振信号(LO)幅值的乘积。因此,如果LO幅值不变,那么在RF信号中任何幅值调制都传递给了IF信号。
现有经典的混频器结构主要包括:平方律电路、线性区MOSFET混频器、开关混频电路、场效应管开关混频电路、电流开关混频器等。
其中,线性区MOSFET混频器包括:双栅MOSFET混频器、平衡的线性MOSFET混频器;开关混频电路包括:理想开关混频电路、二极管环形混频电路;场效应管开关混频电路包括:单个MOS开关混频电路、单平衡MOS开关混频电路、双平衡MOS开关混频电路;电流开关混频器包括:BJT单平衡混频器、MOS单平衡混频器、双极型双平衡混频器即吉尔伯特(Gilbert)混频器。然而,平方律电路的混频效率不高,并且RF到IF和LO到IF的隔离很差。双栅MOSFET混频器端口之间隔离度不好;平衡的线性MOSFET混频器可以达到极高的线性度,但是噪声系数也很高,而且不适合于低电压电路。
对于理想开关混频电路,如果开关是理想的,那么这个混频电路虽然引入了损耗,但它本身不产生噪声,具有理想的线性度,端口之间相互隔离,有用中频在输出信号中占较大比例(效率高),没有直流功耗;二极管环形混频电路在元件匹配的情况下,各端口之间可获得良好的隔离,因为在总电流中没有RF和LO信号,而由于二极管的非线性,各二极管特性的匹配是一个较为困难的问题,再加上变压器的中心抽头不对称,因此各端口之间的隔离是不理想的,存在着信号的馈通。单个MOS开关混频电路由于实际MOS开关并不是理想的,本振信号加在MOS管的栅极,其源极和漏极都会出现本振信号;单个平衡MOS开关混频电路与单个开关混频电路相比,输出电压中已不再有RF成分,LO到RF的馈通也由于LO的差分特性而有所改善,但LO到IF的馈通仍然存在;双平衡MOS开关混频电路则解决了单个混频开关混频器存在的LO到IF的馈通。BJT单平衡混频器RF到IF的隔离较好,同时具有较好的LO到RF的隔离,但LO信号出现在IF中,因此LO到IF的隔离较差;MOS单平衡混频器与双极型单平衡混频器类似,只是将双极型晶体管换成了MOS晶体管,对LO信号的幅度要求很大。
双极型双平衡混频器(Gilbert乘法器)拥有较好的LO-RF、RF-IF、LO-IF端口隔离,因此在设计中常采用此结构。图1是现有双极型双平衡混频器的电路图;Gilbert乘法器包括:
由NMOS管101和NMOS管102组成的射频差分输入电路,NMOS管101和NMOS管102的源极连接在一起并和由NMOS管103组成的电流源连接在一起。NMOS管101和NMOS管102的栅极分别连接一个差分射频电压信号RFP或RFN。NMOS管103的源极接地,栅极接偏置电压Vbiasn。射频差分输入电路分别在NMOS管101和NMOS管102的漏极产生包含射频电压信号RFP或RFN的频率的射频电流信号。
由NMOS管104、NMOS管105、NMOS管106和NMOS管107组成的开关电路,NMOS管104和NMOS管105的源极都和NMOS管101的漏极相连,NMOS管106和NMOS管107的源极都和NMOS管102的漏极相连,NMOS管104和NMOS管107的栅极都接一个差分本振信号LOP,NMOS管105和NMOS管106的栅极都接另一个差分本振信号LON。NMOS管104和NMOS管106的漏极相连并作为一个差分中频信号IFP的输出端,NMOS管105和NMOS管107的漏极相连并作为另一个差分中频信号IFN的输出端。NMOS管104和NMOS管106的漏极和电源之间还连接有负载,NMOS管105和NMOS管107的漏极和电源之间还连接有负载(未示出)。差分中频信号的频率为差分本振信号和差分射频电压信号的频率差。
由图1可知,射频差分输入电路和开关电路之间是呈堆叠关系,在工作电源和地之间至少要堆叠4个晶体管,所以工作电压较大。但是由于半导体技术不断地采用更先进的工艺,电源电压也同样在下降,对于采用传统结构的双平衡混频器电路来说不能满足越来越低的电压要求,所以现有双平衡混频器不能适用于目前先进的低电源电压的设计。
发明内容
本发明所要解决的技术问题是提供一种混频器,能降低混频器的工作电压,适用于先进工艺条件下的低电源电压的工作要求。
为解决上述技术问题,本发明提供的混频器包括:
射频差分输入电路,该射频差分输入电路的两个输入端连接两个差分射频电压信号,所述射频差分输入电路的输出端输出和所述差分射频电压信号频率相同的两路差分射频电流信号。
开关电路,所述开关电路包括两个对称的开关支路,两个所述开关支路的差分输入端都连接两个差分本振信号,两个所述开关支路分别连接一电流源,两个所述开关支路的电流源为对称结构且连接有相同的共模反馈电压,由该共模反馈电压控制两个所述开关支路的电流源的大小;两个所述差分射频电流信号分别连接到两个所述开关支路的电流源接入点;两个所述开关支路的输出端都分别连接一负载,两个所述开关支路的输出端一起输出一对差分中频电压信号,所述差分中频电压信号的频率为所述差分射频电压信号和所述差分本振信号的频率差。
连续型共模反馈电路,该连续型共模反馈电路的输入端连接两个所述差分中频电压信号,将所述差分中频电压信号和一参考信号进行比较输出所述共模反馈电压到所述开关电路的电流源中。
进一步的改进是,所述射频差分输入电路包括第一NMOS管和第二NMOS管,所述第一NMOS管和所述第二NMOS管的源极相连接,所述第一NMOS管和所述第二NMOS管的栅极分别连接一个所述差分射频电压信号,所述第一NMOS管和所述第二NMOS管的漏极分别输出一个所述差分射频电流信号;所述射频差分输入电路还包括第三NMOS管,所述第三NMOS管组成所述射频差分输入电路的电流源,所述第三NMOS管的漏极连接所述第一NMOS管的源极,所述第三NMOS管的源极接地,所述第三NMOS管的栅极接偏置电压。
进一步的改进是,所述开关电路包括第一PMOS管、第二PMOS管、第三PMOS管和第四PMOS管,所述第一PMOS管和所述第二PMOS管的源极连接组成第一开关支路,所述第三PMOS管和所述第四PMOS管的源极连接组成第二开关支路,所述第二PMOS管和所述第三PMOS管的栅极都连接相同的一个所述差分本振信号,所述第一PMOS管和所述第四PMOS管的栅极都连接相同的另一个所述差分本振信号;所述第一PMOS管和所述第三PMOS管的漏极连接在一起并输出一个所述差分中频电压信号,所述第二PMOS管和所述第四PMOS管的漏极连接在一起并输出另一个所述差分中频电压信号。
所述开关电路还包括第五PMOS管和第六PMOS管,由所述第五PMOS管组成所述第一开关支路的电流源,由所述第六PMOS管组成所述第二开关支路的电流源,所述第五PMOS管和所述第六PMOS管的源极都和正电源相连,所述第五PMOS管和所述第六PMOS管的栅极都和所述共模反馈电压相连,所述第五PMOS管的漏极、所述第一NMOS管的漏极和所述第一PMOS管的源极连接在一起,所述第六PMOS管的漏极、所述第二NMOS管的漏极和所述第三PMOS管的源极连接在一起。
所述开关电路还包括第四NMOS管和第五NMOS管,所述第四NMOS管为所述第一开关支路的负载、所述第五NMOS管为所述第二开关支路的负载,所述第四NMOS管的漏极连接所述第一PMOS管的漏极,所述第五NMOS管的漏极连接所述第四PMOS管的漏极,所述第四NMOS管和所述第五NMOS管的源极都接地,所述第四NMOS管和所述第五NMOS管的栅极都接所述偏置电压。
进一步的改进是,所述连续型共模反馈电路包括第六NMOS管、第七NMOS管、第八NMOS管和第九NMOS管,所述第六NMOS管和所述第七NMOS管的源极相连组成第一差分比较电路,所述第八NMOS管和所述第九NMOS管的源极相连组成第二差分比较电路,所述第六NMOS管和所述第九NMOS管的漏极相连,所述第七NMOS管和所述第八NMOS管的漏极相连,所述第七NMOS管和所述第八NMOS管的栅极都连接所述参考信号,所述第六NMOS管的栅极连接一个所述差分中频电压信号,所述第九NMOS管的栅极连接另一个所述差分中频电压信号。
所述连续型共模反馈电路还包括第十NMOS管和第十一NMOS管,所述第十NMOS管作为所述第一差分比较电路的电流源,所述第十一NMOS管作为所述第二差分比较电路的电流源,所述第十NMOS管的漏极连接所述第六NMOS管的源极,所述第十一NMOS管的漏极连接所述第八NMOS管的源极,所述第十NMOS管和所述第十一NMOS管的源极都接地,所述第十NMOS管和所述第十一NMOS管的栅极都接所述偏置电压。
所述连续型共模反馈电路还包括第七PMOS管和第八PMOS管,所述第七PMOS管和所述第八PMOS管的源极都连接正电源,所述第七PMOS管栅极和漏极、所述第八PMOS管的栅极和所述第六NMOS管的漏极连接在一起,所述第八PMOS管的漏极连接所述第八NMOS管的漏极,且所述第八NMOS管的漏极为所述共模反馈电压的输出端。
本发明的射频差分输入电路将差分射频电压信号转化为两路差分射频电流信号后从开关电路的电流源输入节点处输入到开关电路中,形成一种折叠式结构,能使电路在工作电源和地之间只需要堆叠3个晶体管,所以能够降低工作电源电压,实现了低电源电压的工作条件,适用于先进工艺条件下对电源电压的工作越来越低的要求。本发明的开关电路的输出信号和连续型共模反馈电路相连,连续型共模反馈电路提供共模反馈电压信号作为开关电路的电流源的控制电压,能对开关电路的输出中共模信号进行连续抑制,使开关电路的输出工作点稳定。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明:
图1是现有双极型双平衡混频器的电路图;
图2是本发明较佳实施例混频器的电路图。
具体实施方式
本发明实施例混频器包括:
射频差分输入电路,该射频差分输入电路的两个输入端连接两个差分射频电压信号,所述射频差分输入电路的输出端输出和所述差分射频电压信号频率相同的两路差分射频电流信号。
开关电路,所述开关电路包括两个对称的开关支路,两个所述开关支路的差分输入端都连接两个差分本振信号,两个所述开关支路分别连接一电流源,两个所述开关支路的电流源为对称结构且连接有相同的共模反馈电压,由该共模反馈电压控制两个所述开关支路的电流源的大小;两个所述差分射频电流信号分别连接到两个所述开关支路的电流源接入点;两个所述开关支路的输出端都分别连接一负载,两个所述开关支路的输出端一起输出一对差分中频电压信号,所述差分中频电压信号的频率为所述差分射频电压信号和所述差分本振信号的频率差。
连续型共模反馈电路,该连续型共模反馈电路的输入端连接两个所述差分中频电压信号,将所述差分中频电压信号和一参考信号进行比较输出所述共模反馈电压到所述开关电路的电流源中。
如图2所示,是本发明较佳实施例混频器的电路图。本发明较佳实施例混频器包括:射频差分输入电路、开关电路和连续型共模反馈电路。
所述射频差分输入电路包括第一NMOS管MN1和第二NMOS管MN2,所述第一NMOS管MN1和所述第二NMOS管MN2的源极相连接,所述第一NMOS管MN1的栅极分别连接一个所述差分射频电压信号RFP,所述第二NMOS管MN2的栅极连接一个所述差分射频电压信号RFN。所述第一NMOS管MN1和所述第二NMOS管MN2的漏极分别输出一个所述差分射频电流信号;所述射频差分输入电路还包括第三NMOS管MN3,所述第三NMOS管MN3组成所述射频差分输入电路的电流源,所述第三NMOS管MN3的漏极连接所述第一NMOS管MN1的源极,所述第三NMOS管MN3的源极接地AGND,所述第三NMOS管MN3的栅极接偏置电压。
所述开关电路包括第一PMOS管MP1、第二PMOS管MP2、第三PMOS管MP3和第四PMOS管MP4,所述第一PMOS管MP1和所述第二PMOS管MP2的源极连接组成第一开关支路,所述第三PMOS管MP3和所述第四PMOS管MP4的源极连接组成第二开关支路,所述第二PMOS管MP2和所述第三PMOS管MP3的栅极都连接相同的一个所述差分本振信号LON,所述第一PMOS管MP1和所述第四PMOS管MP4的栅极都连接相同的另一个所述差分本振信号LOP;所述第一PMOS管MP1和所述第三PMOS管MP3的漏极连接在一起并输出一个所述差分中频电压信号IFP,所述第二PMOS管MP2和所述第四PMOS管MP4的漏极连接在一起并输出另一个所述差分中频电压信号IFN。
所述开关电路还包括第五PMOS管MP5和第六PMOS管MP6,由所述第五PMOS管MP5组成所述第一开关支路的电流源,由所述第六PMOS管MP6组成所述第二开关支路的电流源,所述第五PMOS管MP5和所述第六PMOS管MP6的源极都和正电源AVDD相连,所述第五PMOS管MP5和所述第六PMOS管MP6的栅极都和所述共模反馈电压Vcmfb相连,所述第五PMOS管MP5的漏极、所述第一NMOS管MN1的漏极和所述第一PMOS管MP1的源极连接在一起,所述第六PMOS管MP6的漏极、所述第二NMOS管MN2的漏极和所述第三PMOS管MP3的源极连接在一起。
所述开关电路还包括第四NMOS管MN4和第五NMOS管MN5,所述第四NMOS管MN4为所述第一开关支路的负载、所述第五NMOS管MN5为所述第二开关支路的负载,所述第四NMOS管MN4的漏极连接所述第一PMOS管MP1的漏极,所述第五NMOS管MN5的漏极连接所述第四PMOS管MP4的漏极,所述第四NMOS管MN4和所述第五NMOS管MN5的源极都接地AGND,所述第四NMOS管MN4和所述第五NMOS管MN5的栅极都接所述偏置电压。
所述连续型共模反馈电路包括第六NMOS管MN6、第七NMOS管MN7、第八NMOS管MN8和第九NMOS管MN9,所述第六NMOS管MN6和所述第七NMOS管MN7的源极相连组成第一差分比较电路,所述第八NMOS管MN8和所述第九NMOS管MN9的源极相连组成第二差分比较电路,所述第六NMOS管MN6和所述第九NMOS管MN9的漏极相连,所述第七NMOS管MN7和所述第八NMOS管MN8的漏极相连,所述第七NMOS管MN7和所述第八NMOS管MN8的栅极都连接参考信号Vref,所述第六NMOS管MN6的栅极连接一个所述差分中频电压信号IFP,所述第九NMOS管MN9的栅极连接另一个所述差分中频电压信号IFN。
所述连续型共模反馈电路还包括第十NMOS管MN10和第十一NMOS管MN11,所述第十NMOS管MN10作为所述第一差分比较电路的电流源,所述第十一NMOS管MN11作为所述第二差分比较电路的电流源,所述第十NMOS管MN10的漏极连接所述第六NMOS管MN6的源极,所述第十一NMOS管MN11的漏极连接所述第八NMOS管MN8的源极,所述第十NMOS管MN10和所述第十一NMOS管MN11的源极都接地AGND,所述第十NMOS管MN10和所述第十一NMOS管MN11的栅极都接所述偏置电压。
所述连续型共模反馈电路还包括第七PMOS管MP7和第八PMOS管MP8,所述第七PMOS管MP7和所述第八PMOS管MP8的源极都连接正电源AVDD,所述第七PMOS管MP7栅极和漏极、所述第八PMOS管MP8的栅极和所述第六NMOS管MN6的漏极连接在一起,所述第八PMOS管MP8的漏极连接所述第八NMOS管MN8的漏极,且所述第八NMOS管MN8的漏极为所述共模反馈电压Vcmfb的输出端。
所述混频器包括一电流源Ibias,电流源Ibias,通过第十二NMOS管MN12和地AGND相连,所述第三NMOS管MN3、所述第四NMOS管MN4、所述第五NMOS管MN5、所述第十NMOS管MN10、所述第十一NMOS管MN11的栅极都和所述第十二NMOS管MN12的栅极相连,并都形成电流源Ibias的镜像电流。
以上通过具体实施例对本发明进行了详细的说明,但这些并非构成对本发明的限制。在不脱离本发明原理的情况下,本领域的技术人员还可做出许多变形和改进,这些也应视为本发明的保护范围。

Claims (4)

1.一种混频器,其特征在于,包括:
射频差分输入电路,该射频差分输入电路的两个输入端连接两个差分射频电压信号,所述射频差分输入电路的输出端输出和所述差分射频电压信号频率相同的两路差分射频电流信号;
开关电路,所述开关电路包括两个对称的开关支路,两个所述开关支路的差分输入端都连接两个差分本振信号,两个所述开关支路分别连接一电流源,两个所述开关支路的电流源为对称结构且连接有相同的共模反馈电压,由该共模反馈电压控制两个所述开关支路的电流源的大小;两个所述差分射频电流信号分别连接到两个所述开关支路的电流源接入点;两个所述开关支路的输出端都分别连接一负载,两个所述开关支路的输出端一起输出一对差分中频电压信号,所述差分中频电压信号的频率为所述差分射频电压信号和所述差分本振信号的频率差;
连续型共模反馈电路,该连续型共模反馈电路的输入端连接两个所述差分中频电压信号,将所述差分中频电压信号和一参考信号进行比较输出所述共模反馈电压到所述开关电路的电流源中。
2.如权利要求1所述混频器,其特征在于:所述射频差分输入电路包括第一NMOS管和第二NMOS管,所述第一NMOS管和所述第二NMOS管的源极相连接,所述第一NMOS管和所述第二NMOS管的栅极分别连接一个所述差分射频电压信号,所述第一NMOS管和所述第二NMOS管的漏极分别输出一个所述差分射频电流信号;
所述射频差分输入电路还包括第三NMOS管,所述第三NMOS管组成所述射频差分输入电路的电流源,所述第三NMOS管的漏极连接所述第一NMOS管的源极,所述第三NMOS管的源极接地,所述第三NMOS管的栅极接偏置电压。
3.如权利要求2所述混频器,其特征在于:所述开关电路包括第一PMOS管、第二PMOS管、第三PMOS管和第四PMOS管,所述第一PMOS管和所述第二PMOS管的源极连接组成第一开关支路,所述第三PMOS管和所述第四PMOS管的源极连接组成第二开关支路,所述第二PMOS管和所述第三PMOS管的栅极都连接相同的一个所述差分本振信号,所述第一PMOS管和所述第四PMOS管的栅极都连接相同的另一个所述差分本振信号;所述第一PMOS管和所述第三PMOS管的漏极连接在一起并输出一个所述差分中频电压信号,所述第二PMOS管和所述第四PMOS管的漏极连接在一起并输出另一个所述差分中频电压信号;
所述开关电路还包括第五PMOS管和第六PMOS管,由所述第五PMOS管组成所述第一开关支路的电流源,由所述第六PMOS管组成所述第二开关支路的电流源,所述第五PMOS管和所述第六PMOS管的源极都和正电源相连,所述第五PMOS管和所述第六PMOS管的栅极都和所述共模反馈电压相连,所述第五PMOS管的漏极、所述第一NMOS管的漏极和所述第一PMOS管的源极连接在一起,所述第六PMOS管的漏极、所述第二NMOS管的漏极和所述第三PMOS管的源极连接在一起;
所述开关电路还包括第四NMOS管和第五NMOS管,所述第四NMOS管为所述第一开关支路的负载、所述第五NMOS管为所述第二开关支路的负载,所述第四NMOS管的漏极连接所述第一PMOS管的漏极,所述第五NMOS管的漏极连接所述第四PMOS管的漏极,所述第四NMOS管和所述第五NMOS管的源极都接地,所述第四NMOS管和所述第五NMOS管的栅极都接所述偏置电压。
4.如权利要求2或3所述混频器,其特征在于:所述连续型共模反馈电路包括第六NMOS管、第七NMOS管、第八NMOS管和第九NMOS管,所述第六NMOS管和所述第七NMOS管的源极相连组成第一差分比较电路,所述第八NMOS管和所述第九NMOS管的源极相连组成第二差分比较电路,所述第六NMOS管和所述第九NMOS管的漏极相连,所述第七NMOS管和所述第八NMOS管的漏极相连,所述第七NMOS管和所述第八NMOS管的栅极都连接所述参考信号,所述第六NMOS管的栅极连接一个所述差分中频电压信号,所述第九NMOS管的栅极连接另一个所述差分中频电压信号;
所述连续型共模反馈电路还包括第十NMOS管和第十一NMOS管,所述第十NMOS管作为所述第一差分比较电路的电流源,所述第十一NMOS管作为所述第二差分比较电路的电流源,所述第十NMOS管的漏极连接所述第六NMOS管的源极,所述第十一NMOS管的漏极连接所述第八NMOS管的源极,所述第十NMOS管和所述第十一NMOS管的源极都接地,所述第十NMOS管和所述第十一NMOS管的栅极都接所述偏置电压;
所述连续型共模反馈电路还包括第七PMOS管和第八PMOS管,所述第七PMOS管和所述第八PMOS管的源极都连接正电源,所述第七PMOS管栅极和漏极、所述第八PMOS管的栅极和所述第六NMOS管的漏极连接在一起,所述第八PMOS管的漏极连接所述第八NMOS管的漏极,且所述第八NMOS管的漏极为所述共模反馈电压的输出端。
CN201210458616.4A 2012-11-15 2012-11-15 混频器 Pending CN103812449A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210458616.4A CN103812449A (zh) 2012-11-15 2012-11-15 混频器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210458616.4A CN103812449A (zh) 2012-11-15 2012-11-15 混频器

Publications (1)

Publication Number Publication Date
CN103812449A true CN103812449A (zh) 2014-05-21

Family

ID=50708748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210458616.4A Pending CN103812449A (zh) 2012-11-15 2012-11-15 混频器

Country Status (1)

Country Link
CN (1) CN103812449A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370457A (zh) * 2016-05-13 2017-11-21 中芯国际集成电路制造(上海)有限公司 混频器
CN110120785A (zh) * 2019-05-13 2019-08-13 上海移芯通信科技有限公司 一种低功耗混频器
CN113014246A (zh) * 2021-02-20 2021-06-22 广东省科学院半导体研究所 电压电平移位器和电子设备
CN114995568A (zh) * 2022-07-11 2022-09-02 上海必阳科技有限公司 一种负线性率调整率的电流源

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1638369A (zh) * 2003-12-30 2005-07-13 三星电子株式会社 用于减少二阶交互调制的方法
CN101188402A (zh) * 2007-12-20 2008-05-28 北京航空航天大学 一种低压混频器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1638369A (zh) * 2003-12-30 2005-07-13 三星电子株式会社 用于减少二阶交互调制的方法
CN101188402A (zh) * 2007-12-20 2008-05-28 北京航空航天大学 一种低压混频器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370457A (zh) * 2016-05-13 2017-11-21 中芯国际集成电路制造(上海)有限公司 混频器
CN110120785A (zh) * 2019-05-13 2019-08-13 上海移芯通信科技有限公司 一种低功耗混频器
CN110120785B (zh) * 2019-05-13 2021-02-26 上海移芯通信科技有限公司 一种低功耗混频器
CN113014246A (zh) * 2021-02-20 2021-06-22 广东省科学院半导体研究所 电压电平移位器和电子设备
CN113014246B (zh) * 2021-02-20 2022-02-22 广东省科学院半导体研究所 电压电平移位器和电子设备
CN114995568A (zh) * 2022-07-11 2022-09-02 上海必阳科技有限公司 一种负线性率调整率的电流源
CN114995568B (zh) * 2022-07-11 2023-11-17 苏州华芯半导体科技有限公司 一种负线性率调整率的电流源

Similar Documents

Publication Publication Date Title
US8933745B2 (en) Transconductance-enhancing passive frequency mixer
CN107231129B (zh) 基于变压器结构的谐波控制cmos混频器
CN103532493B (zh) 一种低功耗高增益宽带混频器
CN106921346B (zh) 高线性度宽带上混频器
WO2016145950A1 (zh) 一种单端输入双平衡无源混频器
CN102163954A (zh) 一种低电压低噪声宽带混频器
EP2263308B1 (en) A combined mixer and balun design
CN108809259A (zh) 功率放大器电路及其形成方法
CN103812449A (zh) 混频器
CN101409533B (zh) 跨导器
CN217183258U (zh) 一种高线性度有源混频器
CN104124932B (zh) 射频功率放大模块
CN104104336A (zh) 一种具有噪声抵消的低功耗宽带射频前端电路
CN112491371A (zh) 一种高线性度可编程ab-c类混合跨导的低噪声跨导放大器
CN102332866B (zh) 高线性度上混频器
US20140070866A1 (en) Mixer and associated signal circuit
US20170111011A1 (en) Balanced up-conversion mixer
CN106877821A (zh) 一种基于电流模有源器件的宽带射频混频器
CN109004905B (zh) 一种带有巴伦的上变频混频器
CN104242825A (zh) Cmos下变频混频器
CN107566009B (zh) 时分双工无线通信系统前端电路
Wang et al. The design of integrated 3-GHz to 11-GHz CMOS transmitter for full-band ultra-wideband (UWB) applications
CN104954031A (zh) 一种噪声消除宽带射频接收前端
CN104904115A (zh) 倍频器
CN106603013A (zh) 一种cmos互补结构的混频器电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140521