CN103762233A - 一种提高压电极化强度的新型hemt - Google Patents

一种提高压电极化强度的新型hemt Download PDF

Info

Publication number
CN103762233A
CN103762233A CN201410006456.9A CN201410006456A CN103762233A CN 103762233 A CN103762233 A CN 103762233A CN 201410006456 A CN201410006456 A CN 201410006456A CN 103762233 A CN103762233 A CN 103762233A
Authority
CN
China
Prior art keywords
gan
layer
piezoelectric polarization
hemt
polarization intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410006456.9A
Other languages
English (en)
Inventor
程知群
栾雅
连心想
贾民仕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201410006456.9A priority Critical patent/CN103762233A/zh
Publication of CN103762233A publication Critical patent/CN103762233A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种提高压电极化强度的新型HEMT,本发明方法在含有AlN隔离层的AlGaN/AlN/GaN结构HEMT基础上,在GaN层下面插入了InGaN层,形成AlxGa1-xN/AlN/GaN/InyGa1-yN结构的HEMT。AlGaN、GaN之间,GaN、InGaN之间分别形成沟道,由于极化效应产生的2DEG在沟道中。插入了InGaN层,GaN/InGaN结构中GaN的晶格常数小于InN的晶格常数,使得GaN晶格应变,由应变产生的压电极化强于AlGaN/GaN之间的压电极化,使得器件在相同压力下极化效应更强,二维电子气面密度变化更大,使得提高了器件的灵敏度。

Description

一种提高压电极化强度的新型HEMT
技术领域
本发明属于微电子技术领域,具体涉及一种提高压电极化强度的新型HEMT。
背景技术
传感器技术是现代科学技术发展水平的重要标志,其中压力传感器是应用最为广泛的一类。传统的压力传感器以机械结构型的器件为主。随着半导体技术与MEMS技术的发展,人们以硅作为主要材料,采取电容、压阻等多种形式,开发了硅微压力传感器,其特点是体积小、质量轻、准确度高、温度特性好。当今应用与研究范围又有所扩展,人们又开始重视开发能够直接工作在恶劣环境下的微压力传感器。随着对宽禁带半导体的研究深入,发现宽禁带半导体GaN(禁带宽度3.4eV)传感器可以不用冷却在高温下探测化学、气体、生物、辐射以及发送信号给中央控制器。AlGaN/GaN HEMT已经被证明具有高频、耐高压、耐高温和抗辐射特性,是高功率放大器和电力电子器件最具潜力的器件。AlGaN/GaN HEMT中决定电流电压特性的二维电子气(2DEG)面电子密度不仅受到势垒层AlGaN中Al组分等外延层材料特性的影响,而且受到势垒层AlGaN自发极化和压电极化强弱的影响,势垒层AlGaN压电极化对负载压力很敏感,同时,GaN材料在高温下化学稳定性好,这些特性使得AlGaN/GaN HEMT将会成为一种在高温环境下工作的压力传感器良好选择。但常规AlGaN/GaN HEMT的结构在用作压力传感器时依旧存在着灵敏度的问题。主要原因是AlGaN/GaN层之间的压电极化强度并不足够大,这导致了压力传感器检测灵敏度不足。
发明内容
本发明针对现有技术的不足,提出了一种提高压电极化强度的新型HEMT。
本发明一种提提高压电极化强度的新型HEMT,包括衬底、GaN缓冲层、In0.2Ga0.8N层、GaN层、隔离层AlN、Al0.3Ga0.7N层和GaN帽层;
所述的衬底上外延生长出缓冲层GaN;在GaN缓冲层上生长In0.2Ga0.8N层;接着在In0.2Ga0.8N层上面外延生长GaN沟道层;之后在沟道层GaN上外延生长隔离层AlN,主要是提高AlGaN/GaN结的势垒导带差;接着在隔离层AlN上外延生长非掺杂Al0.3Ga0.7N势垒层;在势垒层上生长非掺杂GaN帽层;最后在帽层上设置晶体管的栅极、源极和漏极。
所述的衬底为蓝宝石衬底、硅衬底或碳化硅衬底;
所述的GaN缓冲层为层厚度为2μm;
所述的In0.2Ga0.8N层厚度为8nm;
所述的GaN沟道层厚度为14nm;
所述的AlN隔离层厚度为1nm;
所述的Al0.3Ga0.7N势垒层厚度为20nm;
所述的GaN帽层厚度为2nm;
所述的栅极金属为Ni或者Au,源极和漏极金属为钛、铝、镍、金中的一种,选择器件的栅长为0.75μm,栅宽为100μm,栅极与源极、栅极与漏极之间距离都为1.2μm。
本发明方法中外延生长采用金属有机物化学气相淀积(MOCVD)手段,本发明的发明点在于对器件的外延层结构的改变。
有益效果:本发明通过改变器件的外延层结构,使得这种新型器件在作为压力传感器工作时具有较高的敏感度。
附图说明
图1为本发明器件的剖面结构图;
图2为本发明器件外延层中的压电极化示意图。
具体实施方式
如图1、图2所示:一种提高压电极化的新型HEMT结构包括:蓝宝石衬底。GaN缓冲层,InGaN层,GaN层,AlN插入层,AlGaN层,GaN帽层:
本发明在含有AlN隔离层的AlGaN/AlN/GaN结构HEMT基础上,在GaN层下面插入了InGaN层,形成AlxGa1-xN/AlN/GaN/InyGa1-yN结构的HEMT,剖面图如图1所示。在AlGaN、GaN之间,GaN、InGaN之间分别形成沟道,由于极化效应产生的2DEG在沟道中。插入了InGaN层,GaN/InGaN结构中GaN的晶格常数小于InN的晶格常数,使得GaN晶格应变,由应变产生的压电极化强于AlGaN/GaN之间的压电极化,使得器件在相同压力下极化效应更强,二维电子气面密度变化更大,使得提高了器件的灵敏度。
本发明在蓝宝石、硅或碳化硅基底上外延生长多层异质结结构,形成一种高灵敏的高电子迁移率晶体管AlxGa1-xN/AlN/GaN/InyGa1-yN结构的HEMT。先在衬底上外延生长出缓冲层GaN;然后在GaN缓冲层上生长In0.2Ga0.8N层;接着在In0.2Ga0.8N层上面外延生长GaN沟道层;之后在沟道层GaN上外延生长隔离层AlN,主要是提高AlGaN/GaN结的势垒导带差;接着在隔离层AlN上外延生长非掺杂Al0.3Ga0.7N势垒层;在势垒层上生长非掺杂GaN帽层;最后在帽层上按照常规方法研制晶体管的栅极、源极和漏极。
所述的衬底为蓝宝石衬底;
所述的GaN缓冲层为层厚度为2μm;
所述的In0.2Ga0.8N层厚度为8nm;
所述的GaN沟道层厚度为14nm;
所述的AlN隔离层厚度为1nm;
所述的Al0.3Ga0.7N势垒层厚度为20nm;
所述的GaN帽层厚度为2nm;
所述的栅极金属为Ni/Au(镍/金),源极和漏极金属分别为钛/铝/镍/金(Ti/Al/Ni/Au),选择器件的栅长为0.75μm,栅宽为100μm,栅极与源极、栅极与漏极之间距离都为1.2μm。
本发明方法中外延生长采用金属有机物化学气相淀积(MOCVD)方法实现。
压电极化产生的原因则是在异质结界面处,由于不同材料之间彼此晶格不匹配产生应力,使得阴离子和阳离子的排列发生移动,产生出极化电荷,称为压电效应。因此压电极化与晶格匹配度有关。压电极化大小可由公式PPE=2(1-R)(a-a0)[e31-e33C13/C33]/a0算出。其中a和a0分别是应变和本征晶格常数,e31和e33是材料的压电系数,C13和C33是材料的弹性常数。R为应变层的弛豫度,完全弛豫时R=1,此时不存在压电极化。当晶格全应变时R=0,此时a等于相邻层的本征晶格常数。AlGaN/GaN结构的压电极化是由AlN/GaN之间的晶格失配导致,而AlN的晶格常数为
Figure BDA0000453516660000031
GaN的晶格常数为
Figure BDA0000453516660000032
两者之间的差距不大。而另外一种Ⅲ族氮化物InN的晶格常数为
Figure BDA0000453516660000033
显然这个数值要比前两者大很多,而InN的禁带宽度为0.7eV,可以和GaN(禁带宽度3.4eV)形成异质结构。由于InN生长的困难性,实现真正的InN基的HEMT异质结构十分不易,但是将InGaN合金引入到比较成熟的GaN异质结构中是可行的,同样在理论上,会提升目前的很多性能。因而我们提出了一种在常规AlGaN/GaN结构下面加入一层InGaN的器件结构。通过PPE计算公式计算,当晶格完全应变时,AlGaN(相邻层为GaN)中AIN的压电极化PPE=-0.05371,GaN(相邻层为InGaN)的压电极化PPE=-0.15225,是前者的三倍。这从理论上支持了用GaN/InGaN结构来提高器件压电极化强的方法,使得器件用于压力传感器时具有更高的检测灵敏度。

Claims (9)

1. 一种提高压电极化强度的新型HEMT,包括衬底、GaN缓冲层、In0.2Ga0.8N层、GaN层、隔离层AlN、Al0.3Ga0.7N层和GaN帽层;
其特征在于:所述的衬底上外延生长出缓冲层GaN;在GaN缓冲层上生长In0.2Ga0.8N层;接着在In0.2Ga0.8N层上面外延生长GaN沟道层;之后在沟道层GaN上外延生长隔离层AlN,主要是提高AlGaN/GaN结的势垒导带差;接着在隔离层AlN上外延生长非掺杂Al0.3Ga0.7N势垒层;在势垒层上生长非掺杂GaN帽层;最后在帽层上设置晶体管的栅极、源极和漏极。
2.根据权利要求1所述的所述的一种提高压电极化强度的新型HEMT,其特征在于:衬底为蓝宝石衬底、硅衬底或碳化硅衬底。
3.根据权利要求1所述的所述的一种提高压电极化强度的新型HEMT,其特征在于:所述的GaN缓冲层为层厚度为2μm。
4.根据权利要求1所述的所述的一种提高压电极化强度的新型HEMT,其特征在于:所述的In0.2Ga0.8N层厚度为8nm。
5.根据权利要求1所述的所述的一种提高压电极化强度的新型HEMT,其特征在于:所述的GaN沟道层厚度为14nm。
6.根据权利要求1所述的所述的一种提高压电极化强度的新型HEMT,其特征在于:所述的AlN隔离层厚度为1nm。
7.根据权利要求1所述的所述的一种提高压电极化强度的新型HEMT,其特征在于:所述的Al0.3Ga0.7N势垒层厚度为20nm。
8.根据权利要求1所述的所述的一种提高压电极化强度的新型HEMT,其特征在于:所述的GaN帽层厚度为2nm。
9.根据权利要求1所述的所述的一种提高压电极化强度的新型HEMT,其特征在于:所述的栅极金属为Ni或者Au,源极和漏极金属为钛、铝、镍、金中的一种,选择器件的栅长为0.75μm,栅宽为100μm,栅极与源极、栅极与漏极之间距离都为1.2μm。
CN201410006456.9A 2014-01-06 2014-01-06 一种提高压电极化强度的新型hemt Pending CN103762233A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410006456.9A CN103762233A (zh) 2014-01-06 2014-01-06 一种提高压电极化强度的新型hemt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410006456.9A CN103762233A (zh) 2014-01-06 2014-01-06 一种提高压电极化强度的新型hemt

Publications (1)

Publication Number Publication Date
CN103762233A true CN103762233A (zh) 2014-04-30

Family

ID=50529443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410006456.9A Pending CN103762233A (zh) 2014-01-06 2014-01-06 一种提高压电极化强度的新型hemt

Country Status (1)

Country Link
CN (1) CN103762233A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157679A (zh) * 2014-08-27 2014-11-19 电子科技大学 一种氮化镓基增强型异质结场效应晶体管
CN104485357A (zh) * 2014-12-17 2015-04-01 中国科学院半导体研究所 具有氮化镓系高阻层的hemt及制备方法
CN105097900A (zh) * 2014-05-08 2015-11-25 恩智浦有限公司 半导体器件及制造方法
CN107958932A (zh) * 2017-11-09 2018-04-24 中国工程物理研究院电子工程研究所 载流子浓度调制型高迁移率场效应晶体管及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080258135A1 (en) * 2007-04-19 2008-10-23 Hoke William E Semiconductor structure having plural back-barrier layers for improved carrier confinement
CN101399284A (zh) * 2007-09-26 2009-04-01 中国科学院半导体研究所 氮化镓基高电子迁移率晶体管结构
CN102931229A (zh) * 2012-11-06 2013-02-13 中国电子科技集团公司第五十五研究所 一种AlGaN/GaN/InGaN双异质结材料及其生产方法
CN203707139U (zh) * 2014-01-06 2014-07-09 杭州电子科技大学 提高压电极化强度的新型hemt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080258135A1 (en) * 2007-04-19 2008-10-23 Hoke William E Semiconductor structure having plural back-barrier layers for improved carrier confinement
CN101399284A (zh) * 2007-09-26 2009-04-01 中国科学院半导体研究所 氮化镓基高电子迁移率晶体管结构
CN102931229A (zh) * 2012-11-06 2013-02-13 中国电子科技集团公司第五十五研究所 一种AlGaN/GaN/InGaN双异质结材料及其生产方法
CN203707139U (zh) * 2014-01-06 2014-07-09 杭州电子科技大学 提高压电极化强度的新型hemt

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘剑等: "新型结构的HEMT优化设计", 《杭州电子科技大学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097900A (zh) * 2014-05-08 2015-11-25 恩智浦有限公司 半导体器件及制造方法
CN104157679A (zh) * 2014-08-27 2014-11-19 电子科技大学 一种氮化镓基增强型异质结场效应晶体管
CN104485357A (zh) * 2014-12-17 2015-04-01 中国科学院半导体研究所 具有氮化镓系高阻层的hemt及制备方法
CN107958932A (zh) * 2017-11-09 2018-04-24 中国工程物理研究院电子工程研究所 载流子浓度调制型高迁移率场效应晶体管及其制造方法

Similar Documents

Publication Publication Date Title
US10749021B2 (en) Semiconductor device and method for manufacturing the same
TWI587512B (zh) Field effect transistor and semiconductor device
KR101772290B1 (ko) 질화갈륨 트랜지스터에 대한 초격자 버퍼 구조물
JP5223670B2 (ja) 電界効果トランジスタ
US20180182879A1 (en) Aluminum-gallium-nitride compound/gallium-nitride high-electron-mobility transistor
KR100930639B1 (ko) 합금 무질서가 없는 hemt 압전 구조물
CN101981677B (zh) 半导体元件用外延基板、半导体元件及半导体元件用外延基板的制作方法
JP5891650B2 (ja) 化合物半導体装置及びその製造方法
CN103151435B (zh) 一种具有复合势垒的氮化镓基发光二极管
CN203707139U (zh) 提高压电极化强度的新型hemt
KR20110099546A (ko) 듀얼 디플리션을 나타내는 고 전자 이동도 트랜지스터 및 그 제조방법
JP2006269534A (ja) 半導体装置及びその製造方法、その半導体装置製造用基板及びその製造方法並びにその半導体成長用基板
CN103038869A (zh) 场效应晶体管
WO2007091383A1 (ja) 半導体装置
CN103762233A (zh) 一种提高压电极化强度的新型hemt
KR101673965B1 (ko) 모놀리식 멀티채널 전력반도체소자 및 그 제조 방법
JP2016100471A (ja) 半導体装置及び半導体装置の製造方法
CN105762183A (zh) 具有场板的AlGaN/GaN极化掺杂场效应晶体管及制造方法
CN110880533B (zh) 基于超晶格结构的异质结、增强型hemt器件及其制作方法
TWI574407B (zh) 半導體功率元件
JP2015095605A (ja) 半導体装置および半導体基板
JP6142893B2 (ja) 化合物半導体装置及びその製造方法
CN204607576U (zh) 一种AlGaN/GaN HEMT压力传感器
CN104393088A (zh) InGaN/AlInGaN多量子阱太阳能电池结构
CN110838518A (zh) 一种hemt器件的外延结构及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140430

WD01 Invention patent application deemed withdrawn after publication