CN103730897B - 一种用于不接地配电网的回推前推三相潮流计算方法 - Google Patents

一种用于不接地配电网的回推前推三相潮流计算方法 Download PDF

Info

Publication number
CN103730897B
CN103730897B CN201410012852.2A CN201410012852A CN103730897B CN 103730897 B CN103730897 B CN 103730897B CN 201410012852 A CN201410012852 A CN 201410012852A CN 103730897 B CN103730897 B CN 103730897B
Authority
CN
China
Prior art keywords
phase
distribution network
voltage
power distribution
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410012852.2A
Other languages
English (en)
Other versions
CN103730897A (zh
Inventor
吴文传
高亚静
苗宏佳
邹庆
张伯明
李飞
孙宏斌
刘毅
纪元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Information & Communication Branch Of Guizhou Grid Co
Tsinghua University
Original Assignee
Information & Communication Branch Of Guizhou Grid Co
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Information & Communication Branch Of Guizhou Grid Co, Tsinghua University filed Critical Information & Communication Branch Of Guizhou Grid Co
Priority to CN201410012852.2A priority Critical patent/CN103730897B/zh
Publication of CN103730897A publication Critical patent/CN103730897A/zh
Priority to US14/292,022 priority patent/US9625929B2/en
Application granted granted Critical
Publication of CN103730897B publication Critical patent/CN103730897B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

本发明涉及一种用于不接地配电网的回推前推三相潮流计算方法,属于配电网调度自动化技术领域。首先根据不接地配电网中三相变压器的原边侧和副边侧的三相电压与三相电流,得到三相变压器的三相电压与三相电流的关系式,在该关系式中添加三相变压器副边侧电压约束,将其用于不接地配电网的三相潮流计算,得到不接地配电网的回推前推三相潮流计算公式。本发明该方法通过设定零序电压参考值的方法,解决中性点不接地的配电网中,三相变压器的三相导纳矩阵和它的子矩阵的奇异性导致的配电系统的三相潮流计算难收敛的问题,具有良好的收敛性和很高的工程实用价值。

Description

一种用于不接地配电网的回推前推三相潮流计算方法
技术领域
本发明涉及一种用于不接地配电网的回推前推三相潮流计算方法,属于配电网调度自动化技术领域。
背景技术
回推前推三相潮流计算方法是计算配电网三相潮流的主要方法之一。在配电系统中普遍存在着中性点不接地或经大阻抗接地接法的三相变压器。中性点不接地方式主要发生在中压配电网中,高压配电网和低压配电网考虑设备安全等原因都采用中性点接地方式。中性点不接地的中压配电网与配电网的其他部分不存在零序通路,因而其零序电压并不影响配电网其他部分和低压配电网的负荷。然而,由于这一类三相变压器的三相导纳矩阵和它的子矩阵的奇异性,配电系统的三相潮流往往不易收敛。因此,传统的回推前推三相潮流计算方法不能计算不接地配电网的三相潮流。
发明内容
本发明的目的是提出一种用于不接地配电网的回推前推三相潮流计算方法,通过事先指定一个零序电压设定值来改进传统的回推前推三相潮流计算方法,以解决配电网三相潮流计算难收敛的问题。
本发明提出的用于不接地配电网的回推前推三相潮流计算方法,包括以下步骤:
(1)根据不接地配电网中三相变压器的原边侧和副边侧的三相电压与三相电流,得到三相变压器的三相电压与三相电流的关系式为:
I p I s = Y pp Y ps Y sp Y ss U p U s
其中:Up和Ip分别是三相变压器原边侧的三相电压与三相电流,Us和Is分别是三相变压器副边侧的三相电压与三相电流, Y = Y pp Y ps Y sp Y ss 是三相变压器的三相导纳矩阵,三相导纳矩阵中,Ypp是三相变压器原边侧的自导纳,Yss是三相变压器副边侧的自导纳,Yps是三相变压器原边侧与三相变压器副边侧的互导纳,Ysp=Yps Τ,上标“T”表示对矩阵或向量进行转置计算;
(2)对上述三相变压器的三相电压与三相电流的关系式添加三相变压器副边侧电压约束:Usa+Usb+Usc=3U0,使三相变压器的三相电压与三相电流的关系式转变为:
I p I s ′ = Y pp Y ps ′ Y sp ′ Y ss ′ U p U s ′
其中:Usa、Usb和Usc分别是三相变压器副边侧的a相电压、b相电压和c相电压,U0是三相变压器副边侧的零序电压,Is′=[Is,Uref]Τ,Us′=[Us,0]Τ,Yps′=[Yps,E0],Ysp′=YpsΤ Y ss ′ = Y ss E 1 E 1 T 0 , 其中Uref=3U0,E0=[0,0,0]Τ,E1=[1,1,1]Τ
(3)将步骤(2)得到的三相变压器三相电压与三相电流的关系式用于不接地配电网的三相潮流计算,得到不接地配电网的回推前推三相潮流计算公式为:
I p = K ′ U p + Y ps Y ss ′ - 1 I s ′
U s ′ = - Y ss ′ - 1 Y sp U p + Y ss ′ - 1 I s ′ ,
其中: K ′ = Y pp - Y ps Y ss ′ - 1 Y sp , Y ss ′ - 1 为Y′ss的逆矩阵。
本发明提出的用于不接地配电网的回推前推三相潮流计算方法,其优点是:
1、本发明的回推前推三相潮流计算方法,针对三相变压器的三相导纳矩阵和它的子矩阵的奇异性,通过事先指定一个零序电压设定值来改进传统的回推前推三相潮流计算方法,解决了不接地配电网的三相潮流计算难收敛的问题,因此本发明的三相潮流计算方法具有工程实用价值。
2、由于中性点不接地的中压配电网与配电网的其他部分不存在零序通路,因此本发明三相潮流计算方法中,零序电压参考值的变化不会影响配电系统三相潮流计算的迭代次数,并将零序电压参考值可以取0,以减少数据存储空间和三相潮流计算时间,因而节省了三相潮流计算的成本。
具体实施方式
本发明提出的用于不接地配电网的回推前推三相潮流计算方法,包括以下步骤:
(1)根据不接地配电网中三相变压器的原边侧和副边侧的三相电压与三相电流,得到三相变压器的三相电压与三相电流的关系式为:
I p I s = Y pp Y ps Y sp Y ss U p U s
其中:Up和Ip分别是三相变压器原边侧的三相电压与三相电流,Us和Is分别是三相变压器副边侧的三相电压与三相电流, Y = Y pp Y ps Y sp Y ss 是三相变压器的三相导纳矩阵,三相导纳矩阵中,Ypp是三相变压器原边侧的自导纳,Yss是三相变压器副边侧的自导纳,Yps是三相变压器原边侧与三相变压器副边侧的互导纳,Ysp=Yps Τ,上标“T”表示对矩阵或向量进行转置计算;
(2)对上述三相变压器的三相电压与三相电流的关系式添加三相变压器副边侧电压约束:Usa+Usb+Usc=3U0,使三相变压器的三相电压与三相电流的关系式转变为:
I p I s ′ = Y pp Y ps ′ Y sp ′ Y ss ′ U p U s ′
其中:Usa、Usb和Usc分别是三相变压器副边侧的a相电压、b相电压和c相电压,U0是三相变压器副边侧的零序电压,Is′=[Is,Uref]Τ,Us′=[Us,0]Τ,Yps′=[Yps,E0],Ysp′=YpsΤ Y ss ′ = Y ss E 1 E 1 T 0 , 其中Uref=3U0,E0=[0,0,0]Τ,E1=[1,1,1]Τ
(3)将步骤(2)得到的三相变压器三相电压与三相电流的关系式用于不接地配电网的三相潮流计算,得到不接地配电网的回推前推三相潮流计算公式为:
I p = K ′ U p + Y ps Y ss ′ - 1 I s ′
U s ′ = - Y ss ′ - 1 Y sp U p + Y ss ′ - 1 I s ′ ,
其中: K ′ = Y pp - Y ps Y ss ′ - 1 Y sp , Y ss ′ - 1 为Y′ss的逆矩阵。

Claims (1)

1.一种用于不接地配电网的回推前推三相潮流计算方法,其特征在于该方法包括以下步骤:
(1)根据不接地配电网中三相变压器的原边侧和副边侧的三相电压与三相电流,得到三相变压器的三相电压与三相电流的关系式为:
其中:Up和Ip分别是三相变压器原边侧的三相电压与三相电流,Us和Is分别是三相变压器副边侧的三相电压与三相电流,是三相变压器的三相导纳矩阵,三相导纳矩阵中,Ypp是三相变压器原边侧的自导纳,Yss是三相变压器副边侧的自导纳,Yps是三相变压器原边侧与三相变压器副边侧的互导纳,Ysp=Yps Τ,上标“T”表示对矩阵或向量进行转置计算;
(2)对上述三相变压器的三相电压与三相电流的关系式添加三相变压器副边侧电压约束:Usa+Usb+Usc=3U0,使三相变压器的三相电压与三相电流的关系式转变为:
其中:Usa、Usb和Usc分别是三相变压器副边侧的a相电压、b相电压和c相电压,U0是三相变压器副边侧的零序电压,I′s=[Is,Uref]T,U′s=[Us,0]T,Y′ps=[Yps,E0],Y′sp=Y′ps T其中Uref=3U0,E0=[0,0,0]Τ,E1=[1,1,1]Τ
(3)将步骤(2)得到的三相变压器三相电压与三相电流的关系式用于不接地配电网的三相潮流计算,得到不接地配电网的回推前推三相潮流计算公式为:
其中:为Y′ss逆矩阵。
CN201410012852.2A 2014-01-10 2014-01-10 一种用于不接地配电网的回推前推三相潮流计算方法 Active CN103730897B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410012852.2A CN103730897B (zh) 2014-01-10 2014-01-10 一种用于不接地配电网的回推前推三相潮流计算方法
US14/292,022 US9625929B2 (en) 2014-01-10 2014-05-30 Method and device for obtaining three-phase power flow of power distribution network with ungrounded transformers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410012852.2A CN103730897B (zh) 2014-01-10 2014-01-10 一种用于不接地配电网的回推前推三相潮流计算方法

Publications (2)

Publication Number Publication Date
CN103730897A CN103730897A (zh) 2014-04-16
CN103730897B true CN103730897B (zh) 2015-12-02

Family

ID=50454875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410012852.2A Active CN103730897B (zh) 2014-01-10 2014-01-10 一种用于不接地配电网的回推前推三相潮流计算方法

Country Status (2)

Country Link
US (1) US9625929B2 (zh)
CN (1) CN103730897B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269872B (zh) * 2014-10-13 2017-12-05 国家电网公司 一种变压器三相节点导纳矩阵奇异的处理方法
CN104578062B (zh) * 2015-01-27 2017-02-01 国家电网公司 一种适用于前推回代三相潮流计算的变压器建模方法
US20180047499A1 (en) * 2016-08-11 2018-02-15 Cooper Technologies Company Distribution transformer and integrated power conditioning device
US10258148B1 (en) * 2017-05-02 2019-04-16 Brunswick Corporation Convertible sit-to-stand desk
EP3428659A1 (en) * 2017-07-12 2019-01-16 LEM Intellectual Property SA Contactless voltage transducer
CN110516400A (zh) * 2019-09-03 2019-11-29 邵阳学院 三相漏磁导纳矩阵获取方法、装置、电子设备及存储介质
CN114696329B (zh) * 2022-03-16 2024-07-02 福州大学 一种中压不接地配电网的三相潮流统一计算方法
CN115267357A (zh) * 2022-08-03 2022-11-01 西安交通大学 一种基于超宽频域模型的变压器绕组过电压分布计算方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7209839B2 (en) * 2002-12-18 2007-04-24 Siemens Power Transmission & Distribution, Inc. Real time power flow method for distribution system
US20120022713A1 (en) * 2010-01-14 2012-01-26 Deaver Sr Brian J Power Flow Simulation System, Method and Device
US8965593B2 (en) * 2012-02-06 2015-02-24 Mitsubishi Electric Research Laboratories, Inc. Hybrid three-phase power flow analysis method for ungrounded distribution systems
CN103023013A (zh) * 2012-08-08 2013-04-03 清华大学 一种主动配电网三相潮流的计算方法
US20140257715A1 (en) * 2013-03-09 2014-09-11 Bigwood Technology, Inc. Robust Power Flow Methodologies for Distribution Networks with Distributed Generators
CN103248044A (zh) * 2013-05-07 2013-08-14 广东电网公司电力科学研究院 配电网潮流计算方法与系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
变压器详细模型推导与三相配电潮流计算;吴文传等;《电力系统自动化》;20030225;第27卷(第4期);第53-56页 *

Also Published As

Publication number Publication date
CN103730897A (zh) 2014-04-16
US20150199301A1 (en) 2015-07-16
US9625929B2 (en) 2017-04-18

Similar Documents

Publication Publication Date Title
CN103730897B (zh) 一种用于不接地配电网的回推前推三相潮流计算方法
CN103956733B (zh) 电力网中节点到支路的有功功率传输系数的对称获取方法
CN105024348A (zh) YNd5变压器纵联差动保护d侧电流相位补偿方法
CN104995810A (zh) 交流电力网中源荷同变的对称功率传输系数的获取方法
CN102879668B (zh) 含逆变型分布式电源配电网的非对称故障分析方法
CN103793755B (zh) 基于原对偶内点法的混合直流输电系统最优潮流方法
CN104331544A (zh) 一种基于eic原理的三相三柱变压器建模方法
CN103701123B (zh) 一种用于不接地配电网的高斯-塞德尔三相潮流计算方法
CN103106328A (zh) 基于整体矢量拟合法的频率相关网络等值的生成方法
CN103954885A (zh) 基于分布参数的双回线故障单端定位系统及定位方法
CN104239652A (zh) 一种基于eic原理的三相五柱芯式变压器建模分析方法
Caballero et al. Frequency-dependent multiconductor line model based on the Bergeron method
CN104657599A (zh) 等效微分电(磁)路原理计算直流偏磁单相变压器模型
Da Costa et al. Proposal of an alternative transmission line model for symmetrical and asymmetrical configurations
CN106058898A (zh) 一种配电网三相不对称直流潮流计算方法
CN103729502A (zh) 一种提高电力系统电磁暂态仿真速度的方法
CN104917197A (zh) 一种并行计算主动配电网三相不平衡潮流的方法
Abdel-Akher et al. Implementation of three-phase transformer model in radial load-flow analysis
CN104809322A (zh) 一种建立变压器铁心频变涡流模型的新方法
Lin System equivalent for real time digital simulator
Zhang et al. A positive-sequence-fault-component-based improved reverse power protection for spot network with PV
Zheng et al. Abundant explicit and exact solutions for the variable coefficient mKdV equations
CN105098776A (zh) 一种主动配电网三相潮流的计算方法
CN104167733A (zh) 一种基于负荷阻抗的电网等值方法
CN104391198A (zh) 一种低压用电网安全监测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant