CN103682102A - 一种石墨烯场效应光晶体管及其制造方法 - Google Patents

一种石墨烯场效应光晶体管及其制造方法 Download PDF

Info

Publication number
CN103682102A
CN103682102A CN201310580448.0A CN201310580448A CN103682102A CN 103682102 A CN103682102 A CN 103682102A CN 201310580448 A CN201310580448 A CN 201310580448A CN 103682102 A CN103682102 A CN 103682102A
Authority
CN
China
Prior art keywords
graphene
layer
field effect
quantum dot
optotransistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310580448.0A
Other languages
English (en)
Inventor
林时胜
李文渊
张金石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201310580448.0A priority Critical patent/CN103682102A/zh
Publication of CN103682102A publication Critical patent/CN103682102A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/1127Devices with PN heterojunction gate
    • H01L31/1129Devices with PN heterojunction gate the device being a field-effect phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开的石墨烯场效应光晶体管自下而上依次有Si层和SiO2层的Si/SiO2复合晶片、n层石墨烯层,n=1-2、两块在同一水平面上彼此相隔的金电极、在两块金电极之间有CdSe量子点层,CdSe量子点层中的CdSe量子点的直径为3-8nm。其制造步骤包括:将用胶带从石墨烯晶体上剥离的石墨烯层黏贴到清洗干净的Si/SiO2复合晶片上;在石墨烯层上旋涂聚甲基丙烯酸甲酯,用电子束曝光法在涂层上刻蚀出金电极;用电子束蒸发方法在电极上依次沉积Ni和Au作为源极和漏极,制备CdSe量子点溶液;将CdSe量子点溶液涂覆到二块金电极之间的石墨烯层上。本发明为场效应光晶体管提供了一种新品种。

Description

一种石墨烯场效应光晶体管及其制造方法
技术领域
本发明涉及一种场效应光晶体管及其制造方法,尤其是石墨烯场效应光晶体管及其制造方法。
背景技术
光晶体管是由双极型晶体管或场效应晶体管等三端器件构成的光电器件。光在这类器件的有源区内被吸收,产生光生载流子,通过内部电放大机构,产生光电流增益,光晶体管三端工作,故容易实现电控或电同步。光晶体管所用材料通常是砷化镓(CaAs),主要分为双极型光晶体管、场效应光晶体管及其相关器件。双极型光晶体管通常增益很高,对于GaAs-GaAlAs,放大系数可大于1000,响应时间大于纳秒,常用于光探测器,也可用于光放大。场效应光晶体管响应速度快(约为50皮秒),常用作极高速光探测器。与此相关还有许多其他平面型光电器件,其特点均是速度快(响应时间几十皮秒)、适于集成。
目前,在光探测领域最新的研究成果是基于量子点调控的光晶体管。这种光晶体管可以提供比较高的光增益,并且有比较小的暗电流。据报道,有铝掺杂的氧化锌(AZO)和PbS量子点的光晶体管混合结构对红外光的吸收强烈,可以用于红外波段光电探测器的制作;基于石墨烯-PbS量子点混合而得到的光电MOS管,具有108电子/光子的量子效率和107A/W的高灵敏度,最低可探测10-15 W的光强;而单壁碳纳米管与量子点的混合光晶体管结构增强了光的斯塔效应。对量子点混合结构光晶体管的研究具有重要意义。
发明内容
本发明的目的是为光探测领域提供一种使用半导体材料石墨烯而构建的场效应晶体管其制造方法,为场效应光晶体管提供一种新品种。
本发明的石墨烯场效应光晶体管,自下而上依次有Si层和SiO2层的Si/SiO2复合晶片、n层石墨烯层,n=1-2、两块在同一水平面上彼此相隔的金电极、在两块金电极之间有CdSe量子点层,CdSe量子点层中的CdSe量子点的直径为3-8nm。
通常,Si/SiO2复合晶片的SiO2层的厚度为30-300nm,Si层厚度为200μm。CdSe量子点层的厚度为10-600nm。
本发明的石墨烯场效应光晶体管的制造方法,包括如下步骤:
1)使用微机械力方法,用胶带从石墨烯晶体上剥离n层石墨烯,n=1-2,再将石墨烯黏贴到清洗干净的Si/SiO2复合晶片的SiO2层上;
2)在石墨烯层上旋涂质量浓度1%-10%的聚甲基丙烯酸甲酯,采用电子束曝光法在聚甲基丙烯酸甲酯涂层上刻蚀出金电极图形;
3)采用电子束蒸发方法,在刻蚀的金电极图形上依次沉积5nmNi和20-100nmAu,作为场效应光晶体管的源极和漏极;
4)将丙烯酸羟丙酯充分溶解于氧化三辛基膦中,得到氧化三辛基膦丙烯酸羟丙酯混合溶液,混合溶液中丙烯酸羟丙酯的质量浓度为8%;将Se、Cd(CH3)2和三丁基膦按质量比1:2:38混合,得到储备液,将0.5-2ml储备液倒入加热至360℃的2-4g上述氧化三辛基膦丙烯酸羟丙酯混合溶液中,保持360℃温度不变,反应0.1-1小时,自然冷却至室温,得到CdSe量子点溶液;
5)采用旋涂的方法将步骤4)制得的CdSe量子点溶液涂覆到二块金电极之间的石墨烯层上,得到石墨烯场效应光晶体管。
本发明制备过程中,清洗Si/SiO2复合晶片可以是先依次用去离子水、丙酮和异丙醇清洗,然后再用O2:Ar=1:1的混合等离子气体清洗。
上述步骤2)的电子束曝光刻蚀的曝光时间为1-2s、显影时间40s-1min。步骤3)的电子束蒸发过程中,气压控制在5×10-3Pa以下。
石墨烯具有二维晶体结构,表面平整,在室温下传递电子的速度比已知导体都快。利用石墨烯和CdSe量子点混合,可以克服石墨烯光透明的缺点,制造出石墨烯场效应晶体管结构。
本发明的石墨烯场效应光晶体管中石墨烯层受到Si背栅电极的调控,利用光致激发CdSe量子点构建成石墨烯的场效应晶体管。本发明为场效应光晶体管提供了一种新品种。
附图说明
图1为石墨烯场效应光晶体管的结构示意图;
图2为石墨烯场效应光晶体管的俯视图;
图3为石墨烯场效应晶体管栅极电压与漏极电流的关系;
图4为石墨烯场效应晶体管在不同栅压下漏极电流与漏极电压的关系。
具体实施方式
以下结合附图进一步说明本发明。
参照图1、图2,本发明的石墨烯场效应光晶体管自下而上依次有Si层1和SiO2层2的Si/SiO2复合晶片、n层石墨烯层3,n=1-2、两块在同一水平面上彼此相隔的金电极4、在两块金电极4之间有CdSe量子点层5,CdSe量子点层5中的CdSe量子点的直径为3-8nm。
实施例1:
1)将Si/SiO2复合晶片依次用去离子水、丙酮和异丙醇清洗,然后再用O2:Ar=1:1的混合等离子气体清洗;用胶带从石墨烯晶体上剥离单层石墨烯黏贴到清洗干净的Si/SiO2晶片的SiO2层上,其中SiO2层厚度250nm;
2)在石墨烯上旋涂质量浓度10%的聚甲基丙烯酸甲酯(PMMA),采用电子束曝光法在聚甲基丙烯酸甲酯涂层上刻蚀出金电极图形,电子束曝光刻蚀的曝光时间为2s、显影时间40s;
3)采用电子束蒸发方法,在刻蚀的金电极图形上依次沉积5nmNi和20nmAu,电子束蒸发过程中,气压控制在5×10-3Pa;
4)将丙烯酸羟丙酯充分溶解于氧化三辛基膦中,得到氧化三辛基膦丙烯酸羟丙酯混合溶液,混合溶液中丙烯酸羟丙酯的质量浓度为8%;将Se、Cd(CH3)2和三丁基膦按质量比1:2:38混合,得到储备液,将1ml储备液倒入加热至360℃的3g上述氧化三辛基膦丙烯酸羟丙酯混合溶液中,保持360℃温度不变,反应0.3小时,自然冷却至室温,得到CdSe量子点液,CdSe量子点直径为5nm;
5)采用旋涂的方法将步骤4)制得的CdSe量子点层涂覆到二块金电极之间的单层石墨烯上,CdSe量子点层涂覆厚550nm,得到石墨烯场效应光晶体管。
本例的石墨烯场效应晶体管在波长532nm(Nd3+YAG倍频激光器)功率1.7pw的绿色激光激发下栅极电压与漏极电流的关系见图3。不同栅压下漏极电流与漏极电压的关系见图4。
 
实施例2:
1)将Si/SiO2复合晶片依次用去离子水、丙酮和异丙醇清洗,然后再用O2:Ar=1:1的混合等离子气体清洗;用胶带从石墨烯晶体上剥离双层石墨烯黏贴到清洗干净的Si/SiO2晶片的SiO2层上,其中SiO2层厚度300nm;
2)在三层石墨烯上旋涂质量浓度1%的PMMA,采用电子束曝光法在聚甲基丙烯酸甲酯涂层上刻蚀出金电极图形,电子束曝光刻蚀的曝光时间为1s、显影时间1min;
3)采用电子束蒸发方法,在刻蚀的金电极图形上依次沉积5nmNi和80nmAu,电子束蒸发过程中,气压控制在5×10-3Pa;
4)将丙烯酸羟丙酯充分溶解于氧化三辛基膦中,得到氧化三辛基膦丙烯酸羟丙酯混合溶液,混合溶液中丙烯酸羟丙酯的质量浓度为8%;将Se、Cd(CH3)2和三丁基膦按质量比1:2:38混合,得到储备液,将2ml储备液倒入加热至360℃的2g上述氧化三辛基膦丙烯酸羟丙酯混合溶液中,保持360℃温度不变,反应0.8小时,自然冷却至室温,得到CdSe量子点溶液,CdSe量子点直径为8nm;
5)采用旋涂的方法将步骤4)制得的CdSe量子点层涂覆在二块金电极之间的四层石墨烯上,CdSe量子点层涂覆厚400nm,得到石墨烯场效应光晶体管。
实施例3:
1)将Si/SiO2复合晶片依次用去离子水、丙酮和异丙醇清洗,然后再用O2:Ar=1:1的混合等离子气体清洗;用胶带从石墨烯晶体上剥离单层石墨烯黏贴到清洗干净的Si/SiO2晶片的SiO2层上,其中SiO2层厚度280nm;
2)在石墨烯层上旋涂质量浓度5%的PMMA,采用电子束曝光法在聚甲基丙烯酸甲酯涂层上刻蚀出金电极图形,电子束曝光刻蚀的曝光时间为2s、显影时间50s;
3)采用电子束蒸发方法,在刻蚀的金电极图形上依次沉积5nmNi和40nmAu,电子束蒸发过程中,气压控制在5×10-3Pa;
4)将丙烯酸羟丙酯充分溶解于氧化三辛基膦中,得到氧化三辛基膦丙烯酸羟丙酯混合溶液,混合溶液中丙烯酸羟丙酯的质量浓度为8%;将Se、Cd(CH3)2和三丁基膦按质量比1:2:38混合,得到储备液,将0.5ml储备液倒入加热至360℃的1g上述氧化三辛基膦丙烯酸羟丙酯混合溶液中,保持360℃温度不变,反应1小时,自然冷却至室温,得到CdSe量子点液,CdSe量子点直径为3nm;
5)采用旋涂的方法步骤4)制得的CdSe量子点层涂覆在二块金电极之间的2层石墨烯上,CdSe量子点层涂覆厚50nm,得到石墨烯场效应光晶体管。
实施例4:
1)将Si/SiO2复合晶片依次用去离子水、丙酮和异丙醇清洗,然后再用O2:Ar=1:1的混合等离子气体清洗;用胶带从石墨烯晶体上剥离单层石墨烯黏贴到清洗干净的Si/SiO2晶片的SiO2层上,其中SiO2层厚度250nm;
2)在石墨烯上旋涂质量浓度10%的PMMA,采用电子束曝光法在聚甲基丙烯酸甲酯涂层上刻蚀出金电极图形,电子束曝光刻蚀的曝光时间为2s、显影时间40s;
3)采用电子束蒸发方法,在刻蚀的金电极图形上依次沉积5nmNi和20nmAu,电子束蒸发过程中,气压控制在5×10-3Pa;
4)将丙烯酸羟丙酯充分溶解于氧化三辛基膦中,得到氧化三辛基膦丙烯酸羟丙酯混合溶液,混合溶液中丙烯酸羟丙酯的质量浓度为8%;将Se、Cd(CH3)2和三丁基膦按质量比1:2:38混合,得到储备液,将2ml储备液倒入加热至360℃的4g上述氧化三辛基膦丙烯酸羟丙酯混合溶液中,保持360℃温度不变,反应0.1小时,自然冷却至室温,得到CdSe量子点液,CdSe量子点直径为6nm。
5)采用旋涂的方法将步骤4)制得的CdSe量子点层涂覆到二块金电极之间的单层石墨烯上,CdSe量子点层涂覆厚550nm,得到石墨烯场效应光晶体管。

Claims (7)

1.一种石墨烯场效应光晶体管,其特征在于自下而上依次有Si层(1)和SiO2层(2)的Si/SiO2复合晶片、n层石墨烯层(3),n=1-2、两块在同一水平面上彼此相隔的金电极(4)、在两块金电极(4)之间有CdSe量子点层(5),CdSe量子点层(5)中的CdSe量子点的直径为3-8nm。
2.根据权利要求1所述的石墨烯场效应光晶体管,其特征在于Si/SiO2复合晶片的SiO2层(2)的厚度为30-300nm,Si层(1)厚度为200μm。
3.根据权利要求1所述的石墨烯场效应光晶体管,其特征在于CdSe量子点层(5)的厚度为10-600nm。
4.制造权利要求1所述的石墨烯场效应光晶体管的方法,其特征在于包括如下步骤:
1)使用微机械力方法,用胶带从石墨烯晶体上剥离n层石墨烯,n=1-2,再将石墨烯黏贴到清洗干净的Si/SiO2复合晶片的SiO2层上;
2)在石墨烯层上旋涂质量浓度1%-10%的聚甲基丙烯酸甲酯,采用电子束曝光法在聚甲基丙烯酸甲酯涂层上刻蚀出金电极图形;
3)采用电子束蒸发方法,在刻蚀的金电极图形上依次沉积5nmNi和20-100nmAu,作为场效应光晶体管的源极和漏极;
4)将丙烯酸羟丙酯充分溶解于氧化三辛基膦中,得到氧化三辛基膦丙烯酸羟丙酯混合溶液,混合溶液中丙烯酸羟丙酯的质量浓度为8%;将Se、Cd(CH3)2和三丁基膦按质量比1:2:38混合,得到储备液,将0.5-2ml储备液倒入加热至360℃的2-4g上述氧化三辛基膦丙烯酸羟丙酯混合溶液中,保持360℃温度不变,反应0.1-1小时,自然冷却至室温,得到CdSe量子点溶液;
5)采用旋涂的方法将步骤4)制得的CdSe量子点溶液涂覆到二块金电极之间的石墨烯层上,得到石墨烯场效应光晶体管。
5.根据权利要求4所述的石墨烯场效应光晶体管的制造方法,其特征在于所述的清洗Si/SiO2复合晶片是先依次用去离子水、丙酮和异丙醇清洗,然后再用O2:Ar=1:1的混合等离子气体清洗。
6.根据权利要求1所述的石墨烯场效应光晶体管的制造方法,其特征在于步骤2)的电子束曝光刻蚀的曝光时间为1-2s、显影时间40s-1min。
7.根据权利要求1所述的石墨烯场效应光晶体管的制造方法,其特征在于步骤3)的电子束蒸发过程中,气压控制在5×10-3Pa以下。
CN201310580448.0A 2013-11-19 2013-11-19 一种石墨烯场效应光晶体管及其制造方法 Pending CN103682102A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310580448.0A CN103682102A (zh) 2013-11-19 2013-11-19 一种石墨烯场效应光晶体管及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310580448.0A CN103682102A (zh) 2013-11-19 2013-11-19 一种石墨烯场效应光晶体管及其制造方法

Publications (1)

Publication Number Publication Date
CN103682102A true CN103682102A (zh) 2014-03-26

Family

ID=50318970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310580448.0A Pending CN103682102A (zh) 2013-11-19 2013-11-19 一种石墨烯场效应光晶体管及其制造方法

Country Status (1)

Country Link
CN (1) CN103682102A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943713A (zh) * 2014-04-02 2014-07-23 天津大学 一种量子点/石墨烯光敏场效应管及其制备方法
CN104882542A (zh) * 2015-05-28 2015-09-02 福州大学 一种基于金属/有机壳核量子点-半导体量子点复合结构光控薄膜晶体管的制备方法
CN104979165A (zh) * 2015-07-15 2015-10-14 中国科学院半导体研究所 石墨烯场效应器件的制备方法
CN105337167A (zh) * 2015-11-03 2016-02-17 云南大学 一种半导体量子点激光器及其制备方法
CN105679857A (zh) * 2016-01-20 2016-06-15 浙江大学 一种基于硅量子点/石墨烯/硅异质结构的光电传感器
CN106197687A (zh) * 2016-07-19 2016-12-07 中国科学院重庆绿色智能技术研究院 一种基于石墨烯量子点的微测辐射热计
CN106328729A (zh) * 2016-10-19 2017-01-11 天津大学 基于石墨烯电极的量子点垂直沟道场效应管及其制备方法
CN106803528A (zh) * 2016-12-28 2017-06-06 泰州巨纳新能源有限公司 基于石墨烯的位置灵敏光探测器
CN109216497A (zh) * 2018-09-05 2019-01-15 中国科学院半导体研究所 基于二维各向异性材料的片上光探测器及其制造方法
GB2568110A (en) * 2017-11-07 2019-05-08 Emberion Oy Photosensitive field-effect transistor
CN110431672A (zh) * 2017-02-07 2019-11-08 多伦多大学管理委员会 光伏场效应晶体管

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013017605A1 (en) * 2011-08-02 2013-02-07 Fundació Institut De Ciències Fotòniques Optoelectronic platform with carbon based conductor and quantum dots, and transistor comprising such a platform
CN103022357A (zh) * 2012-11-19 2013-04-03 福州大学 基于石墨烯量子点的三体系有机光伏器件及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013017605A1 (en) * 2011-08-02 2013-02-07 Fundació Institut De Ciències Fotòniques Optoelectronic platform with carbon based conductor and quantum dots, and transistor comprising such a platform
CN103022357A (zh) * 2012-11-19 2013-04-03 福州大学 基于石墨烯量子点的三体系有机光伏器件及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FREDERIK HETSCH,ET AL.: "Quantum dot field effect transistors", 《MATERIALS TODAY》 *
XIAOGANG PENG, ET AL.: "Shape control of CdSe nanocrystals", 《LETTERS TO NATURE》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943713A (zh) * 2014-04-02 2014-07-23 天津大学 一种量子点/石墨烯光敏场效应管及其制备方法
CN104882542B (zh) * 2015-05-28 2017-06-06 福州大学 一种基于金属/有机壳核量子点‑半导体量子点复合结构光控薄膜晶体管的制备方法
CN104882542A (zh) * 2015-05-28 2015-09-02 福州大学 一种基于金属/有机壳核量子点-半导体量子点复合结构光控薄膜晶体管的制备方法
CN104979165A (zh) * 2015-07-15 2015-10-14 中国科学院半导体研究所 石墨烯场效应器件的制备方法
CN105337167A (zh) * 2015-11-03 2016-02-17 云南大学 一种半导体量子点激光器及其制备方法
CN105679857A (zh) * 2016-01-20 2016-06-15 浙江大学 一种基于硅量子点/石墨烯/硅异质结构的光电传感器
CN105679857B (zh) * 2016-01-20 2017-03-22 浙江大学 一种基于硅量子点/石墨烯/硅异质结构的光电传感器
CN106197687A (zh) * 2016-07-19 2016-12-07 中国科学院重庆绿色智能技术研究院 一种基于石墨烯量子点的微测辐射热计
CN106197687B (zh) * 2016-07-19 2019-03-05 中国科学院重庆绿色智能技术研究院 一种基于石墨烯量子点的微测辐射热计
CN106328729A (zh) * 2016-10-19 2017-01-11 天津大学 基于石墨烯电极的量子点垂直沟道场效应管及其制备方法
CN106803528A (zh) * 2016-12-28 2017-06-06 泰州巨纳新能源有限公司 基于石墨烯的位置灵敏光探测器
CN110431672A (zh) * 2017-02-07 2019-11-08 多伦多大学管理委员会 光伏场效应晶体管
GB2568110A (en) * 2017-11-07 2019-05-08 Emberion Oy Photosensitive field-effect transistor
GB2568110B (en) * 2017-11-07 2019-12-04 Emberion Oy Photosensitive field-effect transistor
US10522706B2 (en) 2017-11-07 2019-12-31 Emberion Oy Photosensitive field-effect transistor
CN109216497A (zh) * 2018-09-05 2019-01-15 中国科学院半导体研究所 基于二维各向异性材料的片上光探测器及其制造方法

Similar Documents

Publication Publication Date Title
CN103682102A (zh) 一种石墨烯场效应光晶体管及其制造方法
CN103681837A (zh) 一种二硫化钼-硒化镉量子点混合场效应光晶体管及其制造方法
Ezhilmaran et al. Recent developments in the photodetector applications of Schottky diodes based on 2D materials
Zheng et al. Tin dioxide quantum dots coupled with graphene for high-performance bulk-silicon Schottky photodetector
Sun et al. Plasmonic-enhanced perovskite–graphene hybrid photodetectors
Tsai et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments
Shin et al. Graphene/porous silicon Schottky-junction solar cells
Wang et al. A CuO nanowire infrared photodetector
CN107342345B (zh) 一种基于铁电栅介质和薄层二硫化钼沟道的光电晶体管
CN102201483B (zh) 硅纳米线光栅谐振增强型光电探测器及其制作方法
CN105552131B (zh) 基于量子点掺杂栅绝缘层的光调制薄膜晶体管
Wang et al. Self-powered, superior high gain silicon-based near-infrared photosensing for low-power light communication
CN105742394A (zh) 一种基于黑磷/石墨烯异质结构的紫外探测器及其制备方法
Liu et al. Highly efficient broadband photodetectors based on lithography-free Au/Bi 2 O 2 Se/Au heterostructures
CN108281493B (zh) 二硒化钨和金属垂直型肖特基结自驱动光电探测器及制备
CN103681940A (zh) 一种二硫化钼-氧化锌量子点混合场效应光晶体管及其制造方法
CN103681938A (zh) 一种氮化硼-氧化锌量子点混合场效应光晶体管及其制造方法
Ma et al. Multilayered PtSe 2/pyramid-Si heterostructure array with light confinement effect for high-performance photodetection, image sensing and light trajectory tracking applications
Marmon et al. Light-effect transistor (LET) with multiple independent gating controls for optical logic gates and optical amplification
CN104157720A (zh) 一种混合结构的石墨烯硅基雪崩光电探测器及制备方法
Chen et al. Enhanced photoresponsivity in carbon quantum dots-coupled graphene/silicon Schottky-junction photodetector
CN109801830A (zh) 一种真空沟道晶体管及其制备方法
CN104576789B (zh) 氧化石墨烯作为阻挡层及隧穿层的探测器及其制备方法
Moun et al. Exploring conduction mechanism and photoresponse in P-GaN/n-MoS2 heterojunction diode
Lee et al. Single Si submicron wire photodetector fabricated by simple wet etching process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140326