CN103703596A - 安全的电池溶剂 - Google Patents

安全的电池溶剂 Download PDF

Info

Publication number
CN103703596A
CN103703596A CN201280023305.3A CN201280023305A CN103703596A CN 103703596 A CN103703596 A CN 103703596A CN 201280023305 A CN201280023305 A CN 201280023305A CN 103703596 A CN103703596 A CN 103703596A
Authority
CN
China
Prior art keywords
solvent
phosphazene compound
chemical
cyclic phosphazene
side chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280023305.3A
Other languages
English (en)
Other versions
CN103703596B (zh
Inventor
约翰·L·布尔巴三世
梅森·K·哈勒普
托马斯·A·卢瑟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pulin Xisi Energy Source System Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610599602.2A priority Critical patent/CN106207248A/zh
Publication of CN103703596A publication Critical patent/CN103703596A/zh
Application granted granted Critical
Publication of CN103703596B publication Critical patent/CN103703596B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/65812Cyclic phosphazenes [P=N-]n, n>=3
    • C07F9/65815Cyclic phosphazenes [P=N-]n, n>=3 n = 3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种用于电池的离子运输溶剂,其可通过同时缩短磷腈化合物的侧基、消除大多数或所有的远端离子载体和使溶剂分子随机化以有意地可能的最大程度打乱对称性来提高。将记录的性能与使用传统有机溶剂的电池相比较,这些策略的结合大大提高了电池性能至一定程度。

Description

安全的电池溶剂
技术领域
本发明大体涉及一种用于与普通电池电解质盐共同使用的改进的离子运输溶剂,具体地说,涉及一种不牺牲离子溶解度或安全性、减少金属离子穿过电解质/电极界面的电阻改进的离子运输溶剂。
背景技术
锂离子电池(“LIB”)通常用于各种电子消费品,包括手机、电脑和便携式摄像机。近来,LIB在其他行业中一直受到欢迎,包括军事、电动车辆、航空航天、石油和天然气的勘探、生产以及运输应用。
所有的电池都包含阳极、阴极和离子载体电解质溶液或聚合物,当电池充电或放电时,离子载体电解质溶液或聚合物在电极之间传输离子。最典型的溶剂是有机碳酸盐的混合物,最常见的电解质是LiPF6,但LiBF4和LiClO4也较常用。商业锂离子电池中的溶剂/电解质体系包含了非常高的锂浓度和低粘度,因此提供了用于离子传输和有效电池功能的良好环境。
然而,这样的系统可能非常不稳定。例如,取决于选择的碳酸盐,碳酸盐溶剂可能具有低的闪点。当锂离子在充电或放电期间运输时,释放热能。如果电池处于大量需求时,产生的热量会相当大。当电池中的温度上升时,溶剂系统的蒸汽压增加。如果热能释放大于电池的自然冷却,则压力可能会超过电池壳的结构极限,导致破裂。热蒸汽可能会与空气中的氧气混合,并且如果存在热源,可能导致着火。
电池,尤其是在石油和天然气行业的电池,必须能够可靠地运行在最极端的环境条件中,包括高压高温的地下和海底区域。另外,大型锂离子电池系统,如在电动车辆行业中的,需求更安全、更可靠的电池。使用传统有机碳酸盐的电池带来严重的安全问题,包括爆炸和火灾的可能性。
主要的现有技术的详细描述在美国专利No.7285362中可以找到。在362专利中,该发明包含新的离子运输溶剂,其能保持低的蒸气压,包含阻燃成分,并且是无毒的。与电解质盐组合使用的所述溶剂,代替典型的碳酸盐电解质溶液,形成更安全的电池。
根据现有技术,优选的添加剂为环磷腈,包括至少3个PN重复单元的环核,最优选地3-10个重复单元。现有技术中的每个PN单元包括在磷和氮之间的双健和结合到磷上的两个侧基。每个PN单元通过单健在任何一侧上连接到其它PN单元上,形成环核。侧基共价健合到磷上,且所述侧基包括离子载体基团,用于提高阳离子的迁移率。所述离子载体基团包括乙烯-氧和/或乙烯-硫醇基团。在现有技术中,优选地侧基包括1-10个乙烯单元,特定地环磷腈上连接的侧基可能具有不同的乙烯单元。现有技术中的总链长度变化地较大。侧基可以是直链、支链或它们的任意组合。
根据现有技术,这两个分子直接连接到磷原子上形成用于临时容纳阳离子的“口袋”。例如,口袋可在O-P-N、O-P-O和S-P-N和/或S-P-S口袋中发现。在溶剂分子内,金属离子可从一个口袋“跳”或“跃”到另一口袋,和/或从一个分子上的口袋到下个分子上的口袋,等等。
现有技术的溶剂可以兼容两种常见的电极材料,如石墨和LiCoO2,并且使常见盐形成溶剂化物,如LiPF6。现有技术公开认为溶剂的侧基中存在的远端离子载体(主要是远端氧和/或远端硫原子,但也可包括第6B族的其它基团)能够提高阳离子的迁移率。也猜测远端原子有助于锂阳离子沿单个溶剂分子和从溶剂分子到溶剂分子之间“跳”和/或“跃”。
相关领域技术人员将很容易理解,由于高粘度和界面电荷转移电阻,伴随这些远端离子载体的扩展臂而来的问题,有时是难以克服的。特别地,这些问题是由于溶剂分子和锂离子之间的多个同步配位作用引起的。
这种配位有两种形式。首先,产生单分子螯合作用,其中锂分子有多个配位原子,所述配位原子来自相同溶剂分子,或者内侧基或者外侧基,或两者都有。这导致锂离子穿过电解质/电极界面的阻力要远高于现有技术中预期的。其次,从两种或两种以上不同的溶剂分子中产生同时配位的现象。这种配位产生瞬态溶剂分子的“交联”,所述“交联”用于大大增加系统的粘度,产生对批量运输锂离子通过系统的附加电阻。
因此,需要新的安全电池溶剂配方,即不牺牲锂离子溶解度,又能够降低粘度和减小锂离子穿过电解质/电极界面的运输的阻力。
发明内容
提供了一种改善电池性能和安全的方法,所述方法包括提供一种电池,所述电池具有阴极、阳极、包括至少一种环磷腈化合物的溶剂、和电解质盐;其中,所述环磷腈化合物包括连接的化学侧链和远端离子载体,并通过以下步骤形成:(1)缩短所述连接的化学侧链;(2)大体上移除所有的所述远端离子载体;和(3)使所述连接的化学侧链随机化以打乱所述环磷腈化合物的对称性。
还描述和/或要求了包括由上述方法提出的结构和从电池环境中分离得到的环磷腈化合物的电池。
附图说明
图1的表列举了适合用作电池溶剂的化合物的7个代表性配方。
图2的表显示了代表性配方在粘度方面大幅降低,尤其是在用锂盐饱和时。
图3显示了在代表性化合物中,锂盐的溶解度没有如现有技术的指导预期的那样下降。
图4显示了根据本发明特定地实施例配方,包括多个说明所要求的发明的方法的反应式。
详细描述
本发明通过同时缩短侧基、消除大多数或所有的远端离子载体、并使溶剂分子随机化以有意地以可能的最大程度打乱对称性来克服现有技术的缺陷。将记录的性能与使用传统有机溶剂的电池相比较,这些策略的结合大大地提高了电池性能,至一定程度。本发明的核心在于提高通过现有技术指导的化合物,即六-MEEP-T。总共研发了七个代表性配方来改善六-MEEP-T作为电池溶剂,但是本领域技术人员将要理解的是,许多其他的配方也是可能的并仍将落入本发明的范围内。图1描述了所提出的配方。
如图2所示,对比现有技术,特别是六-MEEP-T,新配方在粘度方面大幅度降低,尤其是在用锂盐饱和时,典型的是LiPF6。如图3所示,锂盐的溶解度没有像现有技术指导预期的那样几乎急剧下降。经假设是由于磷腈的氮与锂离子的直接缔合,尤其是在最小的系统中,其中氮中心大部分是暴露的。
本发明的另一方面建立在使侧基随机化以减少对称性的构思上。当不同的侧臂可被纳入单一配方时,可以通过物理地混合两种或两种以上的磷腈配方得到混合配方而进一步提高性能。在又一实施例中,已知添加百分比的兼容性碳酸盐溶剂分子有助于中断溶剂自缔合和瞬态溶剂-离子-溶剂凝聚,从而降低性能。混合的磷腈组分的范围可以是,例如,从约0.05%至约99%。即使小百分比的磷腈或混合碳酸盐磷腈也会导致安全性能的显著提高。
对于便捷的离子迁移而言至关重要的离子载体的移除实际上改善了磷腈液体系统,这对于本领域的技术人员而言的确是反直觉的。另外,先前也不知道分子对称或缺乏分子对称对这些溶剂系统的性能具有有意义的影响。最后,意料之外的,磷腈骨架的暴露可以保持锂盐的足够高的水平,使得实践中能使包含大量的远端离子载体的大部分的长侧基被移除。
实施例配方
为了生产新配方,在一个实施例中,如图4中的反应1所示,有机非质子溶剂,如1,4-二恶烷,与碱金属或碱金属氢化物混合以从其相应的醇中形成活性醇盐。虽然没有特别描述,但此处列举的原则同样适用于硫代醇盐。如图4中反应3a所示,高氯磷腈单元的溶液被添加到活性醇盐,并且化合物自组装形成磷腈化合物与副产物氯化钠。如图4中的反应1和反应2所示,两个或两个以上的侧基被纳入相同的配方中,醇盐和/或硫代醇盐形成在独立的反应容器内。
随后,如图4的反应3a所示,向高氯磷腈溶液添加微量组分溶液。如图4的反应3b所示,在微量的侧臂附着完成后,添加过量的主要组分到反应中,并且允许合成完成,从而获得最终需要的产物。
在移除溶剂后,合成的产品用碱性水通过萃取被分离和纯化。所述产品随后在真空/氩烤箱中干燥若干小时,并在密闭容器内转移到氩手套箱中。
上述提供的说明仅仅用于说明的目的,并非是描述了本发明所有的可能的方面。此外,参照几个代表性实施例,详细示出和描述了本发明,本领域的那些普通技术人员应当理解的是,对于该描述的微小的变化、和其他各种修改、省略和添加在不脱离其精神或范围时也可以做出。可以预期的是,包括各种长度侧臂的多种磷腈化合物可以产生类似的结果。

Claims (18)

1.一种生产电池溶剂的方法,包括以下步骤:
a.提供环磷腈化合物,所述环磷腈化合物包括连接的化学侧链和远端离子载体;
b.缩短所述连接的化学侧链;
c.大体上移除所有的所述远端离子载体;和
d.使所述化学侧链随机化以打乱所述环磷腈化合物的对称性。
2.如权利要求3所述的方法,进一步包括添加电解质盐的步骤。
3.如权利要求4所述的方法,进一步包括添加足够量的电解质盐来饱和所述环磷腈化合物的步骤。
4.如权利要求4所述的方法,进一步包括添加锂电解质盐的步骤。
5.如权利要求3所述的方法,进一步包括添加兼容性碳酸盐溶剂分子的步骤。
6.如权利要求7所述的方法,其中,所述兼容性碳酸盐溶剂分子的添加量包括约1%和约99.95%之间的总电池溶剂组分。
7.一种化学溶剂,包括:
环磷腈化合物,所述环磷腈化合物包括连接的化学侧链和远端离子载体,其中,
连接的化学侧链被缩短;
大体上所有的所述远端离子载体被移除;并且
所述化学侧链被随机化以打乱所述环磷腈化合物的对称性。
8.如权利要求9所述的化学溶剂,进一步包括电解质盐。
9.如权利要求10所述的电池溶剂,其中,添加了足够量的所述电解质盐以饱和所述环磷腈化合物。
10.如权利要求10所述的化学溶剂,其中,所述电解质盐是锂盐。
11.如权利要求9所述的化学溶剂,进一步包括多种兼容性碳酸盐溶剂分子。
12.如权利要求13所述的化学溶剂,其中,所述兼容性碳酸盐溶剂分子的添加量包括约1%和约99.95%之间的总化学溶剂组分。
13.一种电池,所述电池包括溶剂,所述溶剂至少包括:
环磷腈化合物,所述环磷腈化合物包括连接的化学侧链和远端离子载体,其中,
连接的化学侧链被缩短;
大体上所有的所述远端离子载体被移除;并且
所述化学侧链被随机化以打乱所述环磷腈化合物的对称性。
14.如权利要求15所述的电池,其中,所述溶剂进一步包括电解质盐。
15.如权利要求16所述的电池,其中,添加了足够量的所述电解质盐以饱和环磷腈化合物。
16.如权利要求17所述的电池,其中,所述电解质盐是锂盐。
17.如权利要求15所述的电池,其中,所述溶剂进一步包括多种兼容性碳酸盐溶剂分子。
18.如权利要求19所述的电池,其中,所述兼容性碳酸盐溶剂分子的添加量包括约1%和约99.95%之间的总电池溶剂组分。
CN201280023305.3A 2011-05-13 2012-05-14 安全的电池溶剂 Expired - Fee Related CN103703596B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610599602.2A CN106207248A (zh) 2011-05-13 2012-05-14 安全的电池溶剂

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/107,586 US20120088162A1 (en) 2008-08-07 2011-05-13 Safe Battery Solvents
US13/107,586 2011-05-13
PCT/US2012/037716 WO2012158589A1 (en) 2011-05-13 2012-05-14 Safe battery solvents

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201610599602.2A Division CN106207248A (zh) 2011-05-13 2012-05-14 安全的电池溶剂

Publications (2)

Publication Number Publication Date
CN103703596A true CN103703596A (zh) 2014-04-02
CN103703596B CN103703596B (zh) 2016-08-17

Family

ID=47177292

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201280023305.3A Expired - Fee Related CN103703596B (zh) 2011-05-13 2012-05-14 安全的电池溶剂
CN201610599602.2A Pending CN106207248A (zh) 2011-05-13 2012-05-14 安全的电池溶剂

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201610599602.2A Pending CN106207248A (zh) 2011-05-13 2012-05-14 安全的电池溶剂

Country Status (6)

Country Link
US (4) US20120088162A1 (zh)
EP (1) EP2707919A4 (zh)
JP (2) JP2014519499A (zh)
KR (2) KR20160092031A (zh)
CN (2) CN103703596B (zh)
WO (1) WO2012158589A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8153435B1 (en) 2005-03-30 2012-04-10 Tracer Detection Technology Corp. Methods and articles for identifying objects using encapsulated perfluorocarbon tracers
KR102008671B1 (ko) 2010-08-05 2019-08-08 후지필름 와코 준야꾸 가부시키가이샤 비수계 전해액 및 그를 사용한 비수계 전해액 전지
KR101867807B1 (ko) * 2010-08-05 2018-06-18 와코 쥰야꾸 고교 가부시키가이샤 비수계 전해액, 그 제조법, 및 당해 전해액을 사용한 비수계 전해액 전지
CN102766168B (zh) * 2012-08-09 2015-12-16 西安近代化学研究所 一种六(4-羟基乙氧基)环三磷腈的合成方法
CN102766167B (zh) * 2012-08-09 2015-12-16 西安近代化学研究所 六(4-羟基乙氧基)环三磷腈的合成方法
KR101634107B1 (ko) * 2014-04-29 2016-06-29 한국화학연구원 알릴포스파젠계 가교제 및 이를 포함하는 semi―IPN 타입의 전고상 고분자 전해질 조성물
WO2016160703A1 (en) * 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN109103501A (zh) * 2018-07-13 2018-12-28 惠州市智键科技有限公司 一种锂离子电池电解液
CN113121602B (zh) * 2019-12-30 2023-03-24 北京卫蓝新能源科技有限公司 一种磷腈基磷酸酯添加剂和制备方法及锂电池电解液
CN113241478B (zh) * 2021-05-08 2022-08-26 宁德新能源科技有限公司 电解液、电化学装置以及用电设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910381A (en) * 1997-04-17 1999-06-08 Barker; Jeremy Chlorinated diethyl carbonate solvent for battery
CN101076908A (zh) * 2004-05-17 2007-11-21 巴特尔能源联合有限责任公司 安全的电池溶剂

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658592A (en) * 1970-07-15 1972-04-25 Mallory & Co Inc P R Lithium-metal chromate organic electrolyte cell
US4105677A (en) * 1976-04-29 1978-08-08 Celanese Corporation Production of tetrahydrofuran
US5830600A (en) * 1996-05-24 1998-11-03 Sri International Nonflammable/self-extinguishing electrolytes for batteries
CN1143406C (zh) * 1998-11-30 2004-03-24 日本化学工业株式会社 非水电解液二次电池
US6452782B1 (en) * 1999-11-25 2002-09-17 Bridgestone Corporation Non-aqueous electrolyte electric double-layer capacitor, deterioration inhibitor for non-aqueous electrolyte electric double-layer capacitor and additive for non-aqueous electrolyte electric double-layer capacitor
WO2005036690A1 (ja) * 2003-10-07 2005-04-21 Gs Yuasa Corporation 非水電解質二次電池
JP4632017B2 (ja) * 2003-10-07 2011-02-16 株式会社Gsユアサ 非水電解質二次電池
JP5403845B2 (ja) * 2004-07-06 2014-01-29 三菱化学株式会社 非水系電解液及びそれを用いたリチウム二次電池
JP4367951B2 (ja) * 2005-02-10 2009-11-18 日立マクセル株式会社 非水二次電池
KR20060116423A (ko) * 2005-05-10 2006-11-15 주식회사 엘지화학 비수 전해질 및 이를 포함하는 리튬 이차전지
JP2007207455A (ja) * 2006-01-31 2007-08-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP5182462B2 (ja) * 2006-05-15 2013-04-17 株式会社Gsユアサ 非水電解液及びこれを備えた電池
JP2008053211A (ja) * 2006-07-24 2008-03-06 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液電池
KR20090029569A (ko) * 2007-09-18 2009-03-23 한국전기연구원 리튬 이차 전지용 전해액 및 이를 구비한 리튬 이차 전지

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910381A (en) * 1997-04-17 1999-06-08 Barker; Jeremy Chlorinated diethyl carbonate solvent for battery
CN101076908A (zh) * 2004-05-17 2007-11-21 巴特尔能源联合有限责任公司 安全的电池溶剂

Also Published As

Publication number Publication date
US20160294013A1 (en) 2016-10-06
WO2012158589A1 (en) 2012-11-22
US20120088162A1 (en) 2012-04-12
EP2707919A4 (en) 2015-03-25
KR20140040749A (ko) 2014-04-03
US20170110761A1 (en) 2017-04-20
EP2707919A1 (en) 2014-03-19
KR20160092031A (ko) 2016-08-03
CN103703596B (zh) 2016-08-17
KR101643698B1 (ko) 2016-07-28
CN106207248A (zh) 2016-12-07
US20160285132A1 (en) 2016-09-29
JP2016195118A (ja) 2016-11-17
JP2014519499A (ja) 2014-08-14

Similar Documents

Publication Publication Date Title
CN103703596A (zh) 安全的电池溶剂
JP7016020B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
KR102469213B1 (ko) 비수 전해액 전지용 전해액 및 그것을 이용한 비수 전해액 전지
CN108140891B (zh) 非水电解液电池用电解液和使用其的非水电解液电池
CN105144459B (zh) 用于原电池的添加剂
JP6365082B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
US8383276B2 (en) High voltage electrolyte
CN104900879A (zh) 一种阻燃型钠离子电池电解液及其应用
JP2020527823A (ja) リン含有電解質
WO2005117199A2 (en) Safe battery solvents
US10707526B2 (en) All-inorganic solvents for electrolytes
CN102639544B (zh) 由磷酰氯和二醇或者聚二醇的单烷基醚制造磷酸酯的方法
CN102610859A (zh) 一种用于锰酸锂动力电池的非水电解液
CN104671224B (zh) 双氟磺酰亚胺盐的合成方法
CN107181004A (zh) 一种锂硫电池电解液及使用该电解液的锂硫电池
JP2003034692A (ja) フルオロアルキルリン酸塩およびこれらの物質の調製法
WO2016133169A1 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
KR20150128564A (ko) 전기화학소자용 첨가제와, 이를 포함하는 전해액, 전극 및 전기화학소자
KR102495553B1 (ko) 전기 화학 전지, 이의 충전에 적합한 전해질, 이의 제조 방법 및 이의 작동 방법
KR20170081696A (ko) 전해질 성분으로서 아세트산 2-[(메톡시카본일)옥시] 메틸 에스터
KR101573148B1 (ko) 프탈레이트 포스핀계 음이온을 포함하는 전해액, 이를 포함하는 이차전지용 첨가제 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: PULIN XISI ENERGY SOURCE SYSTEM CO., LTD.

Free format text: FORMER OWNER: BURBA JOHN L. III

Effective date: 20140926

Free format text: FORMER OWNER: HARRUP MASON K. LUTHER THOMAS A.

Effective date: 20140926

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20140926

Address after: American Colorado

Applicant after: PULIN XISI ENERGY SOURCE SYSTEM CO., LTD.

Address before: American Colorado

Applicant before: Burba John L. III

Applicant before: HARRUP MASON K.

Applicant before: LUTHER THOMAS A.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20170514

CF01 Termination of patent right due to non-payment of annual fee