CN103710389B - 一种具有磁性的Pd纳米复合材料的生物合成方法 - Google Patents

一种具有磁性的Pd纳米复合材料的生物合成方法 Download PDF

Info

Publication number
CN103710389B
CN103710389B CN201310612325.0A CN201310612325A CN103710389B CN 103710389 B CN103710389 B CN 103710389B CN 201310612325 A CN201310612325 A CN 201310612325A CN 103710389 B CN103710389 B CN 103710389B
Authority
CN
China
Prior art keywords
magnetic
composite material
nano composite
concentration
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310612325.0A
Other languages
English (en)
Other versions
CN103710389A (zh
Inventor
柳广飞
托娅
周集体
金若菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201310612325.0A priority Critical patent/CN103710389B/zh
Publication of CN103710389A publication Critical patent/CN103710389A/zh
Application granted granted Critical
Publication of CN103710389B publication Critical patent/CN103710389B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Compounds Of Iron (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种具有磁性的Pd纳米复合材料的生物合成方法,属于生物制备纳米材料领域,通过Shewanella?oneidensis?MR-1与β-FeOOH反应合成生物磁性纳米颗粒后,与Na2PdCl4、AuCl3·HCl·4H2O在常温下合成具有磁性的Pd纳米复合材料;该方法反应条件温和,操作简单,反应时间短,成本低,是一种绿色、无污染的具有磁性的Pd纳米复合材料的制备工艺,可用于催化降解环境污染物。

Description

一种具有磁性的Pd纳米复合材料的生物合成方法
技术领域
本发明涉及一种具有磁性的Pd纳米复合材料的生物合成方法,属于生物合成纳米材料领域。
背景技术
纳米材料是指至少有一维尺度处于纳米量级(1~100nm)的材料。由于量子效应对物质性能和结构的影响,纳米颗粒往往具有特殊的理化性质。其在光学、催化化学、光电化学及电子技术等方面的独特性能引起人们的广泛兴趣。目前纳米材料的合成通常需在真空或液相条件下应用原子、分子及微粒加工技术,成本高、材料和能源利用率低。生物合成纳米材料技术,即生物细胞利用生物活性分子于细胞内或细胞外自组装成具有生物分子组成的新型纳米材料技术,是近年来随着纳米技术、生物技术和材料科学等学科的进步而逐渐交叉发展起来的新兴领域。与传统的应用物理和化学方法的纳米材料合成技术相比,生物合成纳米材料技术具有清洁、无毒、环境友好,反应条件温和可控,不需添加任何还原剂,效率高等优点,因而成为纳米材料合成领域研究热点。微生物在自然界分布广,易分离培养,生长繁殖快,结构简单易于操作,已被广泛用于生物合成纳米材料研究,并取得了较大研究进展,如BurgosWD等在2008年GeochimcaetCosmochimicaActa第72卷第4901–4915页;TuoY等在2013年BioresourceTechnology第133卷第606–611页以及NgCK等在2013年RSCAdvances第3卷第22498-22503页所发表的论文报道了利用微生物合成金属纳米颗粒。但是,很多金属纳米材料难以回收,特别是铂系金属(Pt、Rh、Ru、Pd)作为纳米材料,其在使用过程中的流失在污染环境的同时也造成极大的资源浪费。而另一方面由于金属不能分解和破坏,而只能转移它们存在的位置或转变它们的物理和化学形态,一旦上述纳米材料进入人体,将会产生极大危害。近来,有研究利用微生物合成了磁性的贵金属纳米颗粒,如CokerVS等在2010年ACSNano第4卷第5期第2577-2584页所发表的论文报道了利用微生物合成具有磁性的Pd纳米颗粒,该方法首先利用Geobactersulfurreducens在蒽醌-2,6-二磺酸钠(AQDS)存在的条件下合成Fe3O4纳米颗粒,随后加入Pd盐合成磁性的Pd纳米颗粒。分析该方法发现存在着一些不足:(1)G.sulfurreducens为严格厌氧菌,培养条件严格苛刻,要求在完全厌氧的条件培养才能保持细胞的活性。(2)在制备Fe3O4纳米颗粒时使用的氧化还原介体AQDS在自然界难降解,对生物有毒性效应。此外,该论文合成的为单一的磁性Pd纳米颗粒,而有研究表明贵金属合金纳米材料往往比单一的贵金属纳米材料催化活性更高,如DeCorteS等2011年在EnvironmentalScience&Technology第45卷第19期第8506-8513页和HosseinkhaniB等在2012年BiotechnolBioeng第109卷第1期第45-52页所发表的论文。该方法并没有研究生物合成的磁性贵金属合金纳米材料的可行性。
采用微生物合成具有磁性的Pd纳米复合材料利用,合成方法清洁、无毒、环境友好并且反应条件温和、产量高,材料催化活性高。磁性纳米颗粒对于金属材料回收,资源化利用具有重要的意义。
发明内容
本发明针对合成金属纳米材料的反应条件苛刻,为解决提高催化活性和材料回收利用等问题,提供一种具有磁性的Pd纳米复合材料的生物合成方法,具有反应条件温和,时间短,材料催化活性高,可回收等特点。
为了达到上述目的,本发明提供了一种具有磁性的Pd纳米复合材料的生物合成方法,具体步骤如下:
步骤1:异化金属还原菌的培养:采用异化金属还原菌制备具有磁性的Pd纳米复合材料的微生物菌种。
步骤2:β-FeOOH溶液的制备:采用β-FeOOH作为具有磁性的Pd纳米复合材料的磁性组分合成的前体物质。
步骤3:磁性Pd纳米复合材料的生物合成方法:
(1)收集处于对数生长期末期的异化金属还原菌的细胞;
(2)生物合成Fe3O4纳米颗粒培养液的配置方法:培养液由10-30mmol/L的哌嗪-1,4-二乙磺酸和5-30mmol/L的乳酸钠组成,pH值调至7.0,通N2曝气除去氧气,灭菌,得到所需的Fe3O4纳米颗粒培养液;
(3)Fe3O4纳米颗粒的生物合成:将所述(1)中收集的异化金属还原菌的细胞加入Fe3O4纳米颗粒培养液中,再加入所述的β-FeOOH溶液,使β-FeOOH的浓度为10-100mmol/L;在厌氧30℃-35℃的条件下培养12-76h,获得生物合成的Fe3O4纳米颗粒;
(4)Fe3O4纳米颗粒分离:将(3)所述的Fe3O4纳米颗粒分离并用去离子水洗涤;所使用的去离子水在使用前通N2曝气除去氧气,灭菌;
(5)生物合成磁性的Pd纳米复合材料的培养液的配制方法:磁性Pd纳米复合材料的培养液是由(a)浓度为0.5-2.0mmol/L的Na2PdCl4和10mmol/L乳酸钠或(b)浓度比为1:1Na2PdCl4和AuCl3·HCl·4H2O以及10mmol/L乳酸钠配制而成,配置前通N2曝气除去氧气,灭菌;
(6)磁性的Pd纳米复合材料的生物合成:将(4)所述的Fe3O4纳米颗粒的加入(5)所述的磁性Pd纳米复合材料的培养液中,使Fe3O4纳米颗粒浓度为0.5-10mmol/L;将所述的培养液在厌氧30℃-35℃的条件下培养48-96h,获得生物合成的磁性的Pd纳米复合材料。
其中,具有磁性的Fe3O4/Pd纳米复合材料的粒径在5-20nm,Fe与Pd的质量比为52:48,饱和磁化强度为33emu/g;具有磁性的Fe3O4/Pd/Au复合材料的粒径在5-50nm,Fe、Pd与Au的质量比为56:18:26,饱和磁化强度为24emu/g。
本发明的具有磁性的Pd纳米复合材料,在常温下利用S.oneidensisMR-1合成,具有球形几何结构,粒径分布在5-50nm。该磁性Pd纳米复合材料合成方法可替代传统化学合成法,工艺具有反应时间短,条件温和、能耗低,可回收利用,操作简单等特点,具有极高的应用推广价值。
附图说明
图1是具有磁性的Fe3O4/Pd纳米复合材料的透射电镜图。
图2具有磁性的Fe3O4/Pd/Au纳米复合材料的透射电镜图。
图3是具有磁性的Fe3O4/Pd纳米复合材料的能量色散X射线光谱图。
图4是具有磁性的Fe3O4/Pd/Au纳米复合材料的能量色散X射线光谱图。
图5是具有磁性的Pd纳米复合材料的磁滞回线图。
其中:(a)是Fe3O4/Pd纳米复合材料的磁滞回线图;(b)是Fe3O4/Pd/Au纳米复合材料的磁滞回线图。
具体实施方式
以下结合技术方案和附图详细叙述本发明的具体实施例。
实施例1
具有磁性的Fe3O4/Pd纳米复合材料的制备:
(1)ShewanellaoneidensisMR-1的培养:该方法是采用S.oneidensisMR-1作为合成具有磁性的Pd纳米复合材料的微生物菌种;S.oneidensisMR-1属于异化金属还原菌,可以还原不溶性(水合)金属氧化物,生长速度快,12h即可进入生长稳定期;该菌种采用Luria-Bertani培养基,所述培养基的配方为:NaCl10g/L,蛋白胨10g/L,酵母浸粉5g/L,最后pH值用NaOH调节至7.0。培养基使用前,用高压灭菌锅在121℃,20min的条件下灭菌;S.oneidensisMR-1在无菌操作台接种至Luria-Bertani培养基,接种比例为1:100;接种后的培养基在30℃,150rpm培养箱中培养12h得到S.oneidensisMR-1菌液备用。
(2)β-FeOOH的制备:β-FeOOH是用作S.oneidensisMR-1合成Fe3O4的前体;将10mol/L的NaOH溶液逐滴加入0.4mol/L的FeCl3·6H2O至pH为7.0,室温放置10-12h,制得的悬浊液离心收集(11000g,5min)并用去离子水洗涤三遍,重新定容至铁的浓度为0.4mol/L,通N2曝气30min除去氧气,获得β-FeOOH,在厌氧避光4℃条件下保存备用。
(3)具有磁性的Pd纳米复合材料的生物合成方法:
第1步:所述步骤(1)中Luria-Bertani培养基培养12h后所得的S.oneidensisMR-1菌液在11000g离心力离心分离,除去上清液,收集沉淀下来的细胞;加入哌嗪-1,4-二乙磺酸溶液至原体积重新悬浮S.oneidensisMR-1菌体。哌嗪-1,4-二乙磺酸溶液的浓度为20mmol/L,该溶液pH值用NaOH调节至7.0,使用前,用高压灭菌锅在121℃,20min的条件下灭菌;悬浮后的菌体在11000g离心力离心分离,除去上清液,收集沉淀下来的细胞,如此反复三次;该过程加入哌嗪-1,4-二乙磺酸溶液的目的是清洗菌体,以除去残余的培养基和代谢产物。
第2步:将所述第1步离心分离的细胞加入培养液并重新悬浮,加入所述步骤(2)中的β-FeOOH使其浓度为40mmol/L;该方法所述的培养液配方为哌嗪-1,4-二乙磺酸20mmol/L,乳酸钠10mmol/L,该溶液pH值用NaOH调节至7.0,使用前,通N2曝气30min去氧气,用高压灭菌锅在121℃,20min的条件下灭菌;在厌氧30℃的条件下培养48h获得生物合成的Fe3O4纳米颗粒。
第3步:将第2步所述的Fe3O4纳米颗粒利用磁铁通过磁性从溶液中分离;加入去离子水重新悬浮,在磁铁的作用下再次分离,如此反复三次,目的是除去第2步所述的培养基和剩余的菌体;将磁性颗粒重新悬浮至去离子水中定容至原体积;该方法使用的去离子水在使用前通N2曝气30min除去氧气,用高压灭菌锅在121℃,20min的条件下灭菌。
第4步:将第3步所述的Fe3O4纳米颗粒(2.4mmol/L)的加入培养液;该方法使用的培养液是由1mmol/LNa2PdCl4和10mmol/L乳酸钠配制而成,所述培养液用去离子水配制,配置前通N2曝气30min除去氧气,用高压灭菌锅在121℃,20min的条件下灭菌;将所述的培养液在厌氧30℃的条件下培养48h获得生物合成的磁性Pd纳米复合材料。
第5步:具有磁性的Fe3O4/Pd纳米复合材料的收集;将第4步所述的磁性Pd纳米复合材料溶液利用磁铁在磁力的作用下分离,去除培养液,加入去离子水重新悬浮,在磁铁的作用下再次分离,如此反复三次,目的是除去第4步所述的培养液;将磁性Pd纳米复合材料重新悬浮至去离子水中;该方法使用的去离子水在使用前通N2曝气30min除去氧气,用高压灭菌锅在121℃,20min的条件下灭菌;获得具有磁性的Fe3O4/Pd纳米复合材料。
图1是实施例1中合成的Fe3O4/Pd纳米复合材料的透射电镜图,结果表明合成了具有纳米尺度的Fe3O4/Pd纳米颗粒,形成尺寸在5-20nm的球形颗粒。
图3是实施例1中合成的Fe3O4/Pd纳米复合材料的能量色散X射线光谱图,结果表明合成的颗粒含有Fe、Pd。
图5中(a)是实施例1中合成的Fe3O4/Pd纳米复合材料的磁滞回线图,结果表明Fe3O4/Pd纳米复合材料的饱和磁化强度为33emu/g。
实施例2
具有磁性的Fe3O4/Pd/Au纳米复合材料的制备:
(1)ShewanellaoneidensisMR-1的培养:该方法是采用S.oneidensisMR-1作为合成具有磁性的Pd纳米复合材料的微生物菌种;S.oneidensisMR-1属于异化金属还原菌,可以还原不溶性(水合)金属氧化物,生长速度快,12h即可进入生长稳定期;该菌种采用Luria-Bertani培养基,所述培养基的配方为:NaCl10g/L,蛋白胨10g/L,酵母浸粉5g/L,最后pH值用NaOH调节至7.0。培养基使用前,用高压灭菌锅在121℃,20min的条件下灭菌;S.oneidensisMR-1在无菌操作台接种至Luria-Bertani培养基,接种比例为1:100;接种后的培养基在30℃,150rpm培养箱中培养12h得到S.oneidensisMR-1菌液备用。
(2)β-FeOOH的制备:β-FeOOH是用作S.oneidensisMR-1合成Fe3O4的前体;将10mol/L的NaOH溶液逐滴加入0.4mol/L的FeCl3·6H2O至pH为7.0,室温放置10-12h,制得的悬浊液离心收集(11000g,5min)并用去离子水洗涤三遍,重新定容至铁的浓度为0.4mol/L,通N2曝气30min除去氧气,获得β-FeOOH,在厌氧避光4℃条件下保存备用。
(3)具有磁性的Fe3O4/Pd/Au纳米复合材料的生物合成方法:
第1步:所述步骤(1)中Luria-Bertani培养基培养12h后所得的S.oneidensisMR-1菌液在11000g离心力离心分离,除去上清液,收集沉淀下来的细胞;加入哌嗪-1,4-二乙磺酸溶液至原体积重新悬浮S.oneidensisMR-1菌体。哌嗪-1,4-二乙磺酸溶液的浓度为20mmol/L,该溶液pH值用NaOH调节至7.0,使用前,用高压灭菌锅在121℃,20min的条件下灭菌;悬浮后的菌体在11000g离心力离心分离,除去上清液,收集沉淀下来的细胞,如此反复三次;该过程加入哌嗪-1,4-二乙磺酸溶液的目的是清洗菌体,以除去残余的培养基和代谢产物。
第2步:将所述第1步离心分离的细胞加入培养液并重新悬浮,加入所述步骤(2)中的β-FeOOH使其浓度为40mmol/L;该方法所述的培养液配方为哌嗪-1,4-二乙磺酸20mmol/L,乳酸钠10mmol/L,该溶液pH值用NaOH调节至7.0,使用前,通N2曝气30min去氧气,用高压灭菌锅在121℃,20min的条件下灭菌;在厌氧30℃的条件下培养48h获得生物合成的Fe3O4纳米颗粒。
第3步:将第2步所述的Fe3O4纳米颗粒利用磁铁通过磁性从溶液中分离;加入去离子水重新悬浮,在磁铁的作用下再次分离,如此反复三次,目的是除去第2步所述的培养基和剩余的菌体;将磁性颗粒重新悬浮至去离子水中定容至原体积;该方法使用的去离子水在使用前通N2曝气30min除去氧气,用高压灭菌锅在121℃,20min的条件下灭菌。
第4步:将第3步所述的Fe3O4纳米颗粒(2.4mmol/L)的加入培养液;该方法使用的培养液是由1mmol/LNa2PdCl4、1mmol/LAuCl3·HCl·4H2O和10mmol/L乳酸钠配制而成,所述培养液用去离子水配制,配置前通N2曝气30min除去氧气,用高压灭菌锅在121℃,20min的条件下灭菌;将所述的培养液在厌氧30℃的条件下培养48h获得生物合成的磁性Pd纳米复合材料。
第5步:磁性的Fe3O4/Pd/Au纳米复合材料的收集;将第4步所述的磁性Pd纳米复合材料溶液利用磁铁在磁力的作用下分离,去除培养液,加入去离子水重新悬浮,在磁铁的作用下再次分离,如此反复三次,目的是除去第4步所述的培养液;将磁性Pd纳米复合材料重新悬浮至去离子水中;该方法使用的去离子水在使用前通N2曝气30min除去氧气,用高压灭菌锅在121℃,20min的条件下灭菌;获得具有磁性的Fe3O4/Pd/Au纳米复合材料。
图2是实施例2中合成的Fe3O4/Pd/Au纳米复合材料的透射电镜图,结果表明合成了具有纳米尺度的Fe3O4/Pd/Au纳米颗粒,形成尺寸在5nm-50nm的球形颗粒。
图4是实施例2中合成的Fe3O4/Pd/Au纳米复合材料的能量色散X射线光谱图,结果表明合成的颗粒含有Fe、Pd、Au。
图5中(b)是实施例2中合成的Fe3O4/Pd/Au纳米复合材料的磁滞回线图,结果表明Fe3O4/Pd/Au纳米复合材料的饱和磁化强度为24emu/g。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种具有磁性的Pd纳米复合材料的生物合成方法,其特征在于如下步骤:
步骤1:异化金属还原菌的培养:采用异化金属还原菌制备具有磁性的Pd纳米复合材料的微生物菌种;
步骤2:β-FeOOH溶液的制备:将10mol/L的NaOH溶液逐滴加入0.4mol/L的FeCl6H2O至pH为7.0,室温放置10-12h,制得的悬浊液离心收集,11000g/5min;并用去离子水洗涤三遍,重新定容至铁的浓度为0.4mol/L,通N2曝气30min除去氧气,获得β-FeOOH,在厌氧避光4°C条件下保存;
步骤3:磁性的Pd纳米复合材料的生物合成方法:
(1)收集处于对数生长期末期的异化金属还原菌的细胞;
(2)生物合成Fe3O4纳米颗粒的培养液的配制方法:培养液由10-30mmol/L的哌嗪-1,4-二乙磺酸和5-30mmol/L的乳酸钠组成,pH值为7.0,通N2曝气除去氧气,灭菌,得到所需的Fe3O4纳米颗粒培养液;
(3)Fe3O4纳米颗粒的生物合成:将收集的异化金属还原菌的细胞加入Fe3O4纳米颗粒的培养液中,再加入所述的β-FeOOH溶液,使β-FeOOH的浓度为10-100mmol/L;在30℃-35℃的厌氧条件下培养12-76h,获得生物合成的Fe3O4纳米颗粒;
(4)Fe3O4纳米颗粒分离:将上述的Fe3O4纳米颗粒分离并用去离子水洗涤;去离子水在使用前通N2曝气除去氧气,灭菌;
(5)生物合成磁性的Pd纳米复合材料培养液的配制方法:磁性Pd纳米复合材料培养液由0.5-2.0mmol/L的Na2PdCl4和10mmol/L乳酸钠组成或由浓度比为1:1Na2PdCl4和AuCl3·HCl·4H2O以及10mmol/L乳酸钠组成,配制前通N2曝气除去氧气,灭菌;
(6)磁性的Pd纳米复合材料的生物合成:将上述的Fe3O4纳米颗粒加入到所述磁性的Pd纳米复合材料培养液中,使Fe3O4纳米颗粒的浓度为0.5-10mmol/L;在30℃-35℃的厌氧条件下培养48-96h,获得生物合成的磁性的Pd纳米复合材料;
所述的异化金属还原菌为ShewanellaoneidensisMR-1。
2.根据权利要求1所述的生物合成方法,其特征在于,步骤3中(2)所述的哌嗪-1,4-二乙磺酸溶液的浓度为20mmol/L,乳酸钠溶液的浓度为10mmol/L;步骤3中(3)所述的β-FeOOH溶液的浓度为40mmol/L培养温度为30℃,培养时间为48h。
3.根据权利要求1或2所述的生物合成方法,其特征在于,所述的步骤3中(4)Fe3O4纳米颗粒选用磁铁分离。
4.根据权利要求1或2所述的生物合成方法,其特征在于,步骤3中(5)所述的Na2PdCl4溶液、AuCl3·HCl·4H2O溶液的浓度均为1mmol/L,乳酸钠浓度为10mmol/L;步骤3中(6)培养温度为30℃,培养时间为48h。
5.根据权利要求3所述的生物合成方法,其特征在于,步骤3中(5)所述的Na2PdCl4溶液、AuCl3·HCl·4H2O溶液的浓度均为1mmol/L,乳酸钠浓度为10mmol/L;步骤3中(6)培养温度为30℃,培养时间为48h。
CN201310612325.0A 2013-11-25 2013-11-25 一种具有磁性的Pd纳米复合材料的生物合成方法 Expired - Fee Related CN103710389B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310612325.0A CN103710389B (zh) 2013-11-25 2013-11-25 一种具有磁性的Pd纳米复合材料的生物合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310612325.0A CN103710389B (zh) 2013-11-25 2013-11-25 一种具有磁性的Pd纳米复合材料的生物合成方法

Publications (2)

Publication Number Publication Date
CN103710389A CN103710389A (zh) 2014-04-09
CN103710389B true CN103710389B (zh) 2015-12-30

Family

ID=50403743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310612325.0A Expired - Fee Related CN103710389B (zh) 2013-11-25 2013-11-25 一种具有磁性的Pd纳米复合材料的生物合成方法

Country Status (1)

Country Link
CN (1) CN103710389B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104046652A (zh) * 2014-06-24 2014-09-17 大连理工大学 一种磁性石墨烯复合材料的生物合成方法
CN104229989B (zh) * 2014-10-11 2016-02-10 北京师范大学 一种厌氧颗粒污泥自固定负载生物纳米钯的方法及在偶氮染料降解中的应用
CN106118326B (zh) * 2016-08-05 2018-05-11 东莞市润天化工有限公司 一种纳米防电晕涂层的制备方法
CN107376993B (zh) * 2017-06-15 2019-11-08 昆明理工大学 玉米秸穰固载钯催化复合材料的制备方法及应用
CN107497422A (zh) * 2017-09-13 2017-12-22 安徽大学 一种应用于电芬顿体系阴极的Pd/C催化剂及其生物制备方法
CN109811011B (zh) * 2019-01-31 2021-07-23 内蒙古科技大学 一种生物合成空心微纳米四氧化三铁的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060012062A (ko) * 2004-08-02 2006-02-07 강영수 감마선 조사에 의한 자성체 나노입자의 제조기술
CN101423256A (zh) * 2008-11-04 2009-05-06 扬州大学 一种β-FeOOH纳米颗粒悬浮液的制备方法
US7829140B1 (en) * 2006-03-29 2010-11-09 The Research Foundation Of The State University Of New York Method of forming iron oxide core metal shell nanoparticles
CN102703509A (zh) * 2012-06-25 2012-10-03 江苏大学 一种提高改良的Shewanella oneidensis MR-1遗传转化的方法
CN102936060A (zh) * 2012-11-02 2013-02-20 江苏大学 一种产电微生物辅助的纳米材料光还原降解有机污染物的方法
CN103331454A (zh) * 2013-07-02 2013-10-02 南京大学 一种纳米银制造工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4680272B2 (ja) * 2008-02-04 2011-05-11 トヨタ自動車株式会社 異方性磁性材料の製造方法および異方性磁性材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060012062A (ko) * 2004-08-02 2006-02-07 강영수 감마선 조사에 의한 자성체 나노입자의 제조기술
US7829140B1 (en) * 2006-03-29 2010-11-09 The Research Foundation Of The State University Of New York Method of forming iron oxide core metal shell nanoparticles
CN101423256A (zh) * 2008-11-04 2009-05-06 扬州大学 一种β-FeOOH纳米颗粒悬浮液的制备方法
CN102703509A (zh) * 2012-06-25 2012-10-03 江苏大学 一种提高改良的Shewanella oneidensis MR-1遗传转化的方法
CN102936060A (zh) * 2012-11-02 2013-02-20 江苏大学 一种产电微生物辅助的纳米材料光还原降解有机污染物的方法
CN103331454A (zh) * 2013-07-02 2013-10-02 南京大学 一种纳米银制造工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Biological control of the size and reactivity of catalytic Pd(o) produced by Shewanella oneidensis;Wim De Windt et al;《antonie van leeuwenhoek》;20061011;第90卷(第4期);全文 *

Also Published As

Publication number Publication date
CN103710389A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
CN103710389B (zh) 一种具有磁性的Pd纳米复合材料的生物合成方法
Ahmed et al. Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities
Parial et al. Screening of different algae for green synthesis of gold nanoparticles
CN107021510B (zh) 呈镶边立方块状钴-铁类普鲁士蓝纳米材料及其制备方法
CN102723504B (zh) 一种多壁碳纳米管载核壳型银-铂阴极催化剂及制备方法
CN101817088B (zh) 一种Pt-Ni合金纳米粒子及其胶体分散体系的制备方法
CN101786168B (zh) 花状纳米金的制备方法
CN103447549B (zh) 钴纳米球的制备方法
CN101857260A (zh) 水热法制备四方片状表面结构球状二氧化铈纳米材料的方法
CN103100725A (zh) 一种银/碳量子点复合纳米材料的制备方法
CN102234617B (zh) 一种采用磁性介质分离、收集微藻的方法
CN104477887A (zh) 由微晶石墨制备石墨烯的方法
Valian et al. Sol-gel synthesis of DyFeO3/CuO nanocomposite using Capsicum Annuum extract: Fabrication, structural analysis, and assessing the impacts of g-C3N4 on electrochemical hydrogen storage behavior
CN105112453A (zh) 一种纳米颗粒材料的制备方法
CN104588677A (zh) 一种鲍希瓦氏菌合成金纳米的方法及金纳米的应用
CN110745869A (zh) 一种基于溶剂热法合成的FeS纳米颗粒、制备方法和应用
CN110548483A (zh) 一种生物炭/纳米四氧化三铁复合材料的制备方法及其应用
CN100500335C (zh) 一种含生物质的水溶性纳米银粉的制备方法
CN104190459A (zh) 一种氮掺杂石墨烯包覆FeCo纳米晶的制备方法及其制得的产物的应用
CN101786601B (zh) Fe3O4/CoO核壳结构复合纳米粒子的制备方法
CN102179526A (zh) 一种油水界面法制备立方晶型纳米银材料的方法
CN104891580A (zh) 一种氢氧化镍超薄纳米片组装体的制备方法
CN102649089B (zh) 一种纳米金-单宁酸-氧化石墨烯纳米复合材料的制备方法
CN104046652A (zh) 一种磁性石墨烯复合材料的生物合成方法
CN109734134B (zh) 一种类珊瑚结构四氧化三铁纳米材料的制备及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151230

Termination date: 20191125